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Abstract—This course project explores the application of
Inertial Measurement Unit (IMU) technology in predicting and
classifying multiple hand gestures, with a focus on enhancing
the user experience for wearable robotic devices. By employing
advanced signal processing and machine learning techniques,
we have developed a system capable of accurately interpreting
various grasping intentions. The project leverages an LSTM
(Long Short-Term Memory) model to process IMU data col-
lected from participants, achieving a high level of accuracy in
gesture recognition. The outcomes of this project are expected to
contribute to the development of more intuitive and responsive
wearable technologies, improving the interaction between users
and their devices.
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I. INTRODUCTION

In the realm of human-computer interaction, the ability to
control devices with natural hand gestures has the potential to
revolutionize the way we engage with technology. The advent
of wearable robotic devices has brought this possibility closer
to reality, yet the challenge remains to create a system that
can accurately interpret the user’s intentions from their hand
movements. This course project aims to address this challenge
by utilizing IMU technology to predict and classify a range
of hand gestures [1], [2].

The project’s foundation lies in the IM900 IMU, a state-
of-the-art sensing device that provides rich motion data with
high temporal resolution. By strategically positioning the IMU
on the forearm, we ensure that the collected data accurately
reflects the user’s arm movements without interference from
hand motion. The data is then processed to calculate the
trajectory and orientation of the arm, which are critical features
for gesture classification.

Our approach to gesture recognition involves training an
LSTM model, a type of deep learning model particularly
suited for handling sequential data. The model is trained on
a dataset where each gesture is labeled and represented by
its corresponding arm movement features. Through rigorous
testing and validation, the LSTM model has demonstrated a
high degree of accuracy in classifying the gestures, even when
faced with new, unseen data [3], [4]

The success of this project holds significant implications
for the future of wearable technology. By improving the
accuracy and responsiveness of gesture recognition, we can
create devices that are more intuitive and user-friendly. This
not only enhances the user experience but also opens up new
possibilities for applications in various fields, from gaming
and virtual reality to assistive technologies for individuals with
motor impairments.

After detailed market research, we have determined to
use this technology to assist people with disabilities in their
daily lives, restoring their ability to survive, live, and even
work as much as possible. According to statistics, there were
approximately 1.3 billion people with disabilities worldwide
in 2023, and over 85 million people with disabilities in China
in 2024. However, there are few mature products that can
assist people with disabilities through intention recognition
methods. This IMU based intention recognition technology
has advantages such as accuracy, safety, simplicity, and low
cost, and will be a blessing for people with disabilities in
China and even the world. Based on market demand analysis
and literature research, it is reasonably predicted that if this
technology can be commercialized, it will have extremely high
market recognition.

At the same time, this technology can promote social
development. Since the 18th CPC National Congress, the CPC
Central Committee, with Comrade Xi Jinping at its core, has
shown “extra care and concern” for the cause of persons with
disabilities, standing on the height of seeking happiness for
the Chinese people and rejuvenation of the Chinese nation,
safeguarding the basic livelihood of persons with disabilities,
improving the quality of life of persons with disabilities, and
promoting the comprehensive development of persons with
disabilities, so that 85 million persons with disabilities have
become equal members of large families in the society. The 85
million persons with disabilities have become equal members
of the extended family and are sharing the great glory of the
country’s prosperity and strength with the people of China.

From this, it can be seen that the development, application,
and popularization of this technology will have a huge impact
on the realization of human rights and the improvement of
social morality in the entire society. We can expect that this
will have profound significance for the country and even in
reality.

In summary, in the field of technology, this course project
represents a step forward in the field of human-computer
interaction, demonstrating the potential of IMU technology
and machine learning in creating more natural and efficient
device interaction methods for users. Meanwhile, it has ex-
tremely high market value and social significance, making it
a technology worthy of in-depth research. [5], [6].

II. RELATED WORKS

In addition to IMU based intent recognition technology
and products, there are also some other technologies and
products that have achieved intent recognition in the market.



The following are several main non IMU intent recognition
technologies:

1. Computer vision technology: This type of technology uti-
lizes cameras and image processing algorithms to identify user
intentions. For example, Microsoft’s Kinect system achieves
gesture control and intention recognition by capturing and
analyzing user body movements [7]. This type of technology
is widely used in games, virtual reality, and gesture control
devices.

2. Brain Computer Interface (BCI): BCI technology iden-
tifies the user’s intention by recording and analyzing EEG
waves. Users control computers or other devices through
their minds, and this technology has important applications
in medical rehabilitation and assistive devices. For example,
head worn devices provided by companies such as Neurable
and Emotiv [8], [9].can achieve intention recognition based on
brainwaves.

3. Electromyography (EMG) sensor: The EMG sensor infers
user intention by detecting muscle activity electrical signals.
This type of technology plays an important role in prosthetic
control and motor rehabilitation. For example, Myo Armband
is an EMG based arm strap that can be used for gesture
recognition and device control [10].

4. Speech recognition: Speech recognition technology iden-
tifies a user’s intention by analyzing their speech instructions.
This technology is widely used in smart assistants (such as
Amazon Alexa, Google Assistant [11], [12]) and voice control
devices. Through natural language processing (NLP) and deep
learning algorithms, the system is able to understand and
execute user voice commands

TABL‘E 1
CAPTION

III. DATA
A. calibration

Before the formal data acquisition, we successively used the
acceleration calibration method to place the IMU on its six
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Fig. 1. Software interface for collecting IMU data

faces successively to ensure the consistent acceleration under
various attitudes. With the magnetometer calibration method,
we rotated the IMU on the horizontal and vertical axes and
corrected the IMU measurement data through the magnetic
field change to eliminate the initial starting error

B. offline

In this part, we use the software IMU_2.34 developed by
IM900 manufacturer Chenyi Electronic Technology for the
IMU sensor to collect offline data. It includes the acceler-
ation under the sensor reference frame (with and without
gravitational acceleration), the acceleration under the Earth
reference frame (without gravitational acceleration), angular
velocity, quaternion, angular position, translational position
and magnetic field, temperature and other data.

In the process of offline data acquisition, after opening the
record, we naturally and smoothly draw the Arabic numerals
717, 727, 73" in the spatial vertical plane with the amplitude
of the elbow joint of the main moving human body and the
shoulder joint of the small moving human body within about
two seconds. After each number is crossed, the data recording
is stopped and stored in the offline database

C. online

In this part, through BLES.0 Bluetooth communication
protocol, the data body containing the function label and
content is directly transferred from the IMU hardware to the
computer storage area, and is retrieved in real time during the
machine learning process

In the online data collection process, for the consideration
of simple, fast and easy popularization of hand gestures, we
changed the collected hand gestures from Arabic numerals
”17, 727, 737 to four simple strokes up, down, left and right
in the vertical plane of space. This time, for the consideration
of universality, in the process of motion data collection, when
we deliberately changed the posture of the waist joint of the
human body, the hand movement included four directions of
motion mainly based on shoulder joint movement, and some
movements mainly based on elbow joint movement, and there
was also a combination of the two.

D. data detail

Considering the working principle of IMU, direct measure-
ment of acceleration data has the highest accuracy. In the
offline data learning stage, we use the IMU_2.34 software to
record aX(m/s?), aY(m/s2) and aZ(m/s?) in the file. That is, the
acceleration of IMU hardware reference frame after removing
the gravitational acceleration is used as training and test data.

However, in the online data collection process, we found
that aX(m/s2), aY(m/s?) and aZ(m/s?) were not effective in
learning the three data. Considering that online learning has
higher requirements for computing speed, we successively
switched to aX(m/s?), aY(m/s?), Az(m/s?), Ax(m/s?), Ay(m/s?)
and AZ (M /s?). In other words, IMU hardware reference accel-
eration without gravity acceleration and asX(m/s?), asY(m/s2),
asZ(m/s?), namely navigation system acceleration without



gravity acceleration, are used as learning data. Finally, the
latter is adopted from the perspective of learning success rate

IV. MATERIAL AND METHODS
A. Intent Recognition

1) Data Processing: The absolute acceleration data ob-
tained from the IMU served as a reference for determining
the initiation of arm movement, based on an analysis of
experimental data. We established a threshold where an ab-
solute acceleration greater than 0.5 m/s? indicated the start of
movement, marking this as the starting point. Once movement
commenced, we calculated the velocity in the x, y, and z
directions by integrating the acceleration data from the starting
point. A subsequent integration of these velocities provided
us with the distances traveled in each direction, representing
the trajectory of the arm. Similarly, by integrating the angular
velocities in the X, y, and z directions from the starting point,
we obtained the angles in each axis, representing the orien-
tation of the arm. Such processing of the input data imbues
it with practical physical significance, enhancing the accuracy
of classification and making the data more comprehensible.

2) Deep Learning Process: We obtain the distances and
angles relative to the starting point in the x, y, and z axes for
each sample. These represent the trajectory and orientation of
the arm, respectively. And the data are padded or truncated
to make sure they have the same length. After that, they are
inputted as features. Different labels are assigned to the data
sets corresponding to different gesture intentions. In our case,
gesture draw 1 are labeled as 0, gesture draw 2 are labeled
as 1 and gesture draw 3 are labeled as 2. Fifty percent of the
total data is used for testing, while the other fifty percent is
used for training the model. And the model we use is LSTM
(Long Short-term Memory) model.

LSTM model is a deep learning model suitable for classi-
fying sequential data. In this study, we implemented a dual-
layer Long Short-Term Memory (LSTM) network to handle
time series prediction tasks. The model consists of an input
layer that takes sequences of shape (length_of_data, 6), where
length_of _data is the sequence length and 6 is the number
of features (trajectory and orientation in X, y and z plane).
The first LSTM layer has 100 units and returns sequences to
maintain temporal dependencies, followed by a dropout layer
with a dropout rate of 0.2 to reduce overfitting. The second
LSTM layer also has 100 units but does not return sequences,
preparing the model to finalize output processing. This is
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Fig. 2. General process of collecting IMU data to train LSTM model and
predict the intention result.

odel = Sequential()
.add(LSTM(1@e, input_shape=(length_of_data, 6),
return_sequences= skernel_regularizer=12(0.€01)))
.add(Dropout(8.2))
.add (LSTM( , return_sequences= c
kernel_regularizer=12(@.€01)))
.add(Dropout(8.2))

.add(Dense(y.shape[1], activation='softmax',
kernel_regularizer=12(©.001)))

Fig. 3. LSTM layers used in final online LSTM model traning.

followed by another dropout layer with the same dropout rate.
The output layer is a densely connected layer with a softmax
activation function, used to output the probability distribution
over the target classes. The model uses L2 regularization
with a coefficient of 0.001 in the output layer to prevent
coefficient inflation. It is compiled with the Adam optimizer
and categorical crossentropy loss, and it measures accuracy
as a performance metric. The model is trained with a batch
size of 10 for 100 epochs, using 50% of the data for testing
to validate the model. Upon training completion, the model
achieved a test accuracy of 97%. Finally, the model is saved
in HDF5 format for subsequent use. This setup highlights the
model’s robustness in handling overfitting through dropout and
L2 regularization, ensuring generalizability on unseen data.

And finally when we came to online gesture recognition
using IMU, we add more keinel_regularized: 12(0.001) in our
layer as we want to prevent our model from overfitting. The
action could greatly increse our accuracy when it comes to
online recognition. Our final LSTM model is show in Fig.3
using Keras.

V. EXPERIMENT
A. System Hardware

In this experiment, the most important hardware used is
IM900, and then introduce the relevant information of this
hardware in detail.IM900 is a state-of-the-art sensing device
with robust capabilities, designed to interface seamlessly with
personal PCs via BLE 5.0 Bluetooth technology. The IM900
boasts an impressive 8dbm transmission power and an ex-
tended communication range of up to 60 meters, ensuring
reliable data transfer even over substantial distances. The
device’s reporting frequency is highly versatile, ranging from
0.5 Hz to 250 Hz; for the purpose of our experiment, we have
selected a 30 Hz reporting frequency to optimize the balance
between temporal resolution and data volume.

As shown in the picture below, the direction of rotation is
defined by the right hand rule, that is, the right thumb points
to the axis, and the direction of the four fingers bending is the
direction of rotation around the axis.

There are two ways to connect the IM900, one is through
the serial port connection, and the other is through Bluetooth
connection.When using the serial port connection method, it
should be noted that if the Vcc is connected to the serial port
tool 5V, when the battery power is not enough, the sensor
internal battery will be charged, there will be a charging



current within 200ma, the general market serial port tool can
not output such a large current, there will be a serial port tool
heat or can not be connected to the phenomenon. In addition,
when the battery is rapidly charged, the accuracy of the sensor
data will decrease, and the accuracy will return to normal
after stopping the charging, so the Vcc test is generally not
connected. If you need to use vcc for a long time, you can
also reduce the charging parameters to prevent the accuracy
impact caused by the jitter of charging current.If you are using
Bluetooth connection, we only need to use the windows10
laptop with Bluetooth, the desktop can be coupled with a
USB Bluetooth adapter, and directly double-click to run the
matching IMU upper computer software, you can start to use.
Because Bluetooth connection is more convenient and fast, we
use Bluetooth connection in the actual experiment.

Our research involved the collection of comprehensive mo-
tion data sets using the IM900. This included tri-axial accel-
eration data, with a full-scale range of +16g, allowing for the
capture of both subtle and dynamic movements. Additionally,
tri-axial angular velocity measurements were recorded, with
a capacity of +2000°/s, to accurately document the rotational
aspects of limb motion. The inclusion of a tri-axial magne-
tometer, primarily utilized for automatic calibration, further
enriches the data, ensuring high fidelity in the representation
of the arm’s orientation in space.

The IM900 was strategically positioned at the proximal
end of the forearm to ensure unobstructed data collection.
This placement was critical in guaranteeing that the device’s
readings were solely reflective of the arm’s motion, without
interference from the hand’s movements.

B. Calibration

When experimenting with IMUs, calibration is required.
Module calibration includes accelerometer calibration, which
is not necessary, and magnetic field calibration, which must be
calibrated in the use environment if the magnetic field is fused,
and Z-axis and coordinate system zero. The accelerometer
calibration of the module has been completed before leaving
the factory. We only need to check whether the calibration
is successful. The criterion for judging is that no matter
how the module is placed, the mode value including gravity
acceleration is close to 9.8m/s at rest. If the acceleration is
found, it needs to be recalibrated. The im900 supports high
precision spherical fitting calibration method, which needs
to be collected by six surfaces or more data, which can be

Fig. 4. Sensor axis

collected by six surfaces, and the more accurate the data
collection. The algorithm will be used for all the data collected,
and the optimal calibration parameters should be matched, and
the precision calibration is achieved.

C. Data Collection

For data such as numbers 1, 2, and 3, the process is as
follows: IM900 is worn on the hand, and then each number
is written by hand 20 times, that is, each number has 20 sets
of data, and then the model is trained with a 1:1 ratio of
training set and test set. For the data of up, down, left and right,
we collect them in the following way: Three people collect
data, and each person completes each action 20 times while
wearing IM900, that is to say, there are a total of 60 sets of
data for each action. The reason why we choose multi-person
experiment rather than multiple experiments is that different
people’s movement habits may be different, so as many people
as possible to complete, so that the trained model can predict
more accurately.

D. Offline and online experiments

For numbers 1, 2 and 3, the intention recognition experiment
was offline, that is, IM900 was not connected to receive hand
movements in real time for intention recognition, but the
collected hand data was used as input, and then the data was
classified to determine which number it belonged to. For up,
down, left and right gestures, online real-time experiments are
used. We hold the IM900 in our hands as we did when we
collected the data, and then make one of the actions. This
data is transmitted to the computer in real time, and after
the prediction of the trained model, the classification result
is finally output.

VI. RESULTS AND DISCUSSION

A. Offline Classification Results

Figure 6 show confusion matrix of gestures 1, 2 and 3 using
LSTM model. The labels 0, 1 and 2 represent gestures 1, 2, and
3, respectively.The training set and test set of the LSTM model

Fig. 5. Data collection



are obtained by collecting the writing gestures 1,2 and 3 of
three testers wearing IMU, and the sample size ratio of the
test set and training set is 1:1.

From the table, it can be found that 11 of the 12 samples
with a true gesture of 1 were correctly predicted by the model
LSTM, and one was misjudged as a gesture of 2. The reason
for the misjudgment may be that the features of gesture 1 are
similar to those of gesture 2, or the subject’s hand is unstable
when writing gesture 1, and the accuracy of the prediction is
still very high.In addition, the 9 samples with a real gesture of
2 and the 6 samples with a real gesture of 3 were all correctly
judged by the model LSTM. In general, it can be found that
the classification effect of model LSTM is very good through
confusion matrix.

B. Online Classification Results

As discussed in the data section, we used gestures such
as draw 1, 2, and 3 for offline classification. For online
classification, following the advice of Professor Song, we
selected gestures: up, down, left, and right. These gestures
were collected by moving hands in the corresponding direction
while wearing the IMU on the hand. We gathered 20 samples
from 3 individuals for each direction, totaling 60 samples per
direction and 300 samples overall.

To reduce overfitting, we adjusted our layer structure as
shown in Fig.3. For the final online recognition, we used
the filtered data provided by the IMU manufacturer, which
significantly improved both our offline and online recognition
accuracy. As shown in Fig.7, all 47 samples used for testing
were predicted correctly, which is a significant proof of
our improvement. The training and validation accuracies, as
well as losses, are shown in Fig.8 and Fig.9. According to
the accuracy figure, after epoch 7, the accuracy stabilized
at around 97 percent. Furthermore, there is no significant
difference between training and validation accuracy, proving
our reduction in overfitting. Finally, in our online recognition,
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Fig. 6. Offline confusion matrix of gestures 1, 2 and 3 using LSTM model.
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Fig. 7. Online confusion matrix of the online training data. Up is labeled as
0, down is labeled as 1, left is labeled as 2 and right is labeled as 3. And the
test size is 20 percent. Training epoch is 30 while batch size is 10.
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Fig. 8. Train accuracy and validation accuracy changes as epoch increases.
eventually came to a stablized probability of about 97 percent.

we were able to clearly distinguish our gestures, achieving an
accuracy of approximately 85 percent.

C. Limitation

Although our offline and online accuracy is very high, the
gestures we predict are simple and distinct. Considering we
only used data collected under 30Hz conditions, this is still
a very powerful result. However, more complex gestures may
require higher sampling rates and further optimization.

VII. CONCLUSION

Assistive devices to help people with disabilities to perform
grasping manoeuvres are an effective way to help people
with disabilities to increase their self-care ability in daily
life. Therefore, we constructed models for recognising the arm
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Fig. 9. Train loss and validation loss changes as epoch increases. eventually
came to a stablized value of about 0.15

movements of disabled people and controlling the assistive
devices by using the arm movements as commands.

We chose a single object for training data and multiple
objects for testing the model. Although the amount of training
data for our model is small, the accuracy for the test data is
96.3%, which shows that the model out by this method has
excellent generality.

With our model, we are able to accurately recognise arm
movements not only offline but onine. In the future, we hope
to combine this model with robotic arm grasping to send
commands through arm movements to control the robotic arm
to grasp the corresponding objects, in order to achieve assist-
ing people with disabilities to perform grasping movements
completely.
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