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Abstract—Grasp points optimization enables signif-
icant feedforward control in robot manipulation, pro-
viding optimized decisions for robot grasping scenar-
ios. Our work combines both mathematical analysis
and neural network learning to obtain simultaneous
solutions for grasp points of any given object. We
generate training data using a mathematical approach
and apply the acquired model to real-life applications.
The proposed algorithm demonstrates significant im-
provements in grasp stability and reduced solution
times for both simple and complex objects in a
simulated environment. Our focus is on 3D-2Point
grasp of rigid bodies, with a notable increase in overall
stability. The developed stability evaluation method
could also optimize multi-finger grasp points in 3-D
space in future work.

I. INTRODUCTION

The focus of this research is on how to grasp
objects most stably. Compared with the traditional
search for the easiest grasping point based on
computer vision, this study focuses more on math-
ematical modeling through physical methods, to
find the most resistant to interference and the most
stable grasping point and reduce the computational
cost through neural network. For most objects,
using vision-based grasp points is a more affordable
option; The main purpose of this research is to
provide solutions for the grasping of some special
objects, such as fragile, deformable, explosive and
other high-value objects. In this paper, we will
first present our mathematical model, discuss its
working principle, and explain why it can evaluate
the stability of grasping well. We will then introduce
the neural network we use in the simplified compu-
tation process, and through its training and use, the
implementation cost of the method proposed in this
study becomes acceptable from unacceptable. Later,

we will introduce our method of obtaining data. To
train the neural network, we generate point clouds
of 6 kinds of objects with certain differences, and
in order to adapt to the high time complexity of
the mathematical model, only the grasping features
are retained for each object, thus greatly reducing
the amount of computation. Finally, in the exper-
imental part, we design an experimental method.
By comparing the grasping points corresponding to
our trained neural network with the grasping points
chosen intuitively, we finally prove the reliability
of this method. At the same time, we also mention
the shortcomings of this network when working in
special cases.

II. RELATED WORK

A. Grasp Stability Prediction with Time Series Data
Based on STFT and LSTM

This study by Tao Wang and Frank Kirchner
explores the use of Short-Time Fourier Transform
(STFT) and Long Short-Term Memory (LSTM)
networks for predicting grasp stability using time
series data from force and pressure sensors. The
paper highlights the effectiveness of combining
these techniques to predict unstable grasps, poten-
tially enhancing the application of AI in traditional
industries. Their model was tested across different
grippers, showing promising results in generalizing
across various sensor types, thus providing a robust
method for grasp stability analysis [2].

B. Grasp Stability Prediction for a Dexterous
Robotic Hand Combining Depth Vision and Haptic
Bayesian Exploration

This research delves into grasp stability predic-
tion by integrating depth vision and haptic feedback



through Bayesian methods. The study employs a
multimodal approach where both visual and tactile
data are used to predict the stability of a grasp on
unknown or un-modeled objects. By using depth
sensors and Bayesian exploration techniques, the
researchers could make real-time adjustments to the
grasping action, enhancing the reliability and safety
of the robotic hand during complex manipulations
[3].

C. Task-Oriented Grasp Planning Based on Distur-
bance Distribution

Focusing on optimizing grasp configurations
based on anticipated disturbances, this paper
presents a novel approach to grasp planning. The
methodology involves analyzing potential distur-
bances that might affect the grasp and planning
the gripper’s actions accordingly to mitigate these
effects. This strategic planning is crucial for ap-
plications requiring high precision and reliability
in dynamic environments, as it enables the robotic
system to maintain stability and control even under
unpredictable conditions [1].

Each of these papers contributes uniquely to the
field of robotic grasping by addressing the critical
aspects of grasp stability from different technolog-
ical and methodological perspectives.

METHODS

A. Method of Grasp Points Optimization

Our approach towards grasp points optimization
consists of training data generation and neural net-
work learning. We first generate optimized grasp
points of given point clouds using a mathematical
model and then feed the obtained training data to
the neural network.

The mathematical model determines the stability
of each provided grasp points set (pair of grasp
points in our case) through the stability evaluation
algorithm we developed, and finds the largest com-
bination of grasp points in the provided point cloud
(input object).

2-point grasping of an object is considered stati-
cally undetermined, which means the applied force
on each side of the gripper has infinite amount of
possibilities, while only the critical scenario where

the gripper is about to drop the object can be
determined with given physical parameters.

During stability evaluation, our mathematical
model tests every possible gripper force that ful-
fills both friction restrictions and normal force re-
strictions. A point in the resultant external action
domain is then calculated and recorded accordingly
[4]. The weighted volume of space that points of
plausible resultant external action occupied, which
represents the stability of the grasp points, is cal-
culated through Eq.1:

where S is the stability, F⃗res is the resultant
external force, M⃗res is the resultant external moment
of force, and d is the distance between two grasp
points.

The resultant external action domain is a 6D
flat space, in which a point is determined by 3
components of external force and 3 components of
external moment of force.

In our application, the number of points in the
external action domain is designed to be around
2000, which presents balanced performance be-
tween solution time and accuracy.

The physical theorems we choose to describe
grasping include friction law in both force and
moment of force. The action force in a contact point
is modeled by Eq.2:

where fx, fy are two components of in-plane
friction, k is a coefficient of moment related to
material properties, Mz is the normal moment of
force caused by the uneven distribution of in-plane
shear stress (friction), µ is the coefficient of friction,
and N is the normal force applied by the gripper.

The resultant external action, in regard to every
component of action from both gripping points, is
described by Eq.3:



With the stability evaluation algorithm we pro-
posed, the model can search for the most stable
grasp points through various methods (traversal in
our case).

However, the mathematical model requires a
large amount of time to process an unknown point
cloud, which makes it impractical to implement
this model in real-life applications where instant
solutions of grasp points are always desired. Thus,
we use the mathematical model to train a neural
network model, which promises a rapid response.

B. Grasp Representation

We parameterize a grasp as a combination of
two contact points and a rotation angle. The contact
points are two points touched by the robot gripper
on the object surface. In general, one is visible
while the other is invisible if the object is partially
observed. The rotation angle is formed by the plane
of the gripper (dashed lines) with the horizontal
plane. Its range is limited within [0, π] in order to
avoid collision with the ground surface.

Fig. 1. Grasp representation. The 7-DoF grasp is made up of
two contact points and a plane-to-plane rotation angle.

C. Learning to Grasp (L2G)

We adopt the network in [1] as our baseline.
As is displayed in Fig. 1, a feature extractor is
first applied to extract point-wise features from

the input point cloud. Subsequently, the per-point
features are utilized by a point sampler to sample a
handful of points that constitute the visible contact
points of the grasp. Thereafter, point features around
the sampled points are aggregated and fed into a
grasp regressor, which directly estimates the rest
of the grasp components, i.e., the invisible contact
points and the plane-to-plane rotation angles. Lastly,
the aggregated point features and the raw grasp
candidates are passed into a grasp classifier that
assigns a grasp quality score in [0, 1] to each grasp
candidate, denoting whether it is graspable (1) or
not (0).

D. Implementation Details

In our work, we employ DeCo [2] as the fea-
ture extractor backbone. We sample N=2000 points
from the object’s point cloud and use the default
configurations of DeCo in the original paper. We
set the point feature dimension F=128, and the
feature aggregation neighbor size to 20. The model
is queried to predict M=50 grasp candidates and
the corresponding grasp quality scores. At training
time, we use a batch size of 4, a learning rate of
0.0001, a weight decay of 0.0001, and the Adam
optimizer to train the model for 500 epochs. At
inference time, we extract the grasp with the highest
grasp quality score and then execute it on the robot
in simulation.

Fig. 2. Model overview. The model takes as input a point cloud
and outputs a 7-DoF grasp together with a 0-1 grasp quality
score.

DATA

In this project, we utilized point cloud data stored
in .npy files. The data consists of matrices repre-
senting geometric shapes. Specifically, we worked
with two types of matrices:

1. **6×n Matrix**: Each row in this matrix
represents a point in 3D space. The columns include



the xyz coordinates of the point and its corre-
sponding normal vector, providing comprehensive
geometric information about each point. 2. **3×n
Matrix**: This matrix includes only the xyz coordi-
nates of the points, representing the point cloud data
of a geometric shape without the normal vectors.

The variable n represents the number of points
that make up the point cloud for each geometric
shape. These matrices allow for detailed represen-
tation and analysis of the geometric properties of
the shapes in our study.

Sources of Point Cloud Data

The point cloud data has two primary sources:
1. **Depth Camera Data**: Point cloud data was

captured using a depth camera from four different
angles. By utilizing the camera parameters and
information, depth images from these four angles
were stitched together to form a comprehensive
point cloud representation of the actual objects. 2.
**Mathematical Modeling**: For basic geometric
shapes, point cloud data was generated artificially
using mathematical modeling and methods. This
approach enabled us to create accurate point clouds
for simple geometries.

Dataset Division

The dataset is divided into two parts:
1. **6×n Matrices**: Each matrix includes the

xyz coordinates and corresponding normal vectors
of the points. Here, n is approximately 50, indicat-
ing that each matrix consists of 50 points and their
normal vectors. 2. **3×n Matrices**: Each matrix
includes only the xyz coordinates of the points.
In this case, n is 2000, meaning that each matrix
consists of 2000 points.

Each part includes the following geometric
shapes:

• Sphere

Fig. 3. Sphere

• Cylinder

Fig. 4. Cylinder

• Triangular prism

Fig. 5. Triangular prism

• Rectangular prism

Fig. 6. Rectangular prism



• Octagonal prism

Fig. 7. Octagonal prism

• A complex object formed by two hemispheres

Fig. 8. A complex object formed by two hemispheres

For each geometric shape, we have 100 sets of
data, providing a robust dataset for our analysis and
experiments.

Data Preprocessing

For the 6×n matrices, as these are used for model
training, we performed preprocessing to optimize
for computational efficiency. Given the hardware
constraints, we retained only the key grasping fea-
ture points of the geometric objects and removed
redundant points that did not contribute additional
information for grasping.

EXPERIMENTS

To verify and evaluate the effectiveness of the
prediction model obtained through machine learn-
ing, we utilized CoppeliaSim to construct a series
of simulated environments as depicted in the im-
ages below. Our basic validation approach involves
placing the objects in their designated positions,

using all point cloud information of the target
objects in the environment as the input for our
prediction model. After the model has completed its
calculations, we send the corresponding poses to the
robotic arm, ultimately enabling it to successfully
grasp the target object and return to a specific
position, P.

Here, to verify the stability of our model, we have
constructed a track in the simulated environment.
We wait until the robotic arm holding the target
object returns to point P, then place a stationary
ball at the same position on the track. Under the
influence of its own gravity, the ball will also move
to point P. We simulate external environmental
disturbances to the grasped object by having the
ball collide with the target object. Since both the
release position and initial velocity of the ball are
zero, we will continuously change the mass of the
ball until we find a critical mass that allows the
robotic arm to just stabilize the target object. Once
this critical mass is exceeded, the robotic arm will
lose control of the grasped object. We will use the
critical mass of this ball to measure the stability of
our model in grasping objects.

Fig. 9. Simulation scenario

After grasping the target object at different points
and returning to point P, the stability varies. As
shown in our previous stability formula, for a
regular quadrilateral pyramid (rectangular prism),
under two-point grasping, the longer the edge length
between the two grasping points, the higher the
grasping stability, and vice versa, the lower the
stability. The table below records the stability of
grasping target objects with different centroid posi-



tions and shapes during the testing phase.

Fig. 10. Test Data Performance Table

In the table above, ”Index” corresponds to the
test number, ”centroid [x,y,z]” represents the cur-
rent centroid position of the object, and ”length
[lx,ly,lz]” indicates the current length, width, and
height of the object. ”Grasping-point” refers to
the central position of the robotic gripper during
grasping (all units are in meters). ”Critical mass”
is the maximum mass of the ball that the robotic
arm can balance and stabilize at point P under
environmental disturbances.

In each major row, the lower sub-row represents
the robotic gripper grasping the target object with
a longer length, while the upper sub-row repre-
sents the robotic gripper grasping the target object
with a shorter length. According to our previous
analysis, when the robotic gripper grasps the target
object with a longer length, the grasp stability
should be higher. Here, the stability corresponding
to the lower sub-rows in each major row is rel-
atively greater, and these sub-rows correspond to
the robotic arm grasping the target object with a
longer length, thus verifying our previous stability
hypothesis. This further confirms the correctness of
our proposed formula for measuring grasp stability
and the accuracy of the object coordinates obtained
through machine learning.

Moreover, for obtaining grasp points in these
scenarios, if the optimal grasp point positions were
calculated entirely using classical mechanics and
other physical methods, the computation time for
a single scenario would be approximately 10 min-
utes. However, with our model, the computation

time for a single scenario is only 0.5 seconds.
The time difference between achieving the same
highly stable grasp points is nearly 1000 times!
Our machine learning model for obtaining the target
object’s point cloud and its corresponding grasp
points maintains high accuracy and object stability
while significantly reducing computational costs
and improving efficiency.

CONCLUSION

In this research, we modeled the grasping task
mathematically through physical methods, so as to
propose a new method to examine the grasping
stability and carried out code implementation. This
method has some shortcomings in terms of time
complexity, but it can effectively evaluate the sta-
bility of the grasping point. By training the neural
network, the efficiency of the method proposed in
this paper is greatly improved, so that it becomes
acceptable in the actual work requirements. How-
ever, due to the amount of training data or the
degree of difference and other factors, our trained
network works well in convex polyhedral with grab-
bable symmetric plane features such as quadrilateral
prism, but there are shortcomings when working
in objects with only circular or spherical grabbable
surfaces.

Future research can focus on the following
points: First, to further improve the authenticity of
this mathematical model, such as more accurate
modeling of elastic deformation of objects and me-
chanics of contact points; The second is to further
improve the number and difference of neural net-
work training data in order to achieve better results.
The third is to test in a real environment to further
explore the reliability of the method proposed in
this study.
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