
Investigating Overconstrained Quadruped
Locomotion using Reinforcement Learning

Guojing Huang
Robotics Engineering

12111820

Jinda Dong
Feedback Controlling

12111829

Xinyan Ju
Automation
12111142

Junwei Lv
Robotics Engineering

12212928

Zhou Chen
Automation
12111812

Shengyang Ming
Robotics Engineering

12111717

Abstract—This paper investigates overconstrained locomotion
on a particularly designed and manufatured overconstrained
quadruped, from a learning perspective with the help of rein-
forcement learning, aiming to exploit its potential in motion and
energy consumption to advance the field of legged robots. We
use a overconstrained Bennett quadruped as the robotic carrier,
which invented by the Bionic Design and Learning lab from
SusTech. Then, we employed a large-scale, multi-terrain deep
reinforcement learning framework to train the overconstrained
quadruped for a comparative analysis of different training
results in rewards, velocity and joint torques. Results show that
the trained overconstrained quadruped is capable of walking
over different terrains, including pyramid-like stairs, gravel,
and changing slopes, at least as common quadruped robots
do. It proves that the overconstrained quadruped can achieve
the highest speed of 1.23m/s on rough environments, which is
feasible and acceptable. This paper paves the path for furthur
optimal trainning and sim-to-real process of overconstrained
quadruped using reinforcement learning.

Index Terms—Bennett linkage, reinforcement learning, loco-
motion

I. INTRODUCTION

A. Limitations of traditional control of quadruped robots

In the classical control methods of quadruped robots, com-
plex control algorithms are required to coordinate the move-
ment of the four legs to ensure their stability and smoothness.
It is very difficult to design and debug these controllers. At
the same time, traditional controllers are usually designed
for specific tasks and specific environments. Controllers for
running and climbing stairs may have significantly different
architectures and need to be designed and adjusted separately.
As a controller designed for a specific robot in a given terrain,
it is usually not directly used in another environment. Even
if it is used in a similar environment, it usually requires
a large number of parameters to be adjusted to adapt to
various changes[1, 2]. In addition to the complex factors of
the controller, traditional quadruped robots also often require
relatively complex mechanical structures and high-precision
mechanical and electronic components, which increases the
difficulty and cost of design and manufacturing[3]. At the
same time, due to the complexity of control and high energy
consumption, classically controlled quadruped robots consume
a lot of energy during movement, especially in complex terrain
or high-speed movement. Low movement efficiency and high
energy consumption. These disadvantages greatly limit the
application of robots in the real world.

B. Optimizing quadruped robot control using reinforcement
learning

In order to overcome the problems of poor adaptability to
the environment and changes, complex controller parameter
debugging, and low robustness of traditional quadruped robots,
modern quadruped robots combine artificial intelligence, deep
learning, and advanced sensing technology to improve their
autonomy, adaptability, and efficiency, thereby achieving the
following advantages:

1) Model simplification and robustness improvement: Re-
inforcement learning algorithms can be trained in a variety of
different environments, allowing robots to adapt to a variety
of terrains and obstacles. By continuously interacting with
the environment and optimizing strategies, the robot is able
to move efficiently in different environments without relying
on large amounts of training data.[4] In addition, unlike
traditional control algorithms that require precise physical
and environmental models, reinforcement learning relies on
experience and feedback, so it can learn and optimize even
without an accurate model. At the same time, the robot’s
fault tolerance is greatly improved, and it can maintain stable
operation even in the face of unexpected situations (such
as sensor failure or environmental changes), which greatly
improves the robustness and adaptability of the robot.

2) Eficiency improvement: Reinforcement learning maxi-
mizes rewards (such as speed, stability, energy efficiency, etc.)
by finding the optimal action strategy[5], which makes the
robot more efficient when performing tasks, reduces energy
consumption, and extends battery life. At the same time,
robots trained through reinforcement learning can respond
quickly in real-time environments, adapt to dynamic changes,
and improve the smoothness and stability of movement. This
also allows robots to quickly switch between different tasks,
sometimes simply through changing the reward function[4],
such as switching from walking on flat ground to climbing
stairs, and perform well in each task.

In this paper, we use reinforcement learning to train a
quadruped robot using data collected by the proprioceptive
IMU sensor, aiming to achieve robust control.

II. RELATED WORK

A. Robot Platform and Leg Structure

Robot platform and leg structure are of vital importance
for reinforcement learning. Though these robots are all called

https://orcid.org/0009-0004-8114-5814

quadruped robots, there are still lots of differences on their
robot platform and leg structure.

A team at Google used the Minitaur from Ghost Robotics,
a quadruped robot with eight direct-drive actuators as their
robot platform. The motors could be actuated through position
control or a PWM signal. An STM32 ARM microcontroller
is used to send commands to actuators, receive sensors, and
perform simple computations, but is not enough to execute
neural network policies learned from deep RL. Thus, an Nvidia
Jetson TX2 is installed to perform neural network inference[6].

Fig. 1: The Minitaur from Ghost Robotics.

Meanwhile, a team from China used Doggo as their robot
platform. The Doggo robot is an open source, complex
quadruped robot from Stanford, which uses a closed-chain leg
structure with two degrees of freedom for each leg structure .
As its complex dynamic structure, they do not directly model
it in kinematics, but analyze its leg structure and the trot gait as
a prior knowledge. Each leg is composed of two links, with
two degrees of freedom, which are connected by a rotating
shaft, and the two links form a closed chain structure[7].

Fig. 2: The Doggo, an open source robot from Stanford

A research supported by National Key Research and Devel-
opment Plan of China used a cheetah-like robot called Yobogo
as their robot platform. It’s a quadruped robot with 12 direct
drive actuators. Each leg is controlled by three actuators that
allow the foot to move in 3D space[2].

B. Reinforcement Learning in Locomotion Problems

Tremendous progress in deep reinforcement learning have
been applied on the quadruped robots in dealing with the
locomotion problems. For example, Yang et al. [4] proposed
a method to make the training process faster and safer, but it
requires a slew of computing ability. A team at Google used

Fig. 3: The Yobogo

to train a quadruped robot with eight direct-drive actuators [6]
on the Minitaur from Ghost Robotics (a robot platform), with
a faster and lowe-cost way.

Fig. 4: The simulated and the real Minitaurs learned to gallop
using deep reinforcement learning.[6]

Efficient and high-quality state estimation needs to be
applied on the quadruped robot. In the previous studies,
excluding redundant terms[6] or symolifying the process of
system simulation[2] are examined to be good solutions. In
a previous study[6], The yaw of the base provided by the
IMU sensor drifts quickly, and the direct result of the velosity
from the motor contains too much noise, leading to higher
uncertainty. So using position control to actuate the motors of
the Minitaur can somehow deal with this problem.

Besides, the design of the observation space also plays an
important role to narrow the reality gap. If the observation
space is high dimensional, the learned policy can easily overfit
the simulated environment, which makes it difficult to transfer
to the real robots. ‘ The team tested the system with galloping
and trotting. And Fig. 5 provides the results. Using hyper
parameters search to obtain the relative best hyper parameters,
and every 25 steps they collect the simulated experience for
policy update in parallel.

A team[2] trained the robot step by step, that is to first test
the framework by training the robot to walk forward on a flat
ground, and later increase the complexity of the environment
to better the adaptability of the framework on complex terrains.

To better the performance of the adaption to variety of
terrians, actor-critic methods have been applied widely. Peng et

Fig. 5: The learning curves of trotting and galloping[6].

al.[8] proposed a mixture of actor-critic experts method to per-
ceive the physical environment based on limited prior knowl-
edge. Besides, some end-to-end controller training strategies
are also proved to be in good use[9].

C. Increasing the Robustness of the Controllers

Although reinforcement learning has great potential in
learning complex motion strategies from scratch and auto-
matically adjusting the robot’s motion control through simple
reward signals, it does not require a lot of manual intervention
and debugging. However, it cannot be widely promoted in real
environments due to the ”reality gap”[10, 5]. Therefore, a large
number of studies have adopted a series of methods to improve
the performance and robustness of the controllers.

One way to improve the robustness of the controller and
thus reduce the reality gap is by simulating perturbations that
may be encountered during training. Pinto et al.[10] introduced
an adversarial agent to simulate various possible disturbances
during training, namely Robust Adversarial Reinforcement
Learning (RARL), which maximized the failure probability
of the main agent by applying disturbance forces. As shown
in Fig. 7, the RARL strategy exhibits remarkable robustness in
dealing with variations in friction coefficient and mass. Many
studies use randomized dynamic parameters[5, 6, 11, 12, 13]
or domain randomization[14] techniques in the training pro-
cess. Multiple parameters such as mass, friction, and inertia in
physical simulation are randomized to ensure the robustness
of the control strategy under different conditions. Rusu et
al.[15] use progressive networks to bridge the reality gap,
transferring policies learned in simulation to the real world,
and demonstrate successful learning of tasks from raw visual
input on a fully driven robotic manipulator. In [6], they com-
pared baseline simulation with random perturbations during
training, and the result is shown in Fig. 6.

From another perspective, many studies have tried to im-
prove the robustness by optimizing observation space and
control strategy. Tan et al.[5] designed a compact observation
space to reduce the risk of overfitting of the control strategy
in the simulation environment. A smaller observation space
can make the observation distribution in simulation and reality
more consistent, thereby narrowing the gap between reality
and reality. The RLOC (Reinforcement Learning and Optimal
Control) module established by Gangapurwala et al.[11] intro-
duces the Footstep Planning strategy to generate the expected
footstep position suitable for the current terrain, map the robot
state and terrain information to the expected foot position,

Fig. 6: Performance comparison of controllers that are trained
with (red) and without (blue) randomization and tested with
different body inertia[6].

Fig. 7: Average reward values of RARL strategies under
different friction coefficients. The performance of the baseline
strategy (TRPO) decreases significantly, while the RARL
strategy shows higher robustness.[10]

avoid complex combinatorial search, and naturally emerge
adaptive behaviors during training, improving the robot’s abil-
ity to move on irregular terrain. Figure shows the success rate
of each planning strategy under different terrains, indicating
that this strategy significantly improves the robustness of the
system on complex terrains.

III. DATA

A. Overconstrained Robot Model

Overconstrained linkage is a special class of linkages with
more degrees of freedom than predicted by the degrees of
freedom formula. Bennett linkage is over-constrained, and its
degree of freedom is -2, as calculated by Kutzbach Grubler’s
mobility criterion. However, it can still move thanks to
its particular geometrical design, which has a single DOF.
The Bennett linkage is a single closed-loop four-bar spatial
mechanism whose two neighboring joint axes are neither
parallel nor perpendicular. When the joint axes are parallel,
the Bennett mechanism is transformed into a planar four-bar

mechanism. The geometrical conditions for the establishment
of the Bennett mechanism are:

a12 = a34 = a, a23 = a41 = b (1)

α12 = α34 = α, α23 = α41 = β (2)

sinα

a
=

sinβ

b
= ζ (3)

Ri = 0(i = 1, 2, 3, 4) (4)

Shown in Fig. 8(a) and Fig. 8(b) are, respectively, physical
and model versions of the overconstrained quadruped provided
by the Design and Learning laboratory supervised by Prof.
C.Song, Which links are all designed as the alternative from
following the geometric conditions defined by the Bennett
linkage. Table I shows some key physical parameters of
overconstrained quadruped, laying the groundwork for the
smooth running of our project.

(a) physical robot (b) simulation model

Fig. 8: Two different versions of overconstrained quadruped

TABLE I: Key parameters of overconstrained quadruped

Property Parameter
Length*Width*height(m) 0.49x0.45x0.32
DOF 12
Mass(kg) 13.8
Actuator Unitree A1
Maximum joint torque(N·m) 33.5
Maximum joint speed(rad/s) 21
Torque constant(N·m/A) 0.9287

Because the simulation platform Nvidia Isaac Sim requires
the usd model to simulate, we imported the urdf file into
Isaac Sim and converted it to the usd format, which also
contains some basic physical properties like mass and moment
of inertia. To ensure the feasible running of the simulation as
well as to reduce the computational burden, we preprocessed
the robot model. Firstly, each joint motor is given a 100 of
kp and 10 of kd. Then we reserved necessary collisions on
the base, tips, and the 8 links closer to the ground, marked by
green, as Fig. 9 shows.

B. Simulation Platform and Framework

All our work is done on Nvidia’s Isaac Sim, which provides
much more modern and advanced learning-based simulation
environments. We use ORBIT as our learning frame to acquire
a feasible reinforcement learning training interface or method
and choose rsl rl as the one.

Fig. 9: Necessary collisions of the overconstrained quadruped

NVIDIA Isaac Sim is an extensible robotics simulation
platform that gives you a faster, better way to design, test,
and train AI-based robots. It’s powered by Omniverse to
deliver scalable, photorealistic, and physically accurate virtual
environments for building high-fidelity simulations.

ORBIT is a unified simulation framework for interactive
robot learning environments, powered by NVIDIA Isaac Sim.
It offers a modular design to easily and efficiently create
robotic environments with photo-realistic scenes, and fast and
accurate rigid and soft body simulation. With ORBIT, we
are allowed to train reinforcement learning policies and col-
lect large demonstration datasets from hand-crafted or expert
solutions in a matter of minutes by leveraging GPU-based
parallelization.

RSL RL is a fast and simple implementation of reinforce-
ment learning algorithms designed to run fully on GPU. Based
on the PPO algorithm (Proximal Policy Optimization), We can
solve the problem of strategy optimization in a continuous
action space. The stability of updates is ensured by limiting
the distance between the new policy and the old policy in
each update. This is particularly important for the case where
updates are performed in a continuous action space. PPO
works as follows: first, the data in the environment, including
states, actions, and rewards, are collected by executing the
current policy. The current policy and value function are then
used to compute an estimate of the advantage of each state-
action pair, i.e., the advantage of that action relative to the
average. The strategy is then updated by maximizing the
agent’s expected cumulative reward over the past collected
data. Finally, a new action is executed in the environment
using the updated policy, and then data collection continues
with the next round of updates. PPO is efficient and stable and
ensures stability by limiting the magnitude of policy updates,
which helps prevent the policy from diverging or converging
to a suboptimal solution during training. The algorithm is also
relatively simple, easy to implement and tune, and performs
well in many real-world problems.

IV. METHODS

We are going to simulate a controller that can be applied
to the quadruped robot for moving in complex terrains using
reinforcement learning. We propose the following ideas to
obtain the RL based controller.

A. Reinforcement Learning Algorithm

In classic reinforcement learning, the environment is for-
mulated as a Markov decision process described by the tuple

(S,A, p, r, γ) with S to be the state space, A to be the action
space, p to be the state transition probability, r to be the
obtained reward and γ to be the discount factor[16]. The
process of the Markov is shown in (5), where Pss′ is the state
transition probability matrix.

Pss′ = P [St+1 = s′|St = s] (5)

The bellman equation reveals the recursive relationship be-
tween cost function and strategy in reinforcement learning[17],
describes as (6), where π(s) represents the probability distri-
bution in state s choosing strategy a, and R(s, a) stands for
the current reward, s′ is the new state add γ is the discount
factor.

V (s) = Ea π(s)[R(s, a) + γV (s′)] (6)

In order to find the policy π(a|s) = P [At = a|St = s]
that can maximize the reward, we following the basic MDP
(Markov Decision Process) process[18] to implement the
reinforcement learning in our model. Q-learning is a model-
free method widely used in solving the MDP problems in
reinforcement learning[19], using the state-action value func-
tion (Q function). We follow the Q-learning method to choose
strategies that can maximize the final reward in (7) to calculate
the expected rewards Q in a given state s to s′ corresponds
to taking the action a. Here α is the learning rate, a hyper-
parameter.

Qnew(s, a) =(1− α)Q(s, a)

+ α(R(s′, a) + γmaxQ(s′, a))
(7)

To maximum the adaptability of our model, we choose the
rotation speed of the joints on the legs of the quadruped robot
to be the control objects where the actions take on, and the
center linear velocity to be the observation.

To better the performance of our model, we choose pe-
nalization terms appropriately, leading to our reward function
shown in Table. III.

With our sophisticated design of the reinforcement algo-
rithm, our RL-based model successfully converges and the
simulating result show a good performance.

B. Training Method

The training process for classic reinforcement learning
(shown in Fig. 10) starts with the simulation environment, and
pass the current states St and reward Rt to the agent, following
the action at. Then the action (the angular velocities of the
joints) will be applied to the simulation environment (our
quadruped robot) and step to the next state st+1 and reward
rt+1. We follow the basic framework of the reinforcement
learning, and apply novel strategies to better the performance.

Reward

State

Action

Simulation

ENV

Agent

Fig. 10: Flow chat for the classic training process.

To better the performance of the model, especially the latent
real-time-world performance in the future, we applied actor-
critic method to training the policy. This is a two-time-scale
algorithm in which the critic uses TD learning with a linear
approximation architecture and the actor is updated in an
approximate gradient direction based on information provided
by the critic[20]. This method allow it possible to update the
strategy and the cost function at the same time, which is
of high-efficiency. The flow chat of our actor-critic training
method is provided in Fig. 11, and part of the parameters are
shown in Table. II, where an ELU activation function[21] is
described in (8).

ELU(x) =

{
x if x > 0

α (exp(x)− 1) if x ≤ 0
(8)

Designed

Reward

State

Action

Critic Actor
Simulation

ENV

Fig. 11: Flow chat for the training process, using actor-critic
strategy.

TABLE II: Parameters in actor and critic.

Hidden Layers in Actor Hidden Layers in Critic Activation Function
[512, 256, 128] [512, 256, 128] ELU function

TABLE III: Part of the Reward Terms and Explanation

Reward Terms Explanation Formula Weight

track lin vel xy exp Reward tracking of linear velocity commands (xy axes) exp{−
|vx−vcmd

x |2+|vy−vcmd
y |2

0.25
} 1.5

track ang vel z exp Reward tracking of angular velocity commands (yaw) exp{−
|ωyaw−ωcmd

yaw |2

0.25
} 0.75

feet air time Reward long steps taken by the feet
∑

{(tair − 0.5) ∗ (tair > 0)} 0.01

flat orientation l2 Penalize non-flat base orientation |g⃗basex |2 + |g⃗basey |2 -2.5

ang vel xy l2 Penalize xy-axis base angular velocity |ωyaw|2 -0.01

action rate l2 Penalize the rate of change of the actions |at − at+1|2 -0.005

(a)

(b)

Fig. 12: Simulation setup and individual training environment. (a) Panoramic aerial view of multi-terrain simulation
environment; (b) individual training environments: flat ground, pyramid terrain, inverted pyramid terrain, discrete random
height field, continuous uniform random height field and gravel, from left to right respectively.

V. EXPERIMENTS

We use deep reinforcement learning on our own workstation
with Nvidia 3080Ti GPU to conduct large-scale simultaneous
training of overconstrained locomotion. Our experiments aim
to train a version of a policy that will enable overconstrained
quadruped robots to perform highly adaptive and velocity-
tracking locomotion in complex simulation environments.
According to the previous introduction, we use the ORBIT
framework to train velocity-tracking locomotion, where the
robot’s observation space includes the linear velocity, angular
velocity, joint positions, joint velocities of the robot’s base,
and sampling heights of the terrain. We set the initial angles
of hip motors, coaxial joint motors 1 (dof2) and coaxial joint
motors 2 (dof3) to respectively 45◦, 25◦ and 20◦ so that the
initial state of the robot resembles the posture of a reptile with
a lower center of gravity and higher stability.

The multi-terrain training environment we use includes flat
ground, pyramid terrain, inverted pyramid terrain, discrete
random height field, continuous uniform random height field
and gravel, etc. and the difficulty can be automatically modi-
fied according to the actual training situation. The simulation
environment is set up as Fig. 12, a large scene with 20-by-
10 grids surrounded by flat ground extended to the edge of
the scene. Each grid is a terrain type of 10-by-10m square.

Fig. 13: Two different versions of overconstrained
quadruped. (a) Reptile schematic; (b) Initial state of over-
constrained quadruped

The simulation process is like a process of breaking through
and upgrading, with 4096 robots evenly divided into groups
deployed randomly at the center of the most manageable level
of terrain blocks. Each robot is given a command of random
position and heading direction [x, y, yaw] between -0.5 and
0.5 m, -3.14 and 3.14 rad to learn how to obtain and maintain
a feasible or excellent kinematic performance. Each training
session goes through 2,000 iterations to ensure the robot has
enough time to learn and adapt to the environment.

(a) (b)

Fig. 14: Comparison among three training results of (a) velocity and (b) torque

Fig. 15: Comparison of typical reward terms.

VI. RESULTS

We begin by conducting large-scale, multi-terrain deep
reinforcement learning of overconstrained locomotion using
the setup illustrated in Fig. 12. According to the reward terms
in Table II, where track lin vel xy exp and track ang vel z exp
these two rewards are most representative of whether the
control policy excellent or not, that has been trained by the
control results obtained from deep reinforcement learning
training. Fig. ??(a) and Fig. ??(b) show the velocity tracking
comparison of the three training results, respectively. The
three excellent, great, and bad training results are plotted as
pink, orange, and blue correspondingly. It can be seen from
Fig. ??. The velocity tracking of the two excellent and great
training results increases rapidly within about the first 200
steps, proving that the parameter settings are reasonable and
overconstrained quadruped in a fast learning period. After 200
steps, the velocity tracking of the yaw angle (i.e., z-axis) is
basically in a stable fluctuation state, indicating that the overall
posture of the quadruped has been stabilized after 200 steps,
and the overall ability to follow the given heading inputs, and
eventually stabilized at between 0.55 and 0.56. The velocity
tracking of the xy-axis also slows down the growth rate and
gradually stabilizes at about 1.08 after about 800 steps. The
failed training result has a small increase in the initial 200
steps, then decreases gradually, and finally falls back to a value
close to 0, which proves that the training parameters are wrong
and the training result is invalid.

Fig. ??(c) is a journey map of the difficulty of the terrain
that the robot can go over during the three training processes.
It can be seen that the overall process of change is a rapid
decline and then a slow rise, similar to a game scenario: A
rookie begins to play the game and is not able to beat the level,
but in the game has been continuously carried out to learn the
skills, improve the level, and eventually can break through
more and more levels. The excellent training result drops to
a nadir at around 150 steps, and then more and more terrain
can be crossed. At the same time, the great training result hits
rock bottom at around 250 moves, and eventually, both training
results can cross terrain levels of level 5. In contrast, the bad
training result’s ability to cross drops all the way down, losing
the ability to cross any obstacle at around 200 steps.

Fig. 14 shows the comparisons of the velocity along each
direction and the torque of the motors at each joint for the three
different training results, respectively. As can be seen from Fig.
14(a), the highest speed achievable by the excellent training
result in the x-axis direction is 1.23 m/s, which is faster than
great and bad most of the time. In the y-axis direction, all three
training results fluctuate up and down around 0 because the
robot’s locomotion strategy is mainly along the x-axis as seen
from the visualization. Meanwhile, the excellent training result
also has a higher response velocity in the z-axis, which proves
that this result is more rapid in response to the environment
height change compared to the other two. And Fig.14(b) shows
the comparison of the output torque of the three motors, hip,

coaxial-1 (to control the leg swinging back and forth), and
coaxial-2 (to control the leg’s changes of configuration), on
the four legs of the robot (’FL’ is the left front leg, ’FR’ is
the right front leg, ’RL’ is the left rear leg, and ’RR’ is the
right rear leg). It can be seen that the excellent training result
has basically greater output torque than the GREAT RESULT
for each joint and each motor, consistent with the result of
its superior kinematic performance. The torque fluctuation of
the bad result is too large because the robot cannot keep
standing or walking properly, which causes the system to input
commands to the motors to continuously increase the torque,
which has a greater impact on the damage of the motors and
the stability of the robot’s movement, and therefore is not
considered to be a feasible result.

VII. CONCLUSION

Our project validates the feasibility of training overcon-
strained quadruped and investigating overconstrained loco-
motion based on reinforcement learning. What’s more, the
training results can implement overconstrained robots that can
also go over all the challenging obstacles or terrains, including
pyramid-like stairs, gravel, and changing slopes, as com-
mon quadruped robots do. It proves that the overconstrained
quadruped can achieve the highest speed of 1.23m/s on rough
environments. The current results are relatively reasonable and
acceptable considering the time and resources. In the future,
we will further optimize the scheme and architecture to give
the robot better motion performance and more elegant motion
posture so that the robot can intelligently and autonomously
switch motion states when encountering more complex and
challenging environments. At the same time, we will develop a
general 3D-printed material-based over-constrained quadruped
robot and migrate the simulation training results to complete
the development of sim-to-real.

VIII. ACKNOWLEDGEMENTS

We would like to thank Prof. Chaoyang Song for teaching
this project and providing guidance on the project idea, Zis-
hang Zhang for his help in building the code framework, data
extraction, the whole training process of this project, Haoran
Sun for his help and guidance on the robot model prepro-
cessing, data processingtraining settings and debug threads,
Ronghan Xu for his answer on Bennett linkage and kinematics
of over-constrained robots, and all the members of the project
for their hard work and dedication in this semester. We would
also like to thank Nvidia for inventing such an excellent
simulation platform, Isaac Sim.

REFERENCES

[1] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso,
V. Tsounis, V. Koltun, and M. Hutter, “Learning agile
and dynamic motor skills for legged robots,” Science
Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[2] W. Tan, X. Fang, W. Zhang, R. Song, T. Chen, Y. Zheng,
and Y. Li, “A hierarchical framework for quadruped
locomotion based on reinforcement learning,” in 2021

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021, pp. 8462–8468.

[3] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M.
Wensing, and S. Kim, “Mit cheetah 3: Design and
control of a robust, dynamic quadruped robot,” in 2018
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2018, pp. 2245–2252.

[4] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan,
and V. Sindhwani, “Data efficient reinforcement learning
for legged robots,” in Conference on Robot Learning.
PMLR, 2020, pp. 1–10.

[5] X. B. Peng, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Sim-to-real transfer of robotic control with
dynamics randomization,” in 2018 IEEE international
conference on robotics and automation (ICRA). IEEE,
2018, pp. 3803–3810.

[6] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai,
D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real:
Learning agile locomotion for quadruped robots,” arXiv
preprint arXiv:1804.10332, 2018.

[7] B. Hu, S. Shao, Z. Cao, Q. Xiao, Q. Li, and C. Ma,
“Learning a faster locomotion gait for a quadruped
robot with model-free deep reinforcement learning,” in
2019 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2019, pp. 1097–1102.

[8] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne,
“Deeploco: Dynamic locomotion skills using hierarchi-
cal deep reinforcement learning,” Acm transactions on
graphics (tog), vol. 36, no. 4, pp. 1–13, 2017.

[9] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and
P. Agrawal, “Rapid locomotion via reinforcement learn-
ing,” The International Journal of Robotics Research,
vol. 43, no. 4, pp. 572–587, 2024.

[10] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Ro-
bust adversarial reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2017, pp.
2817–2826.

[11] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon,
and I. Havoutis, “Rloc: Terrain-aware legged locomotion
using reinforcement learning and optimal control,” IEEE
Transactions on Robotics, vol. 38, no. 5, pp. 2908–2927,
2022.

[12] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-
cio: Full-body dynamic motion planning that transfers
to physical humanoids,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 5307–5314.

[13] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine,
“Epopt: Learning robust neural network policies us-
ing model ensembles,” arXiv preprint arXiv:1610.01283,
2016.

[14] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain randomization for transferring deep
neural networks from simulation to the real world,” in
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 23–30.

[15] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pas-
canu, and R. Hadsell, “Sim-to-real robot learning from
pixels with progressive nets,” in Conference on Robot
Learning. PMLR, 2017, pp. 262–270.

[16] J. R. Norris, Markov chains. Cambridge university press,
1998, no. 2.

[17] R. Bellman, “Dynamic programming,” science, vol. 153,
no. 3731, pp. 34–37, 1966.

[18] D. T. Hoang, N. V. Huynh, D. N. Nguyen, E. Hossain,
and D. Niyato, Markov Decision Process and Reinforce-
ment Learning, 2023, pp. 25–36.

[19] T. G. Dietterich, “Hierarchical reinforcement learning
with the maxq value function decomposition,” Journal
of artificial intelligence research, vol. 13, pp. 227–303,
2000.

[20] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Ad-
vances in neural information processing systems, vol. 12,
1999.

[21] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast
and accurate deep network learning by exponential linear
units (elus),” arXiv preprint arXiv:1511.07289, 2015.

	Introduction
	Limitations of traditional control of quadruped robots
	Optimizing quadruped robot control using reinforcement learning
	Model simplification and robustness improvement
	Eficiency improvement

	Related Work
	Robot Platform and Leg Structure
	Reinforcement Learning in Locomotion Problems
	Increasing the Robustness of the Controllers

	Data
	Overconstrained Robot Model
	Simulation Platform and Framework

	Methods
	Reinforcement Learning Algorithm
	Training Method

	Experiments
	Results
	Conclusion
	Acknowledgements

