Investigating Overconstrained Quadruped
Locomotion using Reinforcement Learning

Guojing Huang, Jinda Dong, Junwei Lu, Xinyan Ju, Zhou Chen, Shengyang Ming

I. INTRODUCTION

What we want to study is to train a quadrupedal robot
through (deep) reinforcement learning to pass all kinds of
obstacles on its own, such as “high hurdles”, slopes”, ”steps”,
”double wooden bridges”, and “stumps”. This problem is
interesting because quadrupedal robots are becoming more
and more popular in scientific research and commercialization,
and reinforcement learning is a learning control algorithm that
has been widely used by research institutes and commercial
companies in recent years, so we would like to combine both

of them for this course project.

II. PROBLEM STATEMENT

For the problem we investigated, we propose a design
and learning method to tarin and verify the capabilities of
overconstrained locomotion in challenging environments in-
cluding high hurdles, double wooden bridges and stumps,using
reinforcement learning. We expect the result that self-design
overconstrained quadruped can have great performance in
complex environments with RL-trained control policy.

We have now collected some preliminary data, one is the
robot ontology configuration, firstly, we have collected the stl
model of the robot as well as the available urdf and usd files
for describing and simulating the robot; secondly, we have
chosen the Cybergear, as the driver of the quadruped robot,
and we have also obtained the key parameters of the motor
based on the instruction manual; then we have chosen to train
the quadruped robot in two kinds of simulation environments
for training, one is flat ground and the other is self-built field;
lastly, the camera, if we need to train on the self-built field,
we need to add a camera to the quadruped robot to detect
obstacles. Meanwhile, we will obtain some data and support
that may be needed in the future by looking up papers, open
source materials, product manuals, etc.

We will use “Isaac Sim” developed by NVIDIA as software
platform, and the orbit framework is used for training. The
training method is rsl_rl, which is a fast and simple imple-
mentation of RL algorithm, designed to run fully on GPU.
We will validate its feasibility at first and then modify the
parameters of learning and control strategy to achieve better
performances.

As for results, we currently choose the relatively easy-to-
obtain parameters of velocity, COT, reward, and joint torque
as the technical indexes for evaluating the training results,
which will eventually be analyzed by figures or tables. The
training framework orbit offers 3 types of way for us to train
our quadrupeds: rsl_rl, sb3, and skrl. If time permitted, we will

compare the output performance of these three methods, with
same rewards and configs or not. Besides, we have obtained
two kinds of quadruped robots, unitree al and overconstrained
quadruped with Cybergears, we will also try to compare their
capabilities using rsl_rl to train.

ITI. LITERATURE REVIEW
With high-efficiency and high-accuracy, Kalman filter is
widely used for estimating the dynamic state of the system
from noisy data. (I} states a formation of a certain Kalman
filter:

2y = Frap—1 + Brug + wy ()

where F}, is the state transition matrix, By, is the control input
matrix, uy is the control vector, and wy, is the process noise.[4]]

Based on the property of such a useful tool, our experiment
aims to better the performance of the pose of our model
by lowering the effects from the noise, and to better the
controlling result of the locomotion by predicting the dynamic
parameters through previous collections.

Several researches on bipedal robots (two-legged machines
for which walking is a natural dynamic mode) have come
into realize. The bipedal robots have higher requirements
on complex controlling methods and strategies to provide a
relatively stable controlling basement, like keeping balance,
resistance to external interference, etc. Reinforcement learning
allows a better result on robust, adaption, and model-free
controlling [1]]. And in real life world, the robust has been
proven to be realistic through reinforcement learning [2].

So as to quadruped robots. Some researchers claim that, the
use of external perception has always been a great challenge
in quadruped robot movement [5]. To address this problem,
reinforcement learning also provides strategies by applying
hierarchical learning framework and reward function, to de-
compose the complex locomotion tasks.[3l]] This method leads
to an efficient training process.

For our work, we are going to apply reinforced methods that
are similar to those of bipedal robot control on the strategies of
controlling our quadruped model. Using such methods allow
us to implement the self-adaption, robotic motion navigation,
collaboration etc under an unknown circumstance.

IV. TECHNICAL APPROACH
Overall, we need to train the kinematic gait of an over-
constrained quadruped robot using reinforcement learning to
obtain the best kinematic performance in a given environment
with a defined robot configuration as well as actuator and



0 A AAANAANAA A AAAAAAAA;
0.4 44
~ A
2 / . o .
S0z / ---- desired longitudinal velocity
T / longitudinal hip velocity
> L
0.0
(@)
w 0.2
w
S
~ OO ___________________________________________
= . .
G —-0.2 ---- desired lateral velocity
o . .
S 54 lateral hip velocity
(b)
8 0.00
=
Q
©-0.05
C
< —— torso yaw torso pitch —-=- torso roll
—0.10 1000 2000 3000 4000 5000

(c)

Fig. 1: Simulation on applying reinforcement learning on
the bipedal robots. The graphs shows the performance of
the learned policy while tracking a fixed desired longitudinal
walking speed.[1]

sensor configurations. We will use the reinforcement learning
framework rsl_rl for training and custom-design the corre-
sponding robot ontology, PPO solver, and configures for the
training environment.

A. train.py

This code utilizes the rsl_rl framework for training. Firstly,
it uses gymnasium to create an isaac environment, and uses the
render mode of rgb_array, and provides a wrapper interface to
record the training video. Then, it uses rsl_rl to set up an on-
policy training agent, runner, and at the same time, it sets the
seed of the training environment to the seed of the agent, so
that the initial state of the quadruped robot is the same for each
training to obtain reproducible and comparable training results.
Finally, it starts the training process through the runner. When
entering the training loop, the runner will automatically update
the total number of iterations and make the agent start inter-
acting with the environment, and then the agent will select the
corresponding action according to the observation. Moreover,
the agent will select the corresponding action according to the
observation, and after executing the corresponding action, the
agent will directly obtain the observation, reward, dones and
info of the next moment, and finally the runner will calculate
the return of the current training step according to the set
discount factor and lambda parameter, which completes the
whole closed loop of training.

B. BENNETTQUAD_ Al CFG

This configuration is based on ArticulationCfg and con-
tains three main features: spawn, init state and actuators.

In spawn, it mainly sets the physical properties of the
robot, imports the corresponding usd file, initializes the
mass, linear damping, angular damping, max_linear_velocity,
max_angular_velocity, max_depenetration_velocity, and at the
same time initializes the robot’s mass, linear damping,
angular_damping, max_linear_velocity, max_angular_velocity,
and max_depenetration_velocity. depenetration_velocity are
initialized, and both the solver position and velocity iterations
are set to 4; the initial state of the robot at the beginning of
each training session is mainly set in init_state, including the
spatial position, joint position, and joint velocity. We set the
spatial position to be the zero point of the absolute coordinate
system, the initial joint velocity to be 0, and the joint position
to be close to the low lying state; in actuators, we mainly
set the mounting joint position of the motor of Yushu Al,
as well as the corresponding parameters of the motor body,
and we installed motors in the motion joints of the four legs,
which correspond to the three degrees of freedom of the legs
rotating around the hip joints, the legs swinging back and
forth and the foot-configuration transformation. We installed
motors in all four legs, corresponding to leg rotation around the
hip joint, leg back-and-forth oscillation, and foot configuration
transformation with three degrees of freedom and a total of 12
motors, and set the effort limit and saturation_effort to 10.5,
the speed limit to 21m/s, the stiffness to 25.0, the damping to
0.5, and the friction to 0.2.

C. BennettquadAIRoughPPORunnerCfg

This configuration is inherited from RsIRIOnPolicyRun-
nerCfg and is used to configure the runtime parameters of
an RL (Reinforcement Learning) agent based on the PPO
algorithm (Proximal Policy Optimization). Specifically, this
configuration defines the following parameters: number of
steps per environment is 24,maximum number of iterations is
2000, interval to save the model is 50 (the model is saved every
50 iterations). while on the configuration of the policy policy
network, the PPO actor-critic networks generation control
policy configured through rsl rl, the initial noise standard
deviation of the actor is set to 1.0, and the maximum number
of iterations is set to 2,000, the hidden layer dimension of both
actor network and critic network is 3 layers, and the number of
neurons in each layer is 512, 256, and 128, respectively. The
activation function is ELU function. ELU does not have neuron
death problem, and it can shorten the training time and im-
prove the accuracy in neural network. And the algorithm also
uses the configuration of rsl_rl’s PPO algorithm, including the
value function loss coefficients, whether to use truncated value
function loss, truncation parameters, entropy coefficients, the
number of learning cycles, the number of small batches, the
learning rate, the scheduling method, the discount factor, the
lambda parameter, the expected KL dispersion, the gradient
trimming threshold and other parameters.

V. INTERMEDIATE RESULTS
In terms of platform setup, we have downloaded the Isaac
Sim software and have fully configured the Orbit framework.
In the learning process, our group has learned how to create an



(b) Simulation of tip-leg version

Fig. 2: Intermediate results of the project

RL environment in the Orbit framework and train a quadruped
robot’s gait in this environment. As for the results, we have
obtained the correct robot model and its URDF and USD files,
with two types of legs: wheeled legs and tip legs. We have used
SolidWorks to build a complex simulation environment, and
we are currently researching how to convert our self-built site
into a usable training environment. This involves importing
mesh and USD files, setting up virtual boundaries for the site,
and other issues. The wheeled-leg version of the robot has been
trained to a relatively good state of motion, able to adapt to
default complex environments (such as flat ground, rubble, and
steps) to maintain a reasonable posture. However, training for
the tip-leg robot has not been successful. The current training
results show that the tip-leg robot cannot stand, or it collapses
after standing for a few seconds due to some reason.

REFERENCES

[1] Wei Zhang Ayonga Hereid Guillermo A. Castillo,
Bowen Weng. Hybrid zero dynamics inspired feedback
control policy design for 3d bipedal locomotion using rein-
forcement learning. 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020.

[2] Wei Zhang Ayonga Hereid Guillermo A. Castillol,
Bowen Weng. Robust feedback motion policy design
using reinforcement learning on a 3d digit bipedal robot.
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

[3] Deepali Jain, Atil Iscen, and Ken Caluwaerts. Hierarchical
reinforcement learning for quadruped locomotion. In 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7551-7557, 2019. doi: 10.
1109/IROS40897.2019.8967913.

[4] R.E. Kalman. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering, 82
(1):35-45, 1960.

[5] Jemin Hwangbo Lorenz Wellhausen Vladlen Koltun
Marco Hutter Takahiro Mikil, Joonho Lee. Learning
robust perceptive locomotion for quadrupedal robots in
the wild. SCIENCE ROBOTICS, 2022. doi: 10.1126/
scirobotics.abk2822.



	Introduction
	Problem Statement
	Literature Review
	Technical Approach
	train.py
	BENNETTQUAD A1 CFG
	BennettquadA1RoughPPORunnerCfg

	Intermediate Results

