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Motivation and Main Problem
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High-level description of problem being solved

* Meet speed requirements

« exhibit robustness when handling objects of various shapes
and textures even under conditions of heavy occlusion,

sensor noise, and changes in lighting

e Save money

nnnnnnnnnnnnnnnnnn
of Science and Technol

# B
SUSTech

DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion



Motivation and Main Problem
why prior approaches didn t already solve? & Key insights

« Estimating Pose from RGB Images

Becomes unreliable in low-texture or low-resolution inputs.

« Estimating Pose from Depth/Point Clouds
High computational cost.

« Estimating Pose from RGB-D Data
Difficult to accurately estimate pose.
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Problem Setting

Problem formulation, key definitions and notations
* Problem formulation

|. Integrating color and depth information obtained by RGB cameras

[1. The neural network architecture integrates iterative fine-tuning, eliminating dependence on
post-processing ICP steps.

Key definitions
|. End-to-End: A system designed to work seamlessly from start to finish.

[I. 6D pose: includes three dimensional position coordinates (X, y, z) and three dimensional
rotation angles (pitch, yaw, roll).

I1l. Dense Fusion: This approach integrates RGB and depth image data, utilizing a deep learning
network to extract features and perform pose estimation.
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Related Work & Limitations of Prior Work

Pose from RGB images

» Classical method * High computing costs and real-time

* “The moped framework: Object recognition and pose estimation Chal Ienges
for manipulation,” (A. Collet, M. Martinez, and S. S.
Srinivasa,2011)

* “Single im age 3d object detection and pose estimation for
grasping,”(M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt,
M.Zhang, C. Phillips, M. Lecce, and K. Daniilidis, 2014)

« Learning to predict 2D key points * It excels with rich textures and high-
. . o . .. resolution inputs, but may become
arning 6d object pose estimation using 3d object coordinates - !
(2014) unreliable with low texture or low-

+ “6-dof object pose from semantic keypoints”(G. Pavlakos, X. I I
Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, 2017) reSOIUtlon InpUtS'

* “Real-Time Seamless Single Shot 6D Object Pose Prediction”(B.
Tekin, S. N. Sinha, and P. Fua, 2018)
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Related Work & Limitations of Prior Work

Pose from depth/point cloud

 Performing 6D pose estimation
directly on 3D point cloud data

« “Pointnet: Deep learning on point sets for 3d classification
and segmentation,”(C. R. Qi, H. Su, K. Mo, and L. J.
Guibas . 2016)

« “Voxelnet: End-to-end learning for point cloud based 3d
object detection,”.(Y. Zhou and O. Tuzel. 2017)

 Estimating poses using voxelization
Input through 3D ConvNets

 “Sliding shapes for 3d object detection in depth images”(S.
Song and J. Xiao, 2014)

» “Deep sliding shapes for amodal 3d object detection
* in rgh-d images”(2016)

* These methods are computationally
expensive, for exampleeach frame
takes nearly 20 seconds.
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Related Work & Limitations of Prior Work

Setting poses from RGB-D data

* PoseCNN estimates 6D pose directly
from image data

« “Posecnn:A convolutional neural network for 6d object

pose estimation in cluttered scenes,” Y. Xiang, T. Schmidt,

V. Narayanan, and D. Fox, 2017)

 Extract 3D features from input RGB-
D data, and perform grouping and
hypothesis verification

» “Learning 6d object pose estimationusing 3d object
coordinates,”(E. Brachmann, A. Krull, F. Michel, S.
Gumhold, J. Shotton, and C. Rother, 2014)

* “Deep learning of local rgb-d patches for 3d object
detection and 6d pose estimation,” (2016)

AncoraSIR.com

* These methods typically rely on

expensive post-processing steps to
fully utilize 3D input.

* These features may be hard coded or

learned through optimizing
alternative objects.
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Proposed Approach

Innovation of the framework and Algorithm

 Use the 2D Information learned for this task in the embedding space
to increase the information of each 3D point, and use this new color
depth space to estimate the 6D pose.

« Attitude estimation can improve accuracy through differentiable
Iterative fine-tuning modules. This module can be trained
synchronously with the main architecture, with a short time
consumption.
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Theory

Model

 Our goal is to estimate the 6D
pose of a set of known we
represent 6D poses as ho-
mogeneous transformation
matrix

* p € SE(3). In other words, a
6D pose I1s composed by a
rotation R € SO(3) and a
translationt € R3, p = [R]t].
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Theory

Overview of our 6D pose estimation model
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Theory

Semantic Segmentation

« Our semantic segmentation network is
an encoder-decoder architecture that
takes an image as input and gener-ates
an N +1-channelled semantic
segmentation map. Each channel is a
binary mask where active pixels
depict objects of each of the N
possible known classes.

object
' | segmentation

masked
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Theory

Dense Feature Extraction

 Dense color image feature embedding:

The image embedding network is a CNN-based
encoder-decoder architecture that maps an image of size crop

D
H X W X 3intoaH X W X drgb embedding space. E Dﬂ -L

» Dense 3D point cloud feature embedding: ——— "ot
we first convert the segmented depth pixels into a 3D point i g Pom;et VT

cloud using the known camera intrinsics, and then use a = -

PointNet-like architecture to extract geometric features embeddings
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Theory

Pixel-wise Dense Fusion

* We associate geometric features with
corresponding image feature pixels to
obtain dense fusion features.

 These paired features are concatenated
and fed into another network to generate
a fixed-size global feature vector.

* Dense fusion Is obtained for each feature
by combining dense fusion features with
the global feature vector. —

pose

» Each pixel-level feature is input into the | sedesr <

final network to predict the 6D pose of
the object.

AncoraSIR.com
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Theory

. minimize for the 6D Object Pose Estimation
prediction per dense-pixel (asymmetric):
1 - .
LY = — > (Rz; +1t) — (Riz; + &)
M j embeddings global
" L ¥ feature
=" - - - ense pose ) rotation residual AR
* minimize for the prediction per dense- ponee ”H“mn‘ft'  aniaton roscual o
plxel(symmetrlc): )
Vi g ~ ;‘ current input
A A W o oint cloud
f = ﬂf Z Dﬂ%cjnfbf || RIJ + t) (Ri$k + tz)” geometry ﬂ next iteration - *::jh“ p%
embeddings transformed &
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1
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Theory

[terative Refinement

* We employ a dedicated pose

residual estimation network to color

refine the pose estimation from the """ global

main network. At each iteration, o] [ rommomrevans an

we fuse the image features and Fusion ﬂH*g;?:j;‘; iransiaton asiilall At

point cloud geometric features to )

obtain a more precise pose A . “pointcloud

estimation. The final pose geometry PointNet = oxtitoraton &

estimation is composed of the B Pt

results obtained from multiple

Iterations. (&)
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Experiments

In order to verify the more accurate effect and real-time performance of the
densefusion model, the author set up a series of experiments to verify the
performance and effect of the model
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Datasets and Evaluation Metrics

Table 1. Quantitative evaluation of 6D pose (ADD-S[0]) on YCB-Video Dataset. Objects with bold name are symmetric.

PointFusion [11] PoseCNN+ICP [/0] Ours (single) Ours (per-pixel)  Ours (iterative)
° . . [ AUC <2cm AUC <2cm AUC | <2cm | AUC <2cm AUC | <2cm
-

YCB Vldeo Dataset. Thls dataset Comprlses 002 master chef can 900 | 998 | 958 100.0 930 | 1000 | 952 | 1000 | 964 | 1000
. . ] ) v %01 | 54 | o6z | 1000 | a4 | 902 | es1 | 1060 | ovs | 1000
005 _soup.. 919 | 969 | 945 96.9 929 | 967 | 937 | 969 | 946 | 969
RGB-D images from various videos, with prmeranali B Bl ol B S cd I e I B
007_tuna_fish_can 938 | 998 | 97.1 100.0 94.9 | 1000 | 949 | 1000 | 966 | 100.0
I I t t d 6D f b- t 008_pudding box 875 | 967 | 979 100.0 883 | 972 | 947 | 1000 | 965 | 100.0
) i . . 98.8 . . . . . . .
clearly annotate pOSsSesS OT 0bjects 00 boncdmencan | 564 | 885 | 927 | 936 | 473 | o | o0t | on1 | 013 | oni
011_banana 847 | 705 | 97.1 99.7 84.6 | 620 | 915 | 939 | 966 | 100.0
H H H H _pitcher_bas . . 97.8 . . . . . . .
within these images. It is used to assess the i, 0 2 s W0 | R uel o % e
024 bowl 757 | 241 | 810 549 834 | 554 | 866 | 695 | 882 | 988
. . . 025_mug 942 | 998 | 950 99.8 903 | 947 | 955 | 1000 | 97.1 | 100.0
performance of DenseFusion in handling e e o me e fowe ) oo
037_scissors 767 | 359 | 917 95.6 836 | 75.1 | 964 | 1000 | 952 | 100.0

[ ]
eve ryd ay Ob JeCtS 340_largcirnarkcr 87:9 80:4 97; 99:7 91:2 88:6 94:7 99:2 97f5 1{;(?.20
. et o g cemp | 604 | 201 | eaa | 4as | é6a| 02 | 0 | 5 | @8 | 76
061_foam _brick 918 | 1000 | 972 100.0 92.1 | 1000 | 924 | 1000 | 925 | 100.0
MEAN 839 | 741 | 930 932 882 | 879 | 912 | 953 | 931 | 968

LineMOD Dataset: This is a standard dataset widely used for object pose
estimation, featuring images of objects with low texture and precise pose
annotations.
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Comparison with Existing Technologies

DenseFusion's performance is compared with other advanced technologies
such as PoseCNN and PointFusion, analyzing accuracy and real-time capabilities
on standard datasets.

* Occlusion Handling Capability: The model's ability to handle partially
occluded objects is specially analyzed by comparing the pose estimation
accuracy when parts of objects are visible.

* Processing Speed: The time DenseFusion takes to estimate the pose of a
single object is measured, demonstrating its suitability for real-time
applications.

* Impact of Iterative Refinement: The gradual improvement in pose estimation
accuracy through iterative refinement steps is observed, validating the
contribution of this process to overall performance.
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Comparison with Existing Technologies

« [ DenseFusion: 6D Object Pose Estimation by lterative Dense Fusion ]
https://www.bilibili.com/video/BV1fg4y187um/?share_source=copy_ web&v
d_source=3fbda0f34adfb8ab51c1f2203d2e770aa

_ ointFusion

Ours (iterative)
e ke
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Real-Time Grasp Detection Using

Convolutional Neural Networks



Real-World Application Testing

* Robotic Grasping Experiment:

* Experimental Setup: DenseFusion is deployed on a real robotic platform, where
the robot is used to locate and grasp objects.

* Task Execution: The robot attempts to grasp objects placed in various positions
and orientations, recording the success rate to verify the accuracy and practicality
of the pose estimation.

* Environmental Adaptability: DenseFusion is tested under different
background and lighting conditions to assess its robustness across diverse

environments.
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