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Abstract—Reinforcement learning is now widely used in
robotics for tasks like setting design parameters and training
movement policies. In this project, we focused on a locomotion
control problem using the ANYmal quadrupedal robot. We built
and used a locomotion model by applying the Markov Decision
Process (MDP) and Multi-Layer Perceptron (MLP). The MDP
helped model the decision-making process, defining the robot’s
states, actions, and rewards to improve its movements and
interactions with the terrain. The MLP processed input data such
as the robot’s state, terrain properties, and contact information
to create a representation of the current state. The model then
decided on actions for effective movement. By using additional
machine learning techniques, we made the model perform better,
allowing the robot to adapt to different terrains and conditions.
This approach shows the potential of reinforcement learning to
improve robotic abilities, making robots more efficient, adaptable,
and intelligent for various tasks in different environments.

I. INTRODUCTION

Designing a robot involves many decisions about various
parameters, each of which can greatly affect the robot’s
performance. However, this process is often slowed down by
not fully understanding how these parameters interact and
influence the robot’s behavior. This lack of clarity makes it
hard to predict the outcomes of design choices, leading to a
trial-and-error method that is time-consuming and inefficient.

One major challenge in this process is the limited knowl-
edge about the relationships between design parameters and
performance metrics. For example, changes in a robot’s joint
configurations, actuator strengths, or sensor placements can
greatly impact its agility, precision, and stability. Without a
good understanding of these effects, designers struggle to
optimize the robot’s functionality. This uncertainty can result
in designs that do not fully utilize the potential of the available
technology.

Additionally, the design process is often hampered by
insufficient design principles that do not offer enough guidance
or inspiration. Many current design frameworks are not robust
enough to address the complexities of modern robotic systems.
They may overlook important aspects such as adaptability to
different environments, energy efficiency, or the integration of
advanced algorithms for autonomous operation. As a result,
designers may rely on outdated or simplistic models that do
not capture the complexities of real-world applications.

This lack of effective design principles and insights can lead
to several inefficiencies. Designers may spend too much time
iterating on prototypes, making small adjustments without a
clear direction. This not only delays the development process

but also increases costs. Additionally, the final product may
still not meet the desired performance standards, requiring
further modifications and refinements.

To overcome these challenges, a more systematic and in-
formed approach to robot design is essential. This involves
developing comprehensive models that accurately represent
the interplay between design parameters and performance
outcomes. Advanced simulation tools and data-driven methods
can play a key role in this, enabling designers to visualize and
predict the effects of their decisions. Furthermore, establishing
a set of robust design principles that incorporate the latest
advancements in robotics can provide a solid foundation for
innovation and efficiency.

By enhancing our understanding of parameter interactions
and refining design methodologies, we can significantly im-
prove the efficiency and effectiveness of the robot design
process, leading to more capable and reliable robotic systems.

II. RELATED WORK

In conventional design paradigm, designers typically rely on
approximations, simulations, or bio-inspired solutions to make
design decisions . Examples of quadrupedal robots designed
using this conventional approach include Mini Cheetah from
MIT[4], HyQ[7], and ANYmal from ETH[2]. Although some
sources mention considerations like range of motion and
inertia in leg design or certain performance objectives, the
process for determining final values is often unclear.[1]

Fig. 1. MiniCheetah, HyQ, and ANYmal

As the proposal of machine learning resolves the problem by
using high level computation capability through almost every
possible solution to the design, robotic design can be greatly
powered, powering up the efficiency in obtaining the possible
best parameters combination.

To adopt a more quantitative approach to robot design,
computational optimization methods have been introduced to
find the best designs. As a bilevel optimization problem,



the outer optimization focuses on refining design parameters,
while the inner problem determines the best control parameters
for each design. The inner loop typically involves multiple sub-
objectives and is generally non-differentiable concerning the
design parameters.

Existing methods can be categorized into two main ap-
proaches: gradient-based and gradient-free. Gradient-based
methods aim to establish a differentiable relationship between
control performance (the outcome of the inner loop) and
design parameters. While Gradient-free methods are more
suitable for non-convex problems. Initially developed in the
computer graphics community, this approach has expanded
to mechanical design optimization.[8] For instance, some
techniques perform joint optimization of design and control
parameters to maximize the speed of a quadrupedal robot
using the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). This strategy has also been integrated with genetic
algorithm to achieve optimal leg designs for quadrupedal and
walking robots.

A common element among these works is their reliance
on model-based control approaches. While these methods are
generalizable and intuitive, they have several limitations for
complex systems like legged robots. First, they often use
simplified models to reduce complexity. For example, some
trajectory optimization methods rely on centroidal dynam-
ics and ignore limb masses, leading to significant dynamics
mismatch, which means the optimized controller may not
work on the actual system. Second, the resulting motions
depend on handcrafted primitives and are limited to predefined
tasks and trajectories, such as specific gait patterns or base
trajectories. Lastly, since motion parameters and simplified
dynamics models are often manually developed or tuned for
specific instances, it is difficult to claim that the optimized
motion is truly the best for each design. [1]

III. DATA

The Robotic Systems Lab at ETH Zürich demonstrated the
application of model-agnostic meta-learning to optimize the
design parameters for the legged robot ANYmal. This process
involved two main components: an outer circle to optimize the
link lengths of the robot’s thigh and shank, and an inner circle
to train a decision policy using model-agnostic meta-learning
techniques on a small dataset. The primary goal was to refine
the physical parameters of ANYmal’s leg links for optimal
performance and to develop a robust, versatile decision policy.

To replicate this work, we acquired ANYmal robot data[3]
and a terrain generator[5] for the simulation environment
through GitHub open source. This setup was crucial for
creating a realistic simulation environment capable of real-
time data transfer, which is essential for accurate policy train-
ing. We concentrated on training the policy for quadrupedal
locomotion, defining the parameters for the training program,
and developing a comprehensive evaluation method to assess
the policy’s performance.

Fig. 2. Simulation Environment[6]

Fig. 3. Parameterized Terrain of Hills and Steps[6]

The simulation environment mimicked real-world condi-
tions, providing relevant data for refining the decision policy.
Ensuring simulation fidelity was critical, as it needed to
accurately represent the dynamics and constraints of ANY-
mal’s movements. This environment allowed for the collection
of data that was used to train the machine learning model
effectively.

The training program parameters included various aspects
of the robot’s kinematics and dynamics, such as joint angles,
link lengths, and motor torques. Careful selection and tuning
of these parameters were essential to create a training regimen
that would teach the robot efficient and stable movement. The
iterative training process involved repeated cycles of training
and evaluation, utilizing model-agnostic meta-learning algo-
rithms designed to generalize well even with small datasets.
These algorithms helped develop a robust decision policy
adaptable to different conditions.

Evaluation methods were critical in this process. We de-
veloped a thorough evaluation framework to test the robot’s
performance under various scenarios, measuring metrics like
stability, energy efficiency, and speed. Systematically testing
the policy in different conditions allowed us to identify areas
for improvement and refine the policy accordingly.

The combined approach of optimizing physical parameters
and developing a robust decision policy significantly enhanced
ANYmal’s performance. By employing a precise simulation
environment, well-defined training parameters, and compre-
hensive evaluation methods, we ensured that the resulting
policy was both effective and adaptable. This work not only
advances robotic locomotion but also demonstrates the power-



ful potential of machine learning in complex engineering tasks.
The integration of open-source data and tools underscores
the collaborative and innovative nature of modern robotics
research.

IV. METHODS

We harness Meta-RL for training policies across an array of
design parameters and terrains. Through random sampling, we
ensure versatility and robustness in policy learning, adapting
to varied conditions. This approach facilitates broader explo-
ration and enhances the adaptability of policies to unforeseen
challenges in diverse environments.

Fig. 4. Overview of the Workflow[1]

A. Markov Decision Process Modeling

The locomotion control problem is modeled as a Markov
Decision Process (MDP), a mathematical framework designed
to model decision-making in environments where outcomes
result from a combination of random events and the decisions
made by an agent. An MDP is characterized by a set of
states representing different scenarios, a set of actions available
to the decision-maker, transition probabilities that define the
likelihood of moving from one state to another based on a
chosen action, and a reward function that assigns a numerical
value to each action-state pair to reflect the desirability of
outcomes.

The primary objective within an MDP is to discover an
optimal policy, which is a strategy that specifies the best action
to take in each state to maximize the expected cumulative
reward over time. This involves making a series of decisions
that balance immediate and future rewards. Solving an MDP to
find this optimal policy typically employs dynamic program-
ming techniques such as value iteration or policy iteration.
Value iteration systematically updates the value of each state
by considering the expected rewards of possible actions, while

policy iteration involves evaluating and improving a given
policy iteratively.

In our context, we constructed the Markov Decision Process
model to address the complexities of quadrupedal locomotion
control. This model incorporated the unique states of the
robot’s movement dynamics, including joint angles, veloc-
ities, and positional coordinates. The actions corresponded
to various motor commands that could be executed by the
robot’s actuators. Transition probabilities were derived from
the robot’s physical properties and environmental interactions,
ensuring realistic modeling of the robot’s behavior.

The reward function was designed to encourage stable and
efficient movement patterns. It considered factors such as
energy consumption, balance, speed, and adherence to desired
trajectories. By maximizing this reward function, the robot
learns to move in a way that is both effective and efficient.

Through iterative application of value iteration and policy
iteration, we refined the decision-making policy to enhance
the robot’s locomotion. This comprehensive approach allowed
us to systematically address the challenges of robot control,
ensuring robust performance in various environments. In this
context, we model the MDP with its state space S, action space
A, transition probability function P(st+1|st, at), and reward
function R(st, at, st+1) : S × A × S → R determined as the
Table I.

TABLE I
ACTION SPACE OF THE MARKOV DECISION PROCESS[6]

fl1 Leg 1 Frequency
rf1 Foot 1 Position Residual
fl2 Leg 2 Frequency
rf2 Foot 2 Position Residual
fl3 Leg 3 Frequency
rf3 Foot 3 Position Residual
fl4 Leg 4 Frequency
rf4 Foot 4 Position Residual
θ11 Leg 1 Joint 1 Angle
θ12 Leg 1 Joint 2 Angle
θ21 Leg 2 Joint 1 Angle
θ22 Leg 2 Joint 2 Angle
θ31 Leg 3 Joint 1 Angle
θ32 Leg 3 Joint 2 Angle
θ41 Leg 4 Joint 1 Angle
θ42 Leg 4 Joint 2 Angle

The state space is a comprehensive set of variables cru-
cial for effective locomotion control. It includes the velocity
command, which specifies the desired speed and direction of
movement. Additionally, it encompasses the linear and angular
body velocities, providing information on the robot’s current
motion dynamics. The joint states, representing the positions
and velocities of each joint, are also integral to the state space.
Furthermore, the state space includes the frequency and phase
of the gait pattern generators for each foot, which are essential
for coordinating leg movements. Notably, the policy learns to
modulate these periodic leg phases. Finally, the state space
incorporates the two most recent actions taken by the policy.
These elements are detailed in Table II.



TABLE II
STATE SPACE OF THE MARKOV DECISION PROCESS[6]

Desired direction 2D
Desired turning direction 1D

Gravity vector 3D
Base angular velocity 3D
Base linear velocity 3D

Joint position/velocity 24D
FTG phases 8D

FTG frequencies 4D
Base frequency 1D

Joint position error history 24D
Joint velocity history 24D

Foot target history 24D

To minimize redundant data acquisition and maximize the
speed of policy training, we implement a strategic trade-off by
simplifying the terms in the reward function. This approach
reduces computational complexity and enhances efficiency
during the training process. By focusing on the most critical
elements of performance, we streamline the learning process
without significantly compromising the quality of the learned
policy. The simplified reward function, which prioritizes es-
sential performance metrics such as stability, energy efficiency,
and adherence to desired trajectories, is detailed in Table III.
This balance ensures faster convergence and more effective
policy optimization.

TABLE III
R(s) = 0.5rv + 0.2rw + 0.1rvstability + 0.1rwstability [1]

Linear Velocity rv exp(−1.5||vxytarget − vxy||2)
Angular Velocity rw exp(−2.0 · (ωztarget − ωz))

Linear Base Stability rvstability exp(−1.5 · v2z)
Angular Base Stability rwstability exp(−1.5 · ||wxy ||2)

B. Multi Layer Perceptron Policy

The decision policy relies on multi-layer perceptron (MLP)
to process inputs, including the robot’s current state, terrain
properties, and its contact with the terrain. These MLP com-
pute a latent embedding, which captures the present state of
the robot and the environment. Simultaneously, the model
determines an action. The primary goal of the training process
is to encourage effective locomotion in specified directions.
By rewarding movement that adheres to these directions, the
policy becomes adept at navigating various terrains while
maintaining stability and efficiency. This method ensures that
the robot can adapt to dynamic and diverse environments.

C. Adaptation with Model-Agnostic Meta-Learning

The training objective is to optimize the design lengths of
the upper leg (thigh) and the lower leg (shank) of a robotic
system. Following the approach by Belmonte-Baeza [1], we set
the initial lengths of both the thigh and the shank to 350mm.
For testing, we define a length range from 210mm to 490mm,
representing a ratio of [0.6, 1.4] relative to the initial length.
The task p(L) for the MAML training is uniformly sampled
within these bounds.

It is crucial to note that variations in leg length not only
impact the kinematic locomotion but also alter the dynamics
due to changes in inertia. These factors significantly increase
the complexity of the training process. The challenge lies in
ensuring that the policy can adapt to these variations and
maintain effective performance across different leg lengths.

By sampling tasks within the specified bounds, the training
aims to develop a robust and adaptable policy that can handle
the diverse kinematic and dynamic scenarios resulting from
changes in leg length. This approach ensures that the robotic
system can navigate effectively and efficiently, regardless of
the specific leg dimensions within the defined range. The
variability in design parameters necessitates a comprehensive
training regime that addresses both the kinematic and dynamic
aspects of locomotion, ultimately leading to a more versatile
and resilient robotic system.

V. EXPERIMENTS

The research validates the Meta-RL approach for train-
ing design-conditioned policies by comparing a meta-policy
against a naive policy, which is trained over uniformly sampled
design parameters. The comparison shows the average rewards
obtained by the two policies across different parameters. The
results demonstrate that the meta-policy consistently outper-
forms the naive multi-task policy in all scenarios.

Fig. 5. Policy Training with MAML[1]

To further verify the performance of the meta-policy, the
research compares it against a set of specialized policies
trained for specific designs. After undergoing adaptation steps,
the meta-policy achieves rewards comparable to those of the
specialized policies, showcasing its ability to reach near-
optimal performance levels. This analysis confirms the effec-
tiveness of the meta-policy and justifies its use in subsequent
design optimization experiments.



In the design optimization experiments, the research applies
the meta-policy to evaluate different design instances. For each
instance, the meta-policy is fine-tuned to adapt to the specific
design parameters. This fine-tuning process allows the meta-
policy to adjust and optimize its performance for the given
design, ensuring that it can handle a wide range of design
variations effectively.

The superior performance of the meta-policy over the naive
policy can be attributed to its ability to generalize across
different design parameters. Unlike the naive policy, which
is trained uniformly over a broad parameter space, the meta-
policy is specifically designed to adapt to variations in design.
This targeted adaptability enables the meta-policy to perform
better across diverse scenarios, providing a more robust and
efficient solution.

Moreover, the meta-policy’s performance is validated
through comparisons with specialized policies. These special-
ized policies are trained for specific design configurations,
making them highly optimized for those particular settings.
Despite this, the meta-policy, after adaptation, manages to
achieve similar reward levels, indicating its strong capability
to approximate optimal performance across various designs.

Fig. 6. Comparison between Meta-Policy and Naive-Policy[1]

This adaptability is a significant advantage in practical
applications where design parameters can vary widely. By
using a meta-policy, it is ensured that the robot or system can
perform optimally without the need for extensive retraining for
each new design. This not only saves time but also enhances
the overall efficiency of the development process.

Furthermore, the fine-tuning of the meta-policy for specific
design instances demonstrates its flexibility and robustness.
Each design instance may present unique challenges and
requirements, and the ability of the meta-policy to adapt
through fine-tuning ensures that it can meet these demands
effectively. This adaptability is crucial for developing versatile

and reliable robotic systems capable of performing well under
different conditions.

In conclusion, the validation of the Meta-RL approach
through comparisons with both naive and specialized policies
highlights the effectiveness of the meta-policy in handling
diverse design parameters. Its superior performance, adaptabil-
ity, and robustness make it a valuable tool for design optimiza-
tion in robotics. By leveraging the meta-policy, efficient and
effective solutions that are capable of adapting to a wide range
of design variations can be achieved, ultimately leading to the
development of more capable and reliable robotic systems.

VI. CONCLUSION

This project explores the Markov Decision Process (MDP)
and Model-Agnostic Meta-Learning (MAML). By closely
following the research paper’s steps, the advantages of MAML
in task training become evident when compared to the normal
training process. The knowledge gained through this project
has practical applications in robot design and tasks such as
locomotion.

The MAML framework significantly enhances the efficiency
and effectiveness of training policies for various tasks. Unlike
traditional methods, MAML enables quick adaptation to new
tasks with minimal adjustments. This quality makes it highly
valuable for designing robots that can operate in diverse en-
vironments and perform different functions without extensive
retraining.

In this project, the benefits of MAML were demonstrated
through a series of experiments. The meta-policy, trained using
MAML, consistently outperformed the naive policy, which
was trained uniformly across various design parameters. This
performance was assessed by comparing the average rewards
obtained by both policies across different parameters, with the
meta-policy showing superior results in all scenarios.

Additionally, the meta-policy’s performance was validated
against specialized policies trained for specific designs. After
adaptation steps, the meta-policy achieved rewards comparable
to those of the specialized policies, indicating its ability to
reach near-optimal performance levels across various designs.
This adaptability is crucial for practical applications where
design parameters can vary widely.

The potential of MAML extends beyond this project. With
ongoing improvements, a similar framework could be applied
to other robotic design and simple locomotion problems. The
ability to quickly adapt to new tasks and environments makes
MAML an invaluable tool for developing versatile and reliable
robotic systems. Future work can further refine this approach,
enhancing its applicability to a broader range of tasks and
challenges in the field of robotics.

In summary, the project highlights the significant advantages
of MAML in task training and its potential applications in
robot design and locomotion. With continuous improvement,
this framework promises to advance the development of adapt-
able and efficient robotic systems capable of handling various
tasks and environments.
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