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Abstract—The study of 6D pose estimation methods is crucial
for enhancing robotic perception and manipulation capabilities,
particularly in complex environments. Initially, we employed the
Deep Object Pose Estimation (DOPE) project within the Gazebo
simulation environment to recognize and grasp objects. However,
DOPE demonstrated poor performance in highly cluttered or
occluded scenarios. To address these challenges, we turned to
DenseFusion, a more robust approach, and thoroughly examined
its underlying paper and code.Due to limitations in computa-
tional resources and time, we focused on a single object and
adjusted the parameters to expedite the training and evaluation
processes. We successfully trained the DenseFusion model, con-
ducted evaluations, and visualized the results. We compared the
performance of our modified model with the official DenseFusion
model, observing that while our adjustments improved speed
and feasibility, the official model outperformed ours in terms
of accuracy and robustness in evaluation and visualization
tasks. This comparison highlights the trade-offs between model
optimization and performance in practical applications.

I. INTRODUCTION

With the continuous deepening of the research in the
field of artificial intelligence, robot technology is gradually
expanding from the traditional industrial field to a wider range
of application scenarios. Robots have become an important
tool in intelligent manufacturing, automated production and
service industries, and their applications range from industrial
assembly lines to home services, medical care and other fields.
In the research of intelligent robot, intelligent autonomous
grasping is a key task, which requires the robot to accurately
identify and grasp the target object in complex and changeable
environment. The core of intelligent autonomous grasping
is accurate target monitoring and grasping pose estimation,
which is very important to realize the intelligent operation of
robot. In unstructured scenes, objects with different shapes,
random positions and poses and mutual occlusion put forward
higher requirements for multi-target monitoring and grasp-
ing of robots. The traditional robot grasping system usually
depends on the preset model and path, which is unable to
meet the needs in the unstructured environment. Therefore, the
development of intelligent capture system with adaptive ability
and ability to deal with changing environment has become a
hot and difficult point in the current research. In order to meet
these challenges, this project aims to develop a 6-DOF robot
arm vision system based on DOPE robot design framework,
which is committed to high-precision visual servo control. The
project uses RGB-D camera to recognize and locate multi-
target objects, and introduces the Densefusion[3] deep learning
attitude estimation algorithm. Densefusion attitude estimation

algorithm can predict the attitude of unseen objects in any
environment, which improves the flexibility and adaptability of
the system. In addition, the project will also establish and ana-
lyze the spatial description and motion model of the six degree
of freedom manipulator, and use the improved path planning
algorithm to ensure the accurate recognition, positioning and
grasping of the target object in the simulation environment.
Specifically, this project studies the design and Simulation of
the six degree of freedom manipulator vision system, including
the selection of components, camera imaging model and inter-
nal parameter calibration, target recognition and positioning,
manipulator kinematics modeling and improved path planning
algorithm. The RGB-D camera and Densefusion deep learning
attitude estimation algorithm are used to identify and locate
the target object. The DOPE framework is used to establish
the model of the manipulator and optimize the path planning
algorithm to achieve accurate target monitoring and capture.

II. METHOD

A. Related works

6D object pose can be accurately estimated from rgb-d data,
which is the most commonly used method in the capture
system. If there is a 6DOF (six degrees of freedom) grasp
posture in the database, the current 6DOF grasp posture can be
retrieved from the knowledge base according to the complete
shape, or obtained by sampling and sorting compared with
the existing grasp. If the 6DOF capture attitude does not
exist in the database, the analysis method is used to calculate
the capture attitude. These methods consider kinematics and
dynamics formulas to determine the grasping posture [sahbani
et al., 2012]. Both traditional and deep learning based 6D
object pose estimation algorithms are used to assist robots
in grasping tasks. Most of the methods proposed in Amazon
picking challenge [zeng et al., 2017b] first estimate 6D attitude
through partial registration. Zeng et al. [zeng et al., 2017b]
proposed a method, which uses full convolutional neural
network to segment and mark multiple views of the scene, and
then fit the pre scanned 3D object model into the segmentation
results to obtain the 6D object pose. In addition, billings
and Johnson Roberson [billings and Johnson Roberson, 2018]
proposed a method that uses convolutional neural network
(CNN) pipes to jointly realize object pose estimation and grab
point selection. Wong et al. [wong et al., 2017] proposed a
method that integrates RGB based object segmentation and
depth image based partial registration to obtain the pose of
the target object. They proposed a novel index to evaluate the



quality of model registration, and carried out multi hypothesis
registration to achieve accurate attitude estimation with 1cm
position error and¡5 ° angle error. Using this accurate 6D
object pose, you can grab with a high success rate. Some 6D
object pose estimation methods based on deep learning, such
as densefusion[wang et al., 2019b], also show high success
rate in the implementation of actual robot capture tasks.

B. Theory of 6D pose estimation model

We employed a dense fusion model for 6D pose estimation,
which includes two stages. In the first stage, an encoder-
decoder structured semantic segmentation network is used to
perform semantic segmentation of the input color image based
on color and depth, followed by mask cropping. This network
contains N+1 channels, where N represents the number of
features to be segmented. After segmentation, the image
undergoes mask cropping, and information is extracted from
the color and depth channels. The data from the depth channel
is converted into a three-dimensional point cloud for further
processing.

In the second stage, dense feature extraction is performed
on the segmentation results from the first stage. For color
information, a convolutional neural network-based architecture
is used to map the color image into an embedding space, where
each pixel in the embedding space is a vector representing
the appearance information at that position. For embedding
depth information, the PointNet[1] architecture is employed
to extract geometric features. Unlike the standard PointNet,
average pooling is used instead of max pooling.

To address potential occlusions and segmentation errors
in the image, which may result in local errors in the dense
features from the previous step, a pixel-wise fusion method is
adopted. [2]This method associates the image and geometric
features of the corresponding pixels to obtain dense pixel
features, which are then input into another neural network to
obtain globally fused features for pose estimation.

During pose estimation, a pose loss minimization is defined,
and an iterative algorithm is used to continuously refine the
prediction results. A residual estimation network is used in the
prediction process, which is typically trained after the main
network has converged. This approach effectively improves
the accuracy of 6D pose estimation in complex scenes.

Fig. 1. Overview of the 6D pose estimation model

III. EXPERIMENT

A. DOPE Experiments

DOPE is a two-step solution to address the problem of
detecting and estimating the 6-DoF pose of a set of known
household objects from a single RGB image. First, a deep
neural network estimates belief maps of 2D keypoints of all
the objects in the image coordinate system. Secondly, peaks
from these belief maps are fed to a standard perspective-n-
point (PnP) algorithm to estimate the 6-DoF pose of each
object instance. In this section we describe these steps, along
with the simulation of this novel method.

Fig. 2. 6D pose estimation by DOPE

1) Experimental Setup: The simulation is performed on
Ubuntu 20.04 with python 3.8.19, ROS Noetic 1.16. Pakages
including Pytorch 2.30, CUDA 12.0 are used in this project.
We add the ur5 robotic arm, robotiq 2F-85 gripper and
realsense d435 depth camera to the gazebo environment to
complete the simulation.

In DOPE experiments, we use the pre-trained DOPE model
for simulation in gazebo simulation environment.DOPE is
trained with two publicaly available datasets: YCB, and
HOPE. We chose the one trained with HOPE dataset, which
is included in the attachment.

The HOPE dataset is a collection of rgbd images and video
sequences with labeled 6-DoF poses for 28 toy grocery objects.
To complete the simulation, we downloaded the 3d model
from the Internet and these models are in .obj format. From
these objects,we chose milk model to add to the simulation
environment.

2) Simulation Environment: The simulation environment
is gazebo-11 on ROS Noetic 1.16. The robot arm is control by
MoveIt plugin.Firstly, we obtain urdf description files of ur5,
robotiq gripper and d435 camera from github, then we put
these models into a world file named ’pick and place.world
’,which is used to create a simulation world including a table
and the milk model in gazebo. The whole scene is showed in
the following picture.

After preparing for the simulation environment, I use
MoveIt for robot path planning and motion control to achieve



Fig. 3. Simulation environment in Gazebo

object grasping. MoveIt is a powerful robot motion plan-
ning framework that supports complex arm motion planning,
collision detection, and real-time kinematics calculations. By
applying MoveIt, we are able to interact with gazebo and
receive object position and orientation data from the DOPE
system, plan the motion trajectory of the robotic arm, and
ensure that the arm accurately reaches the specified 3D space
position and grasps the target object with the predetermined
pose.

Fig. 4. Moveit for path planning and motion control

The next steps we focus on refining the integration between
the DOPE system and the MoveIt controlled robotic arm to
enhance the efficiency and accuracy of the object grasping
process, such as adjust the pose of the milk box to ensure that
its orientation can be correctly predicted.

3) System Architecture: The DOPE GitHub open-source
project provides a ROS interface for our simulation. Through
publisher and subscriber nodes, we use the DOPE model to
receive image data published by the camera, perform 6D pose
prediction, and then provide it to the robotic arm for grasping.

Our project’s engineering files mainly consist of model files,
MoveIt configuration files, DOPE model files, and code files.

The model files describe the pose, joints, collision properties,
and rotational inertia of the robotic arm, gripper, and camera
within the simulation environment. MoveIt configuration files
set up joint controllers and kinematics solvers and include
MoveIt’s setup files. The DOPE model files contain the
model’s training files, pre-trained .pth weight files, prameter
files used in codes and the 3D model files used for pose esti-
mation. In this section, we focus on the code implementation
of the project.

The project’s code section includes five code files, among
which three scripts function as libraries called by the core
ROS topic publisher, ’dope.py’. These are used to calculate
the 6D pose of items and to draw cuboid meshes, marking
the object’s position. The remaining script subscribes to the
object 6D pose information published by ’dope.py’ and import
the moveit commander package to control the robotic arm for
grasping tasks.

dope.py This code serves as the core, subscribing to the
RGB information transmitted by the camera. After processing,
it determines the 6D pose of objects within the camera’s
coordinate frame, ’d435 color optical frame’, and publishes
this data on the topic ’dope MILK pose’. Additionally, the
script publishes other information useful for pose estimation
visualization, which will be displayed in rviz in the following
section.

Fig. 5. 6D pose of objects within the camera’s coordinate frame

In ’dope.py’, the following three codes are invoked to
implement the estimation and visualization of an object’s 6D
pose

1. detector.py This code is responsible for loading and man-
aging the model data of the object detection neural network. It
maintains the weights and configuration state of the network
model, providing an interface for loading and accessing the
neural network model. Also, it contains the main methods
for detecting and recognizing objects in images. Using the
trained neural network model, it processes the input images
to generate confidence maps and affinity fields, ultimately
identifying the target objects in the images and estimating their
poses.



2. cuboid pnp solver.py This code serves as a solver for
the Perspective-n-Point (PnP) problem that provides accurate
mapping from 2D images to the 3D world, can be used
to calculate the position and rotation of the object in the
camera coordinate system. By combining 2D image points
with corresponding 3D model points, CuboidPNPSolver can
accurately calculate the object’s pose, which is key to inferring
three-dimensional spatial poses from single view images.

Fig. 6. Positions of eight vertices and geometric center of the cuboid in 2D

3. cuboid.py This code defines a 3D model of a cuboid or
rectangular prism. It primarily provides the three dimensional
structure of the object, including the coordinates of its vertices.
These 3D coordinates are used to match with 2D image
coordinates, which supports pose estimation and projection
calculations.

Fig. 7. 3D cuboid used to describe 6D pose of the object

pickup.py This code is a ROS node that subscribes to the
’dope pose MILK’ topic for the object’s 6D pose in the camera
coordinate system and converts it to the robot arm’s ’base link’
coordinate system. It then apply MoveIt to control and grasp
with the robotic arm.

4) Experimental Result: To complete the experimental
section, we first run the code, opening Gazebo, rviz, and run-
ning the ’dope.py’ code to establish communication between
nodes. At this point, the estimation of the 6D pose has been
completed and published. Then we open rviz and can visualize
the prediction results by subscribing to ’dope markers’ and
’dope pose milk’, comparing the predicted results in rviz with
the actual results graphically. It can be seen that the pose of
the two are very close. See in Fig 8 and Fig 9.

Fig. 8. Real world pose of milk box

Fig. 9. 6D pose of the object predicted by DOPE

After completing the information transfer between nodes,
we run the ‘pickup.py‘ script to perform the grasping opera-
tion. See in Fig 10 and Fig 11

Fig. 10. Grasping task performed in gazebo

It can be observed that under control, the robotic arm
arrives at a position 0.3 meters above the geometric center



Fig. 11. Grasping task visualized in rviz

of the milk carton with the correct orientation, and then
descends to perform the grasping operation. However, in
our multiple attempts, we have not successfully grasped the
milk carton, possibly because the downloaded model is rela-
tively large compared to the gripper, preventing a successful
grasp.Nevertheless, it is evident that the pose predicted by
DOPE is relatively accurate.

In other attempts, pose prediction failures generally oc-
curred due to poor placement of the model, the model being
too far away, or being directly in front of the camera. Ad-
ditionally, occlusions can also cause prediction failures. It is
evident that DOPE’s 6D pose estimation has high requirements
for the RGB images captured by the camera. Therefore, we
experimented with a second model, DenseFusion.

B. DenseFusion Experiments

1) Experimental Setup:
• The project required the installation of several libraries

and tools, including Python, PyTorch, PIC, scipy, numpy,
pyyaml, logging, and matplotlib. Additionally, NVIDIA
drivers and CUDA 10.0 were essential for leveraging
GPU acceleration. Due to the project’s age, specific
library versions were required for compatibility. The final
versions we used were: Python 3.6.15, PyTorch 1.0.0,
scipy 1.5.2, numpy 1.19.2, pyyaml 6.0.1, logging 0.5.1.2,
matplotlib 3.3.2, NVIDIA driver 470.223.02, CUDA 10.0.

• The DenseFusion project was evaluated on both the YCB
and Linemod datasets, performing exceptionally well.
However, due to the large size of the YCB dataset (up
to 265GB), we opted to use the preprocessed Linemod
dataset provided by DenseFusion. This dataset was placed
in the project’s ’./datasets/linemod’ directory.

• The dataset consists of three main folders: ’data’, ’mod-
els’, and ’segnet results’. The ’data’ folder contains 13
subfolders, each corresponding to an object. Each object’s
folder contains ’depth’, ’mask’, and ’rgb’ subfolders, rep-
resenting depth images, mask images, and RGB images of
the object captured from over 1000 viewpoints. Addition-
ally, there are four files in each object’s folder containing
the object’s rotation matrix, translation matrix, standard
box, object category, camera intrinsic parameters, scaling

factor, and the pre-split test and training datasets. The
’model’ folder contains ’.ply’ files representing the point
cloud information of each object. The ’modelst info.yml’
file contains radius and dimensions information for each
object’s point cloud model. The ’segnet results’ folder
contains images segmented by the semantic segmentation
network.

• The original DenseFusion code was written for PyTorch
0.4. However, we used PyTorch 1.0, which required
recompiling knn in the ’./lib/knn’ directory, we executed
the following commands:
python setup.py build
python setup.py install

After execution, a dist folder appeared in the ’./lib/knn
’directory, containing a compiled ’.egg’ file. We extracted
this file and moved it to the ’./lib/knn’ directory.

2) Training:
• The initial training attempts encountered significant is-

sues due to the large dataset size, which resulted in in-
sufficient GPU memory and subsequent errors. To address
this, reducing the batch size was considered. however, this
approach led to a substantially slower training process,
rendering it impractical for timely completion.

• To address these limitations, the training process was
modified by focusing on a single object, specifically the
second object in the dataset. Additionally, several parame-
ters were adjusted to optimize the training efficiency. The
number of points in the point cloud was reduced from 500
to 100, the number of epochs per training iteration was
decreased from 20 to 5, and the maximum number of
epochs was lowered from 500 to 30. These adjustments
significantly reduced the computational load, allowing the
training to proceed without memory issues. Executed the
following commands:
python3 ./tools/train.py
--dataset linemod
--dataset_root
./datasets/linemod/Linemod_preprocessed
--batch_size 8

• As a result of these optimizations, the training dura-
tion was significantly reduced. Previously, each epoch
required approximately 30 minutes to complete. With
the new settings, the time per epoch was reduced to
approximately 5 minutes. This improvement enabled the
completion of 30 epochs in roughly 3 hours, resulting
in a trained model ’pose model current.pth’ saved in
’./trained models/linemod/’.

Fig. 12. The final average distance error for the last epoch was 0.024.

• However, despite the improvements in training efficiency,
the final average distance error did not meet the threshold



of the default refine margin set at 0.013. Consequently,
the model did not progress to the refinement stage, and
no refined model was obtained. This limitation highlights
the trade-off between training efficiency and model ac-
curacy, suggesting the need for further adjustments and
optimizations in future iterations.

3) Evaluation:
• To determine the accuracy of pose estimation, Dense-

Fusion adopts a threshold-based criterion utilizing the
3D bounding spheres of the objects. Specifically, for
each object class, it first computes the diameter of the
minimum bounding sphere encompassing the 3D model.
An estimated pose is deemed correct if the distance
between the predicted and ground-truth object positions
is within 10 % of this diameter.

• We initially evaluated the performance of the official
DenseFusion model, which was trained using the standard
parameters and methodology provided by the authors.
The evaluation was performed using the following com-
mand:
python3 ./tools/eval_linemod.py
--dataset_root
./datasets/linemod/Linemod_preprocessed
--model
trained_models/linemod/
pose_model_current.pth
--refine_model
trained_models/linemod/
pose_refine_model_current.pth

Fig. 13. The average success rate of the models provided by the author is
about 0.953

The evaluation results indicated an accuracy of 95%,
demonstrating the effectiveness of the DenseFusion
model in accurately estimating object poses in cluttered
and occluded environments.

• Subsequently, we evaluated the performance of our modi-
fied DenseFusion model, which was trained with adjusted
parameters to expedite the training process. Since the
training process is based on only the object 2 and there
is no refine stage, the evaluation was conducted on only
the object 2 without a refined model. The evaluation
revealed a lower accuracy of 70% compared to the official
model. This decrease in accuracy can be attributed to
the modifications made to the training parameters, which
compromised the model’s ability to refine its predictions
and handle complex scenarios effectively.

Fig. 14. The success rate of our model is about 0.737

4) Visualization:
• In addition to quantitative metrics such as accuracy and

precision, we implemented a visualization module to
provide a more intuitive assessment of our trained model.
This visualization tool allows us to observe the alignment
between the predicted pose of the object and its ground
truth bounding box, facilitating a visual understanding of
the model’s accuracy.

• One key aspect of our visualization is the rendering of
the object’s point cloud, which represents the object’s
3D geometry. By visualizing the point cloud, we can
directly compare the model’s estimated pose with the
ground truth.

• The main goal of the visualization is to align the predicted
pose of the object with its ground truth bounding box.
This alignment allows us to visually assess the accuracy
of the model’s pose estimation.

Fig. 15. Visualization using the models provided by the author

• To further evaluate the performance of our trained model,
we compared its visualization results with those obtained
using the pre-trained model provided by the authors. The
pre-trained model has high accuracy in aligning the point
cloud with the object and accurately estimating the 6D
pose, as evidenced by the perfect alignment between
the point cloud and the object model, and the precise
positioning and orientation of the standard bounding box.
In contrast, our trained model, while not achieving the
same level of accuracy as the pre-trained model, still
demonstrates notable performance. The point cloud aligns
well with the object, and the standard bounding box



Fig. 16. Visualization using our model

is positioned and oriented accurately, albeit with some
minor deviations.

IV. CONCLUSION

According to the literature, the DenseFusion algorithm
exhibits strong robustness and can accurately predict object
poses even in the presence of occlusions. Thanks to its pixel-
level dense fusion technique, this algorithm can efficiently
perform pose estimation, making it well-suited for integration
into real-time systems for handling immediate tasks. However,
this algorithm has specific requirements for data acquisition; it
needs RGB-D images and high-quality data, along with multi-
perspective camera setups, to achieve optimal performance.
These make the algorithm suitable for use in fixed multi RGB-
D environments for real-time issues such as logistics sorting
and waste classification. However, due to the older nature of
DenseFusion and the stringent version requirements for many
necessary packages, the reproduction difficulty is high, which
led us to choose a newer algorithm, DOPE, for simulation.
After undergoing simulations with the DOPE algorithm, we
found that using the officially provided pre-trained model, the
average accuracy can reach about 95percent. After modifying
some training parameters and retraining, the accuracy also
reached around 70percent. According to the results and the
literature, the DOPE algorithm is capable of performing pose
estimation in real-world conditions under extreme lighting and
background changes, and it can be fully trained on synthetic
data with domain randomization and real data to enhance
generalization capabilities. This algorithm requires only one-
shot learning for efficient pose estimation, without iterative
refinement. While using synthetic data can benefit training, it
may not perform well in complex textured environments, and
the algorithm is only optimized for known objects of existing
models, which may pose challenges in dynamic environments.
The DOPE algorithm is suitable for a wider range of scenarios
because it only requires images for pose estimation, unlike
the DenseFusion algorithm, which requires RGB-D cameras.
It can be used in household scenarios such as interaction with
objects by robotic vacuum cleaners.
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