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Abstract—This project develops a robot arm taking advantage
of facilitated machine learning techniques in identifying fruit
types and detecting defects. The ability to accurately classify
fruits and identify defects is crucial in various industries, includ-
ing agriculture, food processing, and quality control. Traditional
methods of fruit classification and defect detection often rely
on manual inspection, which is time-consuming, subjective, and
prone to errors. In recent years, facilitated machine learning
algorithms have emerged as a promising solution to automate
this process, offering improved accuracy, efficiency, and objec-
tivity. This project used some algorithms involved in fruit type
identification and defect detection, such as yolo (You Only Look
Once) and ViTs (Vision Transformers). The two algorithms are
used in the different stages, and both has a high level of accuracy
in identifying the fruits. By combining the algorithms and ROS
moveit, we can get a robot arm detecting different types of fruit
and defects.
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I. INTRODUCTION

Fruits are an essential component of our diet, providing
vital nutrients and contributing to our overall well-being.
The demand for high-quality fruits has increased significantly
over the years, necessitating efficient techniques for fruit type
identification and defect detection. Accurate classification of
fruits is crucial for farmers, distributors, and consumers, as
it allows for appropriate sorting, grading, and quality control
measures. Similarly, the early detection of defects such as
bruises, diseases, or deformities is vital to ensure only the
best fruits reach the market, reducing waste and maintaining
consumer satisfaction.

Traditionally, fruit classification and defect detection have
relied on manual inspection by human experts. However,
this approach is labor-intensive, subjective, and susceptible
to human errors. Moreover, as the volume of fruits being
produced and processed continues to grow, manual inspection
becomes increasingly impractical and inefficient. To overcome
these challenges, facilitated machine learning techniques have
emerged as a powerful tool for automating these tasks.

This project aims to develop a comprehensive assembly
line that includes conveyor belts, sorting robotic arms, depth
cameras, and high-performance core controllers. The conveyor
belts will move at a constant speed, transporting fruit to the
area beneath the robotic arm’s camera. When the depth camera
detects fruit within its field of view, it will capture high-speed
continuous photos and send the data to an internal controller.
The controller will use Vision Transformers (ViTs) to identify
defects such as damage, bruising, breakage, and mold spots,

and then instruct the robotic arm to remove the defective items
into nearby baskets for further processing by staff.

In short, this project has been divided into two parts, one
is to use the YOLO and dino-ViTs algorithm to train the
model, both of which have reached a high level of accuracy
in classifying the fruits, the other is to move the robot arm in
a simulation environment.

II. RELATED WORK

A. Neural Networks

With the development of CNNs, image-based machine
learning models can be used to make the sorting and grading
of agricultural products more efficient[13]. And a a simplified
development procedure for image-based machine learning
for visual fruit quality assessment has been presented. It
is particularly suitable for domains with low availability of
both data and computational resources [9].Figure 1gives how
vision transform model is different from convolutional neural
networks

Fig. 1: Vision transformation compared to Convolutional Neu-
ral Networks

Based on the generated CLS token, we trained a selection
of the most popular shallow machine learning models for
classification tasks. The models included in this study are K-
nearest Neighbors (KNN), Logistic Regression (LR), Support
Vector Machine (SVM), Random Forest (RF), XGBoost (Chen
and Guestrin, 2016), and Multilayer Perceptron (MLP), a
small neural network. These models are all classical and well-
established techniques in the machine learning community and
have been shown to perform well on tabular data.

YOLO (You Only Look Once) is a computer vision al-
gorithm based on CNN, the core principle introduced by
YOLO involves overlaying a grid of s × s cells onto the
image. It is a real-time object detection algorithm known
for its speed and accuracy[6]. Unlike traditional methods that



apply the detection model to an image at multiple locations
and scales, YOLO frames object detection as a single re-
gression problem, predicting both the bounding boxes and
class probabilities directly from full images in one evaluation.
This unified approach allows YOLO to achieve high detection
speeds, making it suitable for applications requiring real-time
processing.approving the accuracy.

A group of researchers have used the newest version of
YOLO, YOLO-v8[7], which has higher accuracy and smaller
memory assumption than the previous versions. The group
focuses on using the YOLOv8 and CenterNet models to
extract visual features from fruit images and analyze fruit peel
characteristics to predict the fruit’s class. The YOLOv8 model,
in particular, incorporates CSP and C2f modules for efficient
processing and has achieved an impressive accuracy rate of
99.5% in classifying fruit ripeness[17].

B. Fruit Grasping

When picking fruit, two main considerations come into play.
Firstly, fruits come in various shapes and sizes, which can
make them difficult to grip. Secondly, most fruits are soft,
so using traditional sharp claws can cause damage. However,
since most of the fruit we pick are already damaged or
unwanted, the first consideration is given more importance.

The article shows a model of a fruit-picking robotic arm[18].
To handle fruits of different shapes, sensors and computer
vision are employed to detect and estimate the fruit’s position.
The robotic arm’s inverse kinematics are then calculated based
on this position to place the gripper tool in front of the fruit.
The final picking method involves iteratively adjusting the
vertical and horizontal positions of the gripping tool using
a closed-loop visual feedback system[4].

III. MATERIALS AND METHODS

In this project, the main two technical problems are how to
identify our target object and how to plan the trajectory of the
arm.

A. Data Sets

Our dataset consists of two parts, which are bananas and
apples at different stages of maturity. The banana ripeness data
set from Fayoum University (Mazen and Nashat, 2019) con-
tains 273 single fruit images of bananas of different ripeness
levels with a neutral background.1 The researchers who pro-
vided this data set labeled it into four ordinal classes: “green”
(104 samples), “yellowish-green” (48 samples), “midripen”
(88 samples), and “overripen” (33 samples).The apple dataset
are from Jahangirnagar University (Nusrat Sultana, Musfika
Jahan and Mohammad Shorif Uddin, 2022), including 200
images of fresh apples and 200 images of ripen apples.2 Since
we are using pre-trained models, our data sets require pre-
processing to match the resolution that was used for pre-
training. The images were downsampled to 224 × 224 pixels

1https://drive.google.com/drive/folders/1nRWBYAHNRqmL4R0SLrs6db
GQFSWGVY8V?usp=sharing

2https://data.mendeley.com/datasets/bdd69gyhv8/1

keeping the images’ original ratio by applying zero-padding
to the height dimension (top and bottom side).

B. Vision Transformers

Vision Transformers (ViTs) are an innovative image pro-
cessing algorithm that leverages the transformer architecture
initially designed for natural language processing (NLP). The
core idea is to divide an image into multiple small patches
(e.g., 16x16 pixels) and process these patches as sequences
similar to word sequences in NLP tasks. Specifically, the
ViT architecture consists of several key components. First,
the input image is divided into fixed-size patches, each of
which is then flattened into a vector. These vectors are linearly
embedded into a higher-dimensional space to form patch
embeddings. Since transformers do not inherently capture
positional information, positional embeddings are added to
these patch embeddings to provide information about the
position of each patch within the original image.

Next, the sequence of embedded patches is fed into a stan-
dard transformer encoder. The transformer encoder comprises
multiple layers, each containing a multi-head self-attention
mechanism and a feed-forward neural network. The self-
attention mechanism allows the model to weigh the importance
of different patches, capturing relationships between distant
patches. The feed-forward neural network further processes the
data after the attention layer. Layer normalization and residual
connections are used to stabilize and improve the training pro-
cess. Within the encoder, a specific classification token ([CLS]
token) is added to the sequence of patches. After passing
through the transformer layers, the output corresponding to
this token is used for classification through a simple feed-
forward neural network. While dk describes the number of
key dimensions:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (1)

Regarding training and implementation, ViTs typically em-
ploy a pre-training and fine-tuning approach. They are pre-
trained on large datasets using self-supervised learning tech-
niques like DINO (self-distillation with no labels), allowing
the model to learn useful representations from vast amounts
of data without manual labeling. [1]

C. YOLO(You Only Look Once)

YOLO (You Only Look Once) redefines object detection as
a regression problem by directly predicting bounding boxes
and their associated class probabilities from a complete im-
age. In contrast to traditional object detection methods such
as DPM and R-CNN, which typically utilize classifiers for
detection and require complex pipelines that are slow and
difficult to optimize, YOLO employs a single Convolutional
Neural Network (CNN) to enable end-to-end optimization of
detection performance[3][5].

YOLO divides the input image into an S×S grid, with
each grid cell responsible for detecting objects whose center
falls within it. Each grid cell predicts B bounding boxes,

https://drive.google.com/drive/folders/1nRWBYAHNRqmL4R0SLrs6dbGQFSWGVY8V?usp=sharing
https://drive.google.com/drive/folders/1nRWBYAHNRqmL4R0SLrs6dbGQFSWGVY8V?usp=sharing
https://data.mendeley.com/datasets/bdd69gyhv8/1


the confidence scores of these boxes, and the conditional
class probabilities for C classes. The confidence score reflects
the probability of an object being present in the predicted
bounding box and the accuracy of the bounding box, defined
as Confidence = P ( Object ) × IOUtruth

pred . The conditional
class probability indicates the probability of each class given
that an object is present, defined as Pr(Classi|Object). By
multiplying the confidence score with the conditional class
probabilities,

Pr(Classi|Object) ∗ Pr( Object ) ∗ IOU truth
pred =

Pr(Classi) ∗ IOU truth
pred

then the final class scores for each bounding box are
obtained.

YOLO’s network architecture is inspired by GoogLeNet.
The standard YOLO model consists of 24 convolutional layers
followed by 2 fully connected layers [16]. Unlike GoogLeNet,
YOLO uses 1×1 reduction layers and 3×3 convolutional layers
[10]. Fast YOLO, on the other hand, reduces the number of
convolutional layers and filters, trading some accuracy for a
significant increase in processing efficiency.

Training YOLO involves pre-training the convolutional lay-
ers on the ImageNet 1000-class competition dataset [15],
followed by adapting the model for detection tasks. To enhance
performance, YOLO adds four convolutional layers and two
fully connected layers with randomly initialized weights and
increases the resolution from 224×224 to 448×448. During
training, YOLO optimizes a multi-part loss function:

λcoord
∑S2

i=0

∑B
j=0 ⊮

obj
ij

[
(xi − x̂i)

2
+ (yi − ŷi)
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This optimization improves the model’s stability, preventing
divergence during the early stages of training.[12]

D. ROS Moveit

To have a robot arm moving in our simulation environment,
we choose to use the ur-5 robot directly, and to have the
robot arm moving, ROS[11] and moveit[2] can be a powerful
method to complete this.

MoveIt is a state-of-the-art motion planning framework
for robotics, designed to facilitate the manipulation, control,
and navigation of robotic systems. It integrates a variety of
advanced algorithms and tools to provide a comprehensive so-
lution for planning, executing, and visualizing complex robot
motions. At its core, MoveIt leverages the Robot Operating
System to interface with various sensors and actuators, allow-
ing for real-time perception and feedback. It employs prob-
abilistic roadmap methods (PRM)[8] and rapidly-exploring
random trees (RRT)[14] for efficient path planning in high-
dimensional spaces, ensuring that robots can navigate around

obstacles and optimize their movements. Additionally, MoveIt
includes robust tools for kinematics, collision detection, and
trajectory optimization[2], making it an essential component
for developing sophisticated and reliable robotic applications.

We have been using MoveIt to continuously set the current
position of the robotic arm as the initial position and the
coordinates of the detected objects on the conveyor belt as the
target position. By continuously updating these two positions,
the robotic arm has eventually reached the target position, i.e.,
the position of the block on the conveyor belt, achieving the
effect of grasping.

IV. EXPERIMENT RESULTS

A. Classification results

Using the train cnn.py script3, we have effectively trained
convolutional neural network models on a dataset comprising
images of bananas and apples. Throughout the training pro-
cess, comprehensive performance monitoring and visualization
were conducted via the Weights & Biases (wandb) platform.45

For the banana training, a total of 240 runs were conducted.
We achieved a total of 240 runs by iterating over a combination
of multiple parameters. Specifically, we used 10 different seed
values ranging from 0 to 9, two operation modes (”all” and
”clf”), six different training sample sizes (4, 8, 20, 40, 120, and
-1, with -1 signifying all samples), and two models (”resnet50”
and ”alexnet”). Each unique combination of these parameters
constitutes a single run, resulting in a comprehensive explo-
ration across these variable settings. The main purpose of
setting 240 runs is to ensure the model’s performance consis-
tency and generalization ability under different random seeds.
Multiple runs can reveal the overall stability of the model
and assess its performance under various initial conditions.
This approach provides a more comprehensive understanding
of the model’s overall performance and reliability. Figure 2
shows the training accuracy and training loss for seeds 0-
9. The training accuracy curves for different seeds exhibit a
consistent upward trend during the training process, indicating
that the model has similar learning ability and convergence
patterns under different initialization conditions. Furthermore,
the training loss curves for different seeds show a consistent
downward trend, with loss decreasing as the training steps
increase. This indicates that the loss function optimization is
similar across different seeds during the training process.

For the training of apples, to investigate the recognition of
healthy and damaged apples, a total of 12 runs were conducted,
based on two CNN architectures: VGG and Squeezenet, using
a single seed value (0), and utilizing two operation modes
(”all” and ”clf”). To compare the training effects based on
different dataset sizes, the experiment used sample sizes of
50, 100, and 200. Figure 3 shows the recognition results for
healthy and damaged apples, demonstrating stable results with

3https://github.com/2024Me336Spring/DINO-ViT fruit quality assessmen
t

4https://wandb.ai/sustech me336/dino baseline fayoum reduced samples
5https://api.wandb.ai/links/sustech me336/fgelglhn

https://github.com/2024Me336Spring/DINO-ViT_fruit_quality_assessment
https://github.com/2024Me336Spring/DINO-ViT_fruit_quality_assessment
https://wandb.ai/sustech_me336/dino_baseline_fayoum_reduced_samples
https://api.wandb.ai/links/sustech_me336/fgelglhn


Fig. 2: Training Results Curves for Seed0-9

Fig. 3: Confusion Matrix

different CNN architectures and based on different dataset
sizes.

The training of the banana and apple datasets confirmed the
model’s stable performance. The training process is reasonable
and exhibits good generalization ability. These characteristics
indicate that the model should have high reliability and effec-
tiveness in practical applications.

After evaluating the predictive performance of CNNs and
proposing a method for fruit image classification, we com-
pared the best classification accuracy of CNNs with the best
performance based on ViTs. Figure 4 shows the results on the
banana dataset using shallow classifiers based on two different
DINO ViTs (base model and small model). Figure 5 shows a
comparison of the results on the banana image dataset between
CNN-based and ViT-based methods. In our experimental re-

Fig. 4: Model test accuracy by transformer

Fig. 5: Comparison between CNN and ViT Models

sults, both ViT-based models (SVM classifiers based on DINO
ViTB/8 and DINO ViTS/8 embeddings) outperformed CNN-
based models. This indicates that pre-trained DINO ViTs can
capture domain-specific and local features, and when models
are pre-trained on a general dataset, DINO ViT embeddings are
generally more accurate at capturing the fundamental features
of images compared to supervised CNN embeddings.

B. YOLO

In this project, YOLOv8 plays two roles. Initially, during the
recognition phase, YOLO functions as a preliminary tool for
identifying fruit types. Following this identification, a Con-
volutional Neural Network (CNN) will use different models
according to the various fruit types recognized. YOLO em-
ploys its built-in model, yolov8n.pt. The verification method
is to put the collected dataset into the model and compare it
with the actual situation of the dataset to obtain the accuracy
as following figure.6 .

It can be seen that the success rate of the built-in YOLO
model in handling the given dataset is not high. In this case,
to improve the recognition accuracy, we need to retrain the
given dataset.

Training requires the use of a Python application called
LabelImg. LabelImg is a graphical image annotation tool. It
is written in Python and utilizes Qt for its graphical interface.
Annotations are saved as XML files in PASCAL VOC format,
the format used by ImageNet. Additionally, it supports YOLO



and CreateML formats. Using LabelImg, we re-annotate a
portion of the fruit images and retrain them according to the
fruit types. By employing YOLO’s built-in Train function, our
team can train the annotated fruit images, resulting in our
final model, best.pt. This model is trained entirely on the data
dataset and includes only the labels for bananas and apples,
thus significantly improving the specificity and accuracy of
our model. The Accuracy histogram after training with the
new model is shown in figure.7 .

Through specialized training, we can see that the recognition
accuracy for nearly all fruits has greatly increased, reaching
between 90% and 100%. The training process is illustrated
on Wandb, as depicted in the figure.8 . Box loss, cls loss,
and dfl loss mean the losses associated with bounding boxes,
classification, and distribution focal loss respectively. The
reduction in these values indicates model’s improvement.
Precision and recall denote accuracy and the rate of correctly
identified instances. Higher values of these metrics reflect
superior model accuracy and performance. The graphical data
suggest that the model’s indices are improving steadily, with a
rapid convergence rate and fine indices, indicating a successful
model training.

Fig. 6: The accuracy of YOLO’s built-in model

Fig. 7: The accuracy of YOLO’s training model

After successfully training YOLO, we can combine YOLO

Fig. 8: YOLO’s training results

with the subsequent CNN. Following the identification of
the fruit by YOLO, the CNN chooses the appropriate model
according to the type of fruit identified. The process is shown
in the figure.9.

The figure.10 shows the recognition of a bad banana, which
will be presented as a successful case.

Fig. 9: The Connection Method between YOLO and CNN
Networks

Fig. 10: A successful case

Within the project, the robot arm requires positional cal-
ibration of the fruit to perform the grasping task. This is
where another function of YOLO, positional calibration, can
be employed. YOLO can assist in determining the position
of objects, thereby aiding the robot arm in fruit grasping, as
shown in the figure.11.



Fig. 11: A practical positional calibration case

C. ROS Simulation

We have used Ubuntu 16.04 and ROS Kinetic as our
simulation system. The simulation process is carried out in
the Gazebo. We divide the whole activity into two parts: a
delaying belt with different blocks moving on it, and a robot
arm, which can recognize different figures of fruit, and choose
to grasp them. When the robot arm detects the target, we can
see a black point in the center of the target, as well as the
coordinate of it. Figure 12a and figure 12b shows the robot
arm is working to grasp the normal apple and banana, while
figure 12c and figure 12d shows the robot arm is letting the
inferior apple and banana continuing moving without doing
anything.

(a) Robot arm grasping apple (b) Robot arm grasping banana

(c) Robot arm letting rotten apple
go

(d) Robot arm letting black ba-
nana go

Fig. 12: The working robot arm

V. CONCLUSION

Our project’s goal is to design a mechanized assembly line
for sorting fruits, utilizing deep learning networks. We have
successfully demonstrated the integration of advanced image
recognition technologies and robotic automation to improve
the sorting and grading process of fruits with deep learning
models. Despite achieving the primary objective, there are still
some aspects that require refinement.

Our simulation environment is in ROS. ROS provides a
visual platform, which can help us easily identify if the model
works well. We have built a convey belt, moving blocks with
different figures on them, and also, an ur-5 robot arm, which
can distinguish fruits from defective ones, and also, grasp
them.

In the first stage of recognition, we used the YOLO.
YOLO, serving as the auxiliary algorithm in our project,
mainly provides preliminary fruit classification and localiza-
tion. Regarding fruit classification, although the built-in model
has a recognition efficiency of around 70%, the recognition
success rate exceeds 95% after specialized training with the
collected dataset, effectively classifying fruit types. This en-
hancement in classification accuracy can significantly improve
the efficiency of fruit sorting. Moreover, YOLO’s inherent
localization function can determine the position of identified
objects within a coordinate system, facilitating the robotic arm
in fruit grasping.

After completing the fruit classification, our recognition
process enters the second phase—fruit sorting through ViT
and CNN. Visual Transformers (ViT) represent a novel ap-
proach that leverages the powerful capabilities of transformers
to process image data. By training ViT on datasets such
as apples and bananas, we have validated that it can not
only capture complex relationships within images but also
achieve exceptional performance even with limited data and
resources. Compared to traditional Convolutional Neural Net-
works (CNNs), ViT excels in capturing long-range dependen-
cies within images and can effectively scale to large networks
and datasets. Moreover, ViT performs remarkably well on
small datasets, making it particularly suitable for applications
that require rapid development and low-cost implementation.
After recognition, the robotic arm will sort according to the
position provided by YOLO.

Several areas remain for ongoing optimization, including
enhancing the performance of ROS and deep learning net-
works, as well as increasing the realism of simulations. In the
future, the group members are willing to apply such a robot
arm moving algorithm into a physical robot arm.
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