
RoboGen: Autonomous Skill Acquisition in Robot
Simulation Based on General Language Model and

Reinforcement Learning
Wang Junyang(12111028), Ji Yibing(12110501), Zhou Jingdong(12111026), Deng Haowen(12110510),

Ng Wooi Cheng (12111128), Daniel Tan Sioa Hen (12111127), Mao Xinke(11910412)

Abstract—We present RoboGen, a generative robotic agent
that automatically learns diverse robotic skills at scale via
generative simulation. RoboGen leverages the latest advance-
ments in foundation and generative models. Instead of directly
using or adapting these models to produce policies or low-level
actions, we advocate for a generative scheme, which uses these
models to automatically generate diversified tasks, scenes, and
training supervisions, thereby scaling up robotic skill learning
with minimal human supervision. Our approach equips a robotic
agent with a self-guided propose-generate-learn cycle: the agent
first proposes interesting tasks and skills to develop, and then
generates corresponding simulation environments by populating
pertinent objects and assets with proper spatial configurations.
Afterwards, the agent decomposes the proposed high-level task
into sub-tasks, selects the optimal learning approach (reinforce-
ment learning, motion planning, or trajectory optimization),
generates required training supervision, and then learns policies
to acquire the proposed skill. Our work attempts to extract
the extensive and versatile knowledge embedded in large-scale
models and transfer them to the field of robotics. Our fully
generative pipeline can be queried repeatedly, producing an
endless stream of skill demonstrations associated with diverse
tasks and environments.

I. INTRODUCTION

In recent years, robotics research has been driven by the
ambitious goal of endowing robots with a diverse array of
skills, enabling them to operate effectively in various non-
factory settings and perform a wide range of tasks for hu-
mans. Significant advancements have been made in teaching
robots complex skills such as deformable object manipula-
tion, fluid handling, dynamic object tossing [18], in-hand
re-orientation[3], and even executing high-dexterity activities
like soccer playing[6] and robot parkour[19]. Despite these
achievements, the acquired skills often remain isolated, with
limited application horizons, and still require human-designed
task descriptions and supervision for training. Additionally,
the high costs and labor-intensive nature of real-world data
collection have led to a reliance on simulation environments,
which, although advantageous in terms of accessibility to
low-level states and unlimited exploration opportunities, still
demand significant effort in environment construction and task
design.

This paper introduces RoboGen, a generative robotic agent
designed to overcome these challenges by leveraging the
latest advancements in foundation and generative models.
Instead of using these models to directly produce low-level

actions, RoboGen adopts a generative simulation scheme.
This approach involves generating diverse tasks, scenes, and
training supervisions autonomously, thus significantly scaling
up robotic skill learning with minimal human intervention.
The proposed system operates through a self-guided propose-
generate-learn cycle, where the robotic agent first proposes
interesting tasks, generates corresponding simulation environ-
ments with relevant objects and spatial configurations, and
then decomposes the tasks into sub-tasks, selects optimal
learning approaches, generates required training supervision,
and finally learns the necessary skills. This method taps into
the extensive and versatile knowledge embedded in large-scale
models, transferring it effectively to the field of robotics. By
employing a fully generative pipeline, RoboGen can produce
an endless stream of skill demonstrations across a wide
variety of tasks and environments, pushing the boundaries of
automated large-scale robotic skill training.

II. RELATED WORK

A. Simulated Robotic Learning

Obtaining the data necessary for modern (deep) learning
algorithms directly from a real robot [9] , proves to be
prohibitively expensive in terms of both time and resources,
making it impractical for large-scale deployment. Hence, nu-
merous physics-based simulation platforms have been devel-
oped previously to expedite robotics research. In the realm
of robotics, physics-based simulation serves as a fast and
secure method for developing, validating, and testing control
algorithms and prototype designs [10]. Simulation platforms
have been extensively used in the robotics community to
develop a variety of skills, including object manipulation,
learning robotic grasping in simulation environments [12],
deep-learning-based autonomous navigation [14] , deep rein-
forcement learning for visual navigation, robot locomotion,
learning long-horizon visual manipulation tasks in simulation
[17], in-hand re-orientation, object tossing, and interaction
with dynamic environments [11] .

B. OBJAVERSE

OBJAVERSE is a significant tool in the realm of ob-
ject model generation for simulated environments, offering
a wealth of high-quality, annotated 3D models that can be



utilized across a wide range of applications. By sourcing ob-
jects from Sketchfab, a popular 3D marketplace, OBJAVERSE
provides a diverse collection of models, each enriched with
detailed metadata. This metadata includes object names, fixed
category assignments, unrestricted tags, and natural language
descriptions, which together facilitate the creation of realistic
and contextually relevant simulations. The diversity of OB-
JAVERSE’s dataset make it particularly valuable for several
key areas, for instances, 3D object retrieval and classification,
scene understanding and reconstruction, and robotic manip-
ulation and interaction. Besides that, Objaverse significantly
contributes to VR and AR applications by providing realistic
3D models that enhance the immersive experience (Wu et al.
2021). In addition, Objaverse is used to create detailed urban
environments for testing and training autonomous vehicles.
These realistic simulations allow for safe and extensive testing
of navigation algorithms and systems without the risks asso-
ciated with real-world testing [5] . On another hand, game
developers can leverage Objaverse to generate high-quality
game assets, creating more realistic and interactive gaming
environments.

C. Large Language Model (LLM)
Large Language Models (LLMs) like GPT-4 have made sig-

nificant strides in various domains, including natural language
processing, machine learning, and robotics. These models
have revolutionized how machines understand, generate, and
interact with human language, enabling a wide range of appli-
cations from automated text generation to complex decision-
making processes. LLMs have demonstrated exceptional ca-
pabilities in understanding and generating human language.
For instance, the original GPT model and its successors, such
as GPT-2 and GPT-3, have shown the ability to produce
coherent and contextually relevant text based on given prompts
[13][2] . These models have been employed in diverse tasks,
including summarization, translation, and question-answering,
showcasing their versatility and effectiveness in handling com-
plex language tasks. The integration of LLMs into robotics
and AI systems has opened new avenues for improving the
performance and capabilities of these technologies. For exam-
ple, LLMs have been used to enhance robotic planning and
control by generating detailed and context-aware instructions
for robotic tasks. GPT-4, as a more advanced iteration, has
further expanded these capabilities. It has been utilized in
robotic skill learning, where it helps generate detailed task
descriptions and decompositions, facilitating the development
of sophisticated robotic behaviors [1] . The use of GPT-
4 in such contexts demonstrates its potential to bridge the
gap between high-level language instructions and low-level
robotic actions, making robotic systems more intuitive and
adaptable. Recent works have explored the use of LLMs for
low-level control actions and goal specification in robotics.
These models can translate high-level language instructions
into precise control commands, enabling more accurate and
reliable execution of tasks [15] . Furthermore, LLMs like
GPT-4 have been employed to specify and refine goals for AI

systems, ensuring that they align with the desired outcomes
and adapt to changing requirements [8] .

The advancements in LLMs, including GPT-4, have sig-
nificantly impacted various fields, particularly in enhancing
the capabilities of AI and robotic systems. By providing
sophisticated language understanding, task generation, and
data augmentation, these models facilitate the development of
more intuitive, adaptable, and effective technologies. As LLMs
continue to evolve, their integration into different domains
is expected to drive further innovations and breakthroughs,
making them indispensable tools in the modern technological
landscape.

III. ROBOGEN

RoboGen is an automated pipeline that utilizes the embed-
ded common sense and generative capabilities of the latest
foundation models for automatic task, scene, and training
supervision generation, leading to diverse robotic skill learning
at scale. We illustrate the whole pipeline in Figure 1, composed
of several integral stages: Task Proposal, Scene Generation,
Training Supervision Generation, and Skill Learning. We
detail each of them in the following.

Fig. 1. RoboGen: An Integrated Framework for Initialization, LLM, Scene
Configuration, Skill Learning, and Task Decommposition

A. Task Proposal

RoboGen uses GPT-4 to generate tasks involving the inter-
action and manipulation of objects by a robotic arm. Objects
are initialized from a predefined list that includes common
household items such as ovens, microwaves, and laptops from
the PartNetMobility[16] and RLBench[7]datasets. A query is
constructed with the object’s category, articulation tree, and
semantic annotations, asking GPT-4 to return tasks including
the task name, description, additional required objects, and rel-
evant joints/links. For example, GPT-4 might generate the task
”heat up a bowl of soup” for a microwave, specifying the joints
and links to interact with. The task description might be: “The
robot arm places a bowl of soup inside the microwave, closes
the door, and sets the microwave timer for an appropriate
heating duration.” Additional objects needed for the generated



task could include “A bowl of soup,” and task-relevant joints
and links could include joint 0 (for opening the microwave
door), joint 1 (for setting the timer), link 0 (the door), and link
1 (the timer knob) [15]. Note that for cases where we sample
non-articulated objects or use example-based initialization, the
sampled objects and examples are provided only as a hint
for task proposal, and the generated tasks will not be tied to
them For articulated objects, since PartNetMobility is the only
articulated object dataset with high quality, and already covers
diverse range of articulated assets, we will generate tasks
dependent on the sampled asset. For locomotion and soft-body
manipulation tasks, we use only example-based initialization,
and resort to GPT-4 to populate additional required objects.
By repeatedly querying with different sampled objects and
examples, we can generate a diverse range of manipulation and
locomotion tasks, concerning the relevant object affordances
when needed[15].

B. Simulated Scene Generation

In the realm of computer vision and robotics, the creation
of realistic and varied simulated environments is a cornerstone
for advancing research and development. Simulated scenes
provide a controlled setting where robots and AI systems
can be trained, tested, and refined without the constraints
and unpredictability of the physical world. Once a task is
proposed, GPT-4 is used to generate additional queries to
populate the scene with semantically relevant objects, creating
complex and diverse environments. Retrieved objects can
come from existing databases or be generated via text-to-
image and image-to-3D model generation. In this case, the 3D-
models of the objects are obtained from database (Objaverse).
Additionally, GPT-4 verifies these objects’ sizes to ensure
physical plausibility.

1) Object Model Genration : We utilize Objaverse for
object model generation, leveraging its extensive repository
and sophisticated annotation framework to create diverse and
detailed objects . OBJAVERSE is an extensive annotated 3D
dataset designed to facilitate research across various domains
within computer vision [4]. The objects in this dataset are
sourced from Sketchfab, an online 3D marketplace where users
can upload and share models for both free and commercial pur-
poses. The objects that match the objects models in Objaverse
will be downloaded and hence, generated in the simulated
environment.

When objects are uploaded to Sketchfab and subsequently
included in OBJAVERSE, they come with a comprehensive
set of foundational annotations provided by their creator. This
metadata encompasses several key elements. Firstly, it includes
the object’s name, which serves as a primary identifier. Sec-
ondly, each object is assigned to a set of fixed categories,
facilitating structured organization and easier discovery within
the platform. Additionally, creators can attach a diverse array
of unrestricted tags, which enhance the searchability and
contextual relevance of the objects. Finally, each object is
accompanied by a natural language description that provides

detailed insights and background information, enriching the
user’s understanding and engagement with the object.

For instance, when a task is assigned to GPT-4 as ”Move the
chair from the initial position to another place”, the keyword in
the task description such as ”chair”, which identifies the object
within the simulation scene, will be selected and matched to
the relevant categories in OBJAVERSE, and spawn the object
model in the simulation environment. In the example, a robot
arm will also be modelled since the keyword ”move” appears
in the sentence, indicating the need for an agent to perform
the action.

Fig. 2. Task Description: ”Move the chair to the desired position”. Two main
objects, the chair and the robot arm, are generated.

2) Relative Size Configuration : Relative size configura-
tion is crucial for accurately modeling tasks in simulation
environments. For instance, if the task description is ”put a pen
into a box,” the pen must be appropriately sized to fit inside the
box, implying it should be smaller than the box. This relative
size determination ensures the feasibility of the task within
the simulated context. GPT-4 can handle this configuration by
analyzing the task description and adjusting the dimensions
of the objects accordingly. By interpreting the relationship
between objects, GPT-4 can ensure that the pen is modeled
to be smaller than the box, facilitating accurate and realistic
task execution.

3) Initial Scene Configuration : Initial scene configuration
can be performed by utilising GPT-4, setting articulated ob-
jects in valid states, allowing the robot to effectively learn and
execute specific tasks. As an example, if the task is to ”open a
door,” as shown in Fig. 3., the door should be initialized in the
closed position to provide a clear action target for the robot.
Similarly, for the task of ”closing a drawer”, the drawer must

Fig. 3. Task Description: ”Opening a door”. The door is initially closed
since the task for the robot arm is to open the door.

be initially open. Additionally, for the task of ”putting the pen



on the table,” the pen should be initialized in a location away
from the table. These starting states ensure that the robot can
perform the required actions accurately. By utilizing GPT-4,
we can configure these initial states, specifying the joint angles
of articulated objects to meet the necessary conditions. This
careful setup is essential for the robot to learn and perform
the desired manipulations effectively.

C. Reinforcement Learning using Ray RLlib

This section outlines the methodology employed to train
and evaluate RL agents for robotic manipulation using the Ray
RLlib library.Ray’s scalability and flexibility make it an ideal
framework for this purpose, allowing efficient parallel training
and robust experiment management.We focus on Soft Actor-
Critic (SAC) RL algorithms, and leverage Ray’s features to
enhance the training pipeline.

Our RL training pipeline consists of several key compo-
nents designed to facilitate efficient training and evaluation of
robotic manipulation agents using Ray.These components in-
clude custom logging, environment configuration, policy man-
agement, training routines, and performance evaluation.Ray’s
capabilities in distributed computing and experiment manage-
ment play a crucial role in optimizing these components.

1) Custom Logging Mechanism: To ensure organized and
efficient tracking of different training sessions, we imple-
mented a custom logging mechanism using Ray’s UnifiedLog-
ger.This system generates unique log directories based on the
current timestamp and a custom identifier string, facilitating
easy retrieval and analysis of training progress.Ray’s logging
infrastructure integrates seamlessly with our custom logger,
providing a robust solution for managing logs.

2) Configuration Setup for RL Algorithms: We developed
a flexible configuration setup function to tailor the RL algo-
rithms to the specific requirements of the robotic manipulation
tasks.This function adjusts hyperparameters such as batch
size, the number of workers, and the architecture of the
neural networks used by the RL algorithms.Specifically, we
configure PPO and SAC with parameters optimized for our
tasks, ensuring robust and efficient learning. Ray’s configu-
ration management capabilities allow us to easily adapt and
experiment with different settings.

3) Policy Loading and Management: Policy loading and
management are critical for initializing RL agents and resum-
ing training from previously saved states. Our methodology in-
cludes functions to load existing policies from checkpoints and
restore them accurately using Ray’s checkpointing features.
This capability allows for continuous training and fine-tuning
of policies, which is essential for improving agent performance
over time.

4) Training Routine with Periodic Evaluations: The train-
ing routine forms the core of our RL pipeline. During training,
the agent interacts with the environment to collect experiences
and updates its policy accordingly. Ray’s ability to scale
across multiple CPUs and GPUs enables efficient parallel
training, significantly speeding up the learning process. To
monitor progress and prevent overfitting, we conduct periodic

evaluations at predefined intervals. During these evaluations,
we assess the policy’s performance, save the best-performing
models, and log key metrics such as total timesteps, mean
rewards, and training duration. The training process also
includes mechanisms to manage and store the best models
based on evaluation performance.

5) Visualization of Agent Performance: To gain insights
into the agent’s behavior and performance, we implemented a
policy rendering function. This function visualizes the agent’s
actions within the environment, allowing us to observe how the
trained policy operates in real-time. Visualization is a crucial
step for qualitative assessment and debugging, providing a
clear understanding of the agent’s capabilities and areas for
improvement. Ray’s support for custom environments and
visualization tools enhances our ability to render and analyze
agent behavior effectively.

6) Environment Configuration and Initialization: A crit-
ical aspect of our methodology is the setup and initialization
of the simulation environment. We developed a function to
configure the environment based on specific task parameters,
ensuring that it is correctly instantiated with the necessary
settings. This function handles various aspects of the en-
vironment, including task configurations, action spaces, and
rendering options. Proper environment setup is essential for
accurate training and evaluation of the RL agent. Ray’s en-
vironment registration and configuration capabilities simplify
this process, allowing seamless integration with our training
pipeline.

Our methodology has been applied to train RL agents
for various robotic manipulation tasks. Ray’s scalability and
distributed computing capabilities have been instrumental in
efficiently handling large-scale training sessions. The custom
logging mechanism and periodic evaluations have been essen-
tial in tracking progress and ensuring the reliability of the
training process. The flexible configuration setup has allowed
us to optimize the algorithms for different tasks, leading to im-
proved performance and efficiency. The visualization of agent
performance has provided valuable insights into the agent’s
decision-making process, helping us identify and address
potential issues. Overall, the combination of these components,
powered by Ray’s robust infrastructure, has enabled us to
develop robust and effective RL agents capable of performing
complex manipulation tasks in simulated environments.

IV. EXPERIMENTS

RoboGen is an automated pipeline that can be queried
endlessly, and generate a continuous stream of skill demonstra-
tions for diverse tasks. In our experiments, we aim to answer
the following questions: leftmargin=*,label=

• Task Diversity: How diverse are the tasks proposed by
RoboGen robotic skill learning?

• Scene Validity: Does RoboGen generate valid simulation
environments that match the proposed task descriptions?

• Skill Learning: Can RoboGen learn the generated task?



A. EVALUATION METRICS AND BASELINES

We use the following metrics and baselines for evaluating
our system:

1) Task Diversity: The diversity of tasks generated by task
diversity can be measured from multiple aspects, such as the
semantics of the task, the scene configuration of the generated
simulation environment, the appearance and geometric shape
of the retrieved object assets, and the robot actions required to
execute the task. For the semantics of tasks, we quantitatively
evaluate them by calculating the self BLEU and similarity of
the generated task descriptions, with lower scores indicating
better diversity. We compared with established benchmarks,
including RLBench (James et al., 2020), Maniskill 2 (Gu et
al., 2023), Meta World (Yu et al., 2020), and Behavior-100
(Srivastava et al., 2022). For object assets and robot actions,
we use generated simulation environments and visualizations
of learned robot skills to qualitatively evaluate RoboGen.

2) Scene Validity (CLIP): Calculate normalized Frame-Text
Similarity Score (FTSS) for tasks with object verification
using the CLIP model. CLIP (Contrastive Language-Image
Pretraining) aligns images and text by encoding them into a
shared embedding space, allowing us to measure the similarity
between GIF frames and textual descriptions. The FTSS is
calculated by encoding both the frames and the text, computing
cosine similarity between them, and normalizing the scores to
enable meaningful comparisons across different datasets. This
process highlights the effectiveness of our object verification
in maintaining scene validity, as our scores demonstrate strong
alignment between visual and textual content when compared
to other projects.

3) Skill Learning: To evaluate skill learning performance,
we conducted a comparative analysis by directly observ-
ing the reward functions generated by RoboGen for various
tasks. RoboGen simultaneously employs motion planning-
based primitives, gradient-based trajectory optimization, and
reinforcement learning to acquire skills. For each task, we
executed the combined method using four different random
seeds and reported the mean and standard deviation of the
task returns. The reward functions for the evaluated tasks were
manually verified to ensure correctness.

B. RESULTS

1) Task Diversity: The quantitative evaluation results are
shown in Table 1. We compared the RoboGen versions that
generated a total of 14 tasks. As shown in the figure, Robo-
Gen achieved the lowest SelfBLEU and embedding similarity
compared to all previous benchmarks, indicating that under
these two indicators, the diversity of generated tasks is higher
than the manually established benchmarks previously. This
indicates that RoboGen can generate a set of tasks whose
diversity matches or exceeds previously handcrafted skill
learning benchmarks and datasets.

2) Scene Validity (CLIP): Figure 3 illustrates the normal-
ized Frame-Text Similarity Scores (FTSS) for RoboGen, the
ViT-L-14 ensemble, and the CLIP-S score on the Flickr8K

RoboGen Behavior-100 RLbench MetaWorld Maniskill2

Number of tasks 30 50 53 50 20

Self-BLEU↓ 0.134 0.299 0.317 0.322 0.674

Embedding Similarity↓ 0.061 0.210 0.200 0.263 0.194

dataset. The quantitative evaluation demonstrates that Robo-
Gen achieves an average FTSS of 0.694, outperforming the
ViT-L-14 ensemble (0.688) and significantly higher than the
CLIP-S score on the Flickr8K dataset (0.512). These results
highlight the effectiveness of the object verification process
implemented in RoboGen, ensuring a strong alignment be-
tween GIF frames and textual descriptions. The high FTSS for
RoboGen indicates superior performance in maintaining scene
validity compared to the other benchmarks. The consistency
and reliability of RoboGen’s task generation underscore its
capability to produce diverse and contextually relevant scenes,
surpassing the previously established benchmarks. This com-
prehensive analysis confirms that RoboGen can generate tasks
with high validity, aligning closely with textual descriptions
and setting a new standard for scene generation in automated
systems. Future work will involve further comparative studies,
including tasks without verification steps, to validate the
robustness and versatility of RoboGen’s approach.

Fig. 4. Comparison of Normalized FTSS

3) Skill Learning: We evaluate the performance on multiple
tasks involving different skill requirements. The findings indi-
cate that incorporating object and size verification significantly
enhances performance across tasks. When these verification
methods are ablated, the scores drop notably, demonstrating
their critical role in task completion. To evaluate learning
performance, we generated several reward function images.

Most tasks exhibit typical reinforcement learning trends,
where the reward is initially low, gradually increases, and then
stabilizes as training progresses. For instance, tasks like ”close
the window” and ”open the laptop screen” show curves that



rise sharply from negative values and then level off.
Each task’s reward curve includes both an average reward

(solid line) and a reward range (shaded area). In the early
stages of training, the reward range is generally wide, indi-
cating high variability in rewards. As training continues, the
reward range narrows, suggesting that rewards become more
consistent.

Some tasks exhibit highly irregular reward curves, indicat-
ing poor learning performance. For example, tasks like ”press
the start button” and ”turn the hot water switch” show erratic
and unstable reward patterns throughout the training process.
These anomalies suggest that the agent struggles to learn
effective strategies for these tasks, leading to inconsistent and
suboptimal rewards.

The reward function graphs indicate that task complexity
and environmental variations significantly affect the agent’s
learning performance and reward convergence speed. We
also experimented with using only reinforcement learning
(RL) without RoboGen, and the final learning performance
was significantly lower than that achieved with RoboGen.
This demonstrates that RoboGen, which integrates motion
planning-based primitives, gradient-based trajectory optimiza-
tion, and reinforcement learning, provides a much better over-
all learning outcome. Future research can explore strategies
to optimize training for these tasks to accelerate the learning
process and improve reward stability.

Fig. 5. 10 examples of GIF output

Fig. 6. 10 examples of reward function

Based on the reward function images and GIF images of
these ten examples, we can manually judge that eight of the
tasks can be learned and completed successfully. Among the
tasks that were learned, most showed a significant change
in the reward function around 200 episodes and eventually
stabilized within ±5% of this value. For the tasks that were
not learned, we believe this is due to the higher complexity

of the actions required. Overall, the learning success rate is
above 80%.

V. CONCLUSION

This paper introduces RoboGen, a generative agent designed
to autonomously propose and learn diverse robotic skills
through generative simulation. RoboGen leverages the latest
advancements in foundational models to automatically gen-
erate diverse tasks, scenes, and training supervision, thereby
scaling up robotic skill learning with minimal human inter-
vention once deployed. This fully generative pipeline can
be continuously queried, producing a large volume of skill
demonstrations across various tasks and environments. The
system is agnostic to the backend foundational models, allow-
ing for continuous upgrades as more advanced models become
available.

Despite RoboGen’s promising capabilities, the current sys-
tem still has several limitations. First, large-scale validation
of learned skills, i.e., verifying if the resultant skill truly
accomplishes the corresponding task based on text descrip-
tions, remains a challenge. Future improvements in multimodal
foundational models could address this issue. Second, there
is an inherent sim-to-real gap when deploying the learned
skills in real-world scenarios. However, ongoing advancements
in physically accurate simulation, domain randomization, and
realistic sensory signal rendering are expected to narrow this
gap. Third, the system assumes that existing policy learning
algorithms are sufficient for learning the proposed skills given
the right reward functions. However, it has been observed
that the robustness of these algorithms is still limited, often
requiring multiple runs to produce successful skill demonstra-
tions for certain tasks. Future work will focus on integrating
more powerful policy learning algorithms with better action
parameterizations into RoboGen.

ACKNOWLEDGMENTS

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901,
2020.

[3] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for
general in-hand object re-orientation. In Conference on
Robot Learning, pages 297–307. PMLR, 2022. URL
http://proceedings.mlr.press/v100/chen20a.html.

[4] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca
Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.
Objaverse: A universe of annotated 3d objects, 2022.

http://proceedings.mlr.press/v100/chen20a.html


[5] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. Carla: An open urban
driving simulator, 2017.

[6] Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H
Huang, Dhruva Tirumala, Markus Wulfmeier, Jan Hump-
lik, Saran Tunyasuvunakool, Noah Y Siegel, and et al.
Hafner, Roland. Learning agile soccer skills for a bipedal
robot with deep reinforcement learning. arXiv preprint
arXiv:2304.13653, 2023. URL https://arxiv.org/abs/2304.
13653.

[7] Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J Davison. Rlbench: The robot learning bench-
mark and learning environment. IEEE Robotics and
Automation Letters, 5(2):3019–3026, 2020.

[8] Ivan Kapelyukh, Yifei Ren, Ignacio Alzugaray, and Ed-
ward Johns. Dream2real: Zero-shot 3d object rearrange-
ment with vision-language models. In First Workshop on
Vision-Language Models for Navigation and Manipula-
tion at ICRA 2024, 2023.

[9] Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection, 2016.

[10] C. Karen Liu and Dan Negrut. The role of physics-
based simulators in robotics. Annual Review of Con-
trol, Robotics, and Autonomous Systems, 4(1). doi:
10.1146/annurev-control-072220-093055. URL https:
//par.nsf.gov/biblio/10276894.

[11] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin,
Peter Welinder, Lilian Weng, and Wojciech Zaremba.
Learning dexterous in-hand manipulation, 2019.

[12] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700
robot hours, 2015.

[13] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):
9, 2019.

[14] Lei Tai, Shaohua Li, and Ming Liu. A deep-network
solution towards model-less obstacle avoidance. pages
2759–2764, 10 2016. doi: 10.1109/IROS.2016.7759428.

[15] Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil
Sreenath. Prompt a robot to walk with large language
models. arXiv preprint arXiv:2309.09969, 2023.

[16] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J.
Guibas, and Hao Su. Sapien: A simulated part-based
interactive environment, 2020.

[17] Adriel Yeo, Benjamin Kwok, Angelene Joshna, Kan
Chen, and Jeannie Lee. Entering the next dimension: A
review of 3d user interfaces for virtual reality. Electron-
ics, 13:600, 02 2024. doi: 10.3390/electronics13030600.

[18] Andy Zeng, Shuran Song, Johnny Lee, Alberto Ro-
driguez, and Thomas Funkhouser. Tossingbot: Learning
to throw arbitrary objects with residual physics. IEEE
Transactions on Robotics, 36(4):1307–1319, 2020. doi:
10.1109/TRO.2020.2972567. URL https://ieeexplore.
ieee.org/document/8968424.

[19] Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christo-
pher Atkeson, Soeren Schwertfeger, Chelsea Finn, and
Hang Zhao. Robot parkour learning. arXiv preprint
arXiv:2309.05665, 2023. URL https://arxiv.org/abs/2309.
05665.

https://arxiv.org/abs/2304.13653
https://arxiv.org/abs/2304.13653
https://par.nsf.gov/biblio/10276894
https://par.nsf.gov/biblio/10276894
https://ieeexplore.ieee.org/document/8968424
https://ieeexplore.ieee.org/document/8968424
https://arxiv.org/abs/2309.05665
https://arxiv.org/abs/2309.05665

	Introduction
	Related Work
	Simulated Robotic Learning 
	OBJAVERSE 
	Large Language Model (LLM) 

	RoboGen
	Task Proposal 
	Simulated Scene Generation 
	Object Model Genration 
	Relative Size Configuration 
	Initial Scene Configuration 

	Reinforcement Learning using Ray RLlib
	Custom Logging Mechanism
	Configuration Setup for RL Algorithms
	Policy Loading and Management
	Training Routine with Periodic Evaluations
	Visualization of Agent Performance
	Environment Configuration and Initialization


	EXPERIMENTS
	 EVALUATION METRICS AND BASELINES
	Task Diversity
	Scene Validity (CLIP)
	Skill Learning

	 RESULTS
	Task Diversity
	Scene Validity (CLIP)
	Skill Learning


	Conclusion

