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Abstract—This course project explores the application of
Inertial Measurement Unit (IMU) technology in predicting and
classifying multiple hand gestures, with a focus on enhancing
the user experience for wearable robotic devices. By employing
advanced signal processing and machine learning techniques,
we have developed a system capable of accurately interpreting
various grasping intentions. The project leverages an LSTM
(Long Short-Term Memory) model to process IMU data col-
lected from participants, achieving a high level of accuracy in
gesture recognition. The outcomes of this project are expected to
contribute to the development of more intuitive and responsive
wearable technologies, improving the interaction between users
and their devices.
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I. INTRODUCTION

In the realm of human-computer interaction, the ability to
control devices with natural hand gestures has the potential to
revolutionize the way we engage with technology. The advent
of wearable robotic devices has brought this possibility closer
to reality, yet the challenge remains to create a system that
can accurately interpret the user’s intentions from their hand
movements. This course project aims to address this challenge
by utilizing IMU technology to predict and classify a range
of hand gestures [1], [2].

The project’s foundation lies in the IM900 IMU, a state-
of-the-art sensing device that provides rich motion data with
high temporal resolution. By strategically positioning the IMU
on the forearm, we ensure that the collected data accurately
reflects the user’s arm movements without interference from
hand motion. The data is then processed to calculate the
trajectory and orientation of the arm, which are critical features
for gesture classification.

Our approach to gesture recognition involves training an
LSTM model, a type of deep learning model particularly
suited for handling sequential data. The model is trained on
a dataset where each gesture is labeled and represented by
its corresponding arm movement features. Through rigorous
testing and validation, the LSTM model has demonstrated a
high degree of accuracy in classifying the gestures, even when
faced with new, unseen data [3], [4]

The success of this project holds significant implications
for the future of wearable technology. By improving the
accuracy and responsiveness of gesture recognition, we can
create devices that are more intuitive and user-friendly. This
not only enhances the user experience but also opens up new
possibilities for applications in various fields, from gaming
and virtual reality to assistive technologies for individuals with
motor impairments.
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Fig. 1. General process of collecting IMU data to train LSTM model and
predict the intention result.

In conclusion, this course project represents a step forward
in the field of human-computer interaction, showcasing the
potential of IMU technology and machine learning in creating
more natural and efficient ways for users to interact with their
devices [5], [6].

II. MATERIAL AND METHODS

A. System Hardware

In this study, we introduce the IM900, a state-of-the-art
sensing device with robust capabilities, designed to interface
seamlessly with personal PCs via BLE 5.0 Bluetooth tech-
nology. The IM900 boasts an impressive 8dbm transmission
power and an extended communication range of up to 60
meters, ensuring reliable data transfer even over substantial
distances. The device’s reporting frequency is highly versatile,
ranging from 0.5 Hz to 250 Hz; for the purpose of our
experiment, we have selected a 30 Hz reporting frequency
to optimize the balance between temporal resolution and data
volume.

Our research involved the collection of comprehensive mo-
tion data sets using the IM900. This included tri-axial accel-
eration data, with a full-scale range of £16g, allowing for the
capture of both subtle and dynamic movements. Additionally,
tri-axial angular velocity measurements were recorded, with
a capacity of £2000°/s, to accurately document the rotational
aspects of limb motion. The inclusion of a tri-axial magne-
tometer, primarily utilized for automatic calibration, further
enriches the data, ensuring high fidelity in the representation
of the arm’s orientation in space.

The IM900 was strategically positioned at the proximal
end of the forearm to ensure unobstructed data collection.
This placement was critical in guaranteeing that the device’s
readings were solely reflective of the arm’s motion, without
interference from the hand’s movements.



B. Intent Recognition

1) Data Processing: The absolute acceleration data ob-
tained from the IMU served as a reference for determining
the initiation of arm movement, based on an analysis of
experimental data. We established a threshold where an ab-
solute acceleration greater than 0.5 m/s? indicated the start of
movement, marking this as the starting point. Once movement
commenced, we calculated the velocity in the x, y, and z
directions by integrating the acceleration data from the starting
point. A subsequent integration of these velocities provided
us with the distances traveled in each direction, representing
the trajectory of the arm. Similarly, by integrating the angular
velocities in the X, y, and z directions from the starting point,
we obtained the angles in each axis, representing the orien-
tation of the arm. Such processing of the input data imbues
it with practical physical significance, enhancing the accuracy
of classification and making the data more comprehensible.

2) Deep Learning Process: We obtain the distances and
angles relative to the starting point in the X, y, and z axes for
each sample. These represent the trajectory and orientation of
the arm, respectively. And the data are padded or truncated
to make sure they have the same length. After that, they are
inputted as features. Different labels are assigned to the data
sets corresponding to different gesture intentions. In our case,
gesture draw 1 are labeled as 0, gesture draw 2 are labeled
as 1 and gesture draw 3 are labeled as 2. Fifty percent of the
total data is used for testing, while the other fifty percent is
used for training the model. And the model we use is LSTM
(Long Short-term Memory) model.

LSTM model is a deep learning model suitable for classi-
fying sequential data. In this study, we implemented a dual-
layer Long Short-Term Memory (LSTM) network to handle
time series prediction tasks. The model consists of an input
layer that takes sequences of shape (length_of_data, 6), where
length_of data is the sequence length and 6 is the number
of features (trajectory and orientation in X, y and z plane).
The first LSTM layer has 100 units and returns sequences to
maintain temporal dependencies, followed by a dropout layer
with a dropout rate of 0.2 to reduce overfitting. The second
LSTM layer also has 100 units but does not return sequences,
preparing the model to finalize output processing. This is
followed by another dropout layer with the same dropout rate.
The output layer is a densely connected layer with a softmax
activation function, used to output the probability distribution
over the target classes. The model uses L2 regularization
with a coefficient of 0.001 in the output layer to prevent
coefficient inflation. It is compiled with the Adam optimizer
and categorical crossentropy loss, and it measures accuracy
as a performance metric. The model is trained with a batch
size of 10 for 100 epochs, using 50% of the data for testing
to validate the model. Upon training completion, the model
achieved a test accuracy of 97%. Finally, the model is saved
in HDF5 format for subsequent use. This setup highlights the
model’s robustness in handling overfitting through dropout and
L2 regularization, ensuring generalizability on unseen data.
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Fig. 2. Confusion matrix of gestures 1, 2 and 3 using LSTM model.

III. RESULTS AND DISCUSSION
A. Data Collection

In current offline experiment part, a total of three partici-
pants were involved in the collection of 54 data sets. These
data sets were evenly split to support both the training and
testing of our deep learning model. Three distinct grasping
intentions were carefully designed to capture the participants’
actions when grasping different objects. The data collection
for each set lasted approximately 3 seconds, encompassing
the initiation of data capture, the hand gesture movement, and
the final termination of the capture, with each set comprising
around 90 data points.

Participants took a 10-second rest after each data set to
prepare for the next one. Upon completing all the data sets
for one grasping intention, they rested for 3 minutes before
proceeding to the next grasping action data collection. The
total data collection process was estimated to last about 35
minutes, taking into account the collection and rest times for
all participants.

B. Classification Results

Figure 2 show confusion matrix of gestures 1, 2 and 3 using
LSTM model.The labels 0, 1 and 2 represent gestures 1, 2, and
3, respectively.The training set and test set of the LSTM model
are obtained by collecting the writing gestures 1,2 and 3 of
three testers wearing IMU, and the sample size ratio of the
test set and training set is 1:1.

From the table, it can be found that 11 of the 12 samples
with a true gesture of 1 were correctly predicted by the model
LSTM, and one was misjudged as a gesture of 2. The reason
for the misjudgment may be that the features of gesture 1 are
similar to those of gesture 2, or the subject’s hand is unstable
when writing gesture 1, and the accuracy of the prediction is
still very high.In addition, the 9 samples with a real gesture of
2 and the 6 samples with a real gesture of 3 were all correctly
judged by the model LSTM. In general, it can be found that



the classification effect of model LSTM is very good through
confusion matrix.

IV. CONCLUSION

Assistive devices to help people with disabilities to perform
grasping manoeuvres are an effective way to help people
with disabilities to increase their self-care ability in daily
life.Therefore, we constructed models for recognising the arm
movements of disabled people and controlling the assistive
devices by using the arm movements as commands.

We chose a single object for training data and multiple
objects for testing the model. Although the amount of training
data for our model is small, the accuracy for the test data is
96.3%, which shows that the model out by this method has
excellent generality.

With our model, we are able to accurately recognise arm
movements and send the correct signals to the robotic arm.
In the future, we hope to combine this model with robotic
arm grasping to send commands through arm movements to
control the robotic arm to grasp the corresponding objects, in
order to achieve assisting people with disabilities to perform
grasping movements completely.
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