Milestone report for
Casabot: The Fusion of AI and Robotics

Group 4: 12111028 Wang Junyang 12111026 Zhou Jingdong 12110510 Deng Haowen 11910412 Mao Xinke
12110501 Ji Yibing 12111127 Daniel Tan SioaHen 12111128 Ng Wooi Cheng

Abstract—This project aims to develop a new type of collabora-
tive robot arm that enhances home automation by understanding
and executing tasks through natural language interaction. At
the same time, it also needs to train a machine learning model
to recognize different types of items and sort them to the
correct location. Additionally, we will access ChatGPT to achieve
various types of command conversion, to achieve key input,
voice input and even gesture recognition input, in order to
achieve the convenience of this robot.This project will combine
computer vision, deep learning systems, robotic arms, and the
basic principles of robotic arms to achieve. By training a robotic
arm to sort items, the efficiency and accuracy of daily household
work can be greatly improved.

I. INTRODUCTION

For some people with disabilities, daily work at home can be
very inconvenient, so an intelligent assistant that can enter the
home is very necessary. This project is dedicated to designing
a desktop-level robot arm based on visual grasping, using
machine learning to train the model, and finally connecting
chatgpt to realize various forms of instruction input to com-
plete the purpose of grasping. We plan to complete this project
through the following steps:

Collecting visual grasping datasets: We need to collect
item grasping datasets of different types to train the machine
learning model.

Data preprocessing: For the collected image data, we need
to do some preprocessing, such as image enhancement and
image cropping.

Training the model: Train a machine learning model using
a deep learning framework (such as TensorFlow or PyTorch)
to recognize different types of items.

Deploying the model: Deploy the trained model to the
robotic arm and write control programs so that it can sort
items according to the recognition results.

Connecting to ChatGPT: Access ChatGPT to realize
command conversion and input, such as summarizing the
synonyms that may be different in the population, and realizing
key input, voice input and even gesture recognition input.

II. PROBLEM STATEMENT
A. Object identification

The following types of items need to be judged differently,
and the corresponding trajectory planning process should be
made.

Items that need to be sorted out: For the desktop-level
intelligent robot arm designed by us, the first thing to be
identified is the objects that need to be sorted out on the

desktop, such as pens, books, and so on; Some special items
also require special grasping strategies. Also take into account
some dynamic factors, such as some items in use when moving
in the hand, also need to be identified

Obstacles to avoid: When working on the desktop, consider
that there are some items that do not need to be appropriated,
such as lamps, or personal computers, etc., these items can
not be crashed, so it is necessary to accurately identify these
objects; Additionally, places that need to be used to place
items, such as bookshelves, pen holders, etc., also need to
be taken into account, and to design a grasping placement
strategy that adapts to different environments.

B. Implement ChatGPT

To implement ChatGPT as a medium for instruction con-
version, allowing it to receive commands and translate them
into instructions executable by our robotic arm.

Define Instruction Format: Determine the format of in-
structions for ChatGPT to understand and process. Instructions
should include action to be executed (e.g., grasp, release,
move) and descriptions of target objects or positions.

Develop Instruction Parser: Write a program or script
to parse commands received by ChatGPT and convert them
into instructions understandable and executable by the robotic
arm. This may involve natural language processing (NLP)
techniques and logic programming.

Robotic Arm Control Interface: Determine the control
interface and communication protocol for the robotic arm,
enabling commands to be sent to the arm from a computer
or embedded system, and retrieving execution results.

Instruction Executor: Write a program or script to translate
instructions parsed by ChatGPT into commands recognizable
by the robotic arm control interface, and send them to the arm
for execution. This may involve using programming languages
and control libraries.

Integration Testing: Conduct integration testing of the
entire system to ensure that ChatGPT correctly parses instruc-
tions and instructs the robotic arm to perform the correspond-
ing actions. Debugging and optimization may be required
during testing.

Real-time Interaction: Deploy the system in a real-world
environment and implement real-time interaction functionality,
allowing users to control the robotic arm by conversing with
ChatGPT.



III. LITERATURE REVIEW

A. Machine Learning for Visual Grasp

The challenge of visual grasping in cluttered environments
is central to advancing robotic manipulation, especially in
home settings where a robot must deal with a variety of
objects. PoseCNN: A Convolutional Neural Network for
6D Object Pose Estimation in Cluttered Scenes [5] directly
addresses this challenge by introducing a robust framework
for pose estimation, which is critical for precise object manip-
ulation. This method’s ability to differentiate and accurately
estimate the position and orientation of multiple objects in
real-time makes it highly relevant for our project’s goal of
enhancing a robot’s grasping capabilities (Xiang et al., 2017).

Additionally, the integration of deep learning for object
recognition within robotic systems is explored in Integration
of Deep Learning-Based Object Recognition and Robot
Manipulator for Grasping Objects [3]. This paper demon-
strates effective strategies for combining CNN-based vision
systems with robotic arms to achieve reliable grasping actions.
The approaches discussed here will inform our development of
a machine learning model capable of supporting sophisticated
manipulation tasks (Integration of Deep Learning-based Object
Recognition and Robot Manipulator for Grasping Objects,
2019).

Furthermore, the comprehensive review provided in Vision-
Based Robotic Grasping from Object Localization, Object
Pose Estimation to Grasp Estimation for Parallel Grippers
[1] offers a detailed overview of the progression from basic
object recognition to advanced grasp planning. This review is
instrumental for understanding the state-of-the-art techniques
and existing challenges in robotic grasping, ensuring our
project is built on a solid foundation of current knowledge
(Du et al., 2020).

B. Integrating ChatGPT for Command Input

The potential for natural language processing to enhance
robot control is being showed in ChatGPT Empowered
Long-Step Robot Control in Various Environments: A
Case Application [4]. This paper showcases the practical
application of ChatGPT in controlling robotic actions over
extended sequences, which is particularly pertinent to our
project as it seeks to enable complex task execution through
simplified command inputs (ChatGPT Empowered Long-Step
Robot Control in Various Environments: A Case Application,
2023).

Moreover, ROSGPT: Next-Generation Human-Robot In-
teraction with ChatGPT and ROS [2] reveals advancements
in integrating large language models with robotic operating
systems for improved human-robot interactions. The integra-
tion techniques discussed will be crucial for our project, as
they provide a blueprint for embedding ChatGPT into our
robotic system, allowing for more intuitive and versatile user
commands (Koubaa, 2023).

IV. TECHNICAL APPROACH

Primarily, the tasks our team will undertake involve object
recognition and ChatGPT implementation. Object recognition
involves the identification and classification of various ob-
jects within images or video streams, a fundamental task
with applications spanning from industrial automation to aug-
mented reality. Concurrently, integrating ChatGPT, a cutting-
edge language model, presents opportunities to enhance user
interaction and automate tasks through natural language pro-
cessing. We aim to explore the synergistic implementation
of both Object Recognition and ChatGPT. By leveraging the
capabilities of object recognition algorithms alongside the
conversational prowess of ChatGPT, we endeavour to develop
a versatile system capable of understanding and responding to
the world in both visual and textual modalities.

A. Object Identification.

Object recognition, a pivotal task in computer vision, aims
to identify and classify objects within images or video streams.
In collaborative robotics applications where humans work
alongside robots, object recognition plays a crucial role in
ensuring safety. Robot arms equipped with vision systems can
detect and avoid collisions with humans or other objects in the
workspace, minimizing the risk of accidents and injuries. In
warehouse and logistics operations, object recognition enables
robot arms to sort and pack items accurately and efficiently.
Similarly, in house tidying, with the help of object recognition,
smart tidying systems are able to automatically identify and
categorize various items within the home, sorting them into
designated storage areas or containers efficiently.

Among the myriad of algorithms developed for this purpose,
YOLO (You Only Look Once) stands out as a pioneering
approach renowned for its speed and accuracy. Unlike tradi-
tional object detection methods that rely on sliding windows or
region proposal networks, YOLO approaches object detection
as a single regression problem, directly predicting bounding
boxes and class probabilities for each object within an image.
The key principle behind YOLO is its unified architecture,
which divides the input image into a grid and predicts bound-
ing boxes and class probabilities directly from the grid cells.
By incorporating global context information into the prediction
process, YOLO is able to detect objects with high accuracy and
efficiency, making it suitable for real-time applications such as
autonomous driving, surveillance, and robotics. Furthermore,
YOLO is capable of detecting multiple objects within a single
image, providing comprehensive scene understanding in a
single pass.

YOLO is, in fact, one of the most potent methods for object
recognition. After several iteration and optimization of the
function, there are now different updated version of YOLO
(YOLOvV1 to YOLOVS). YOLOvS will have a high possibility
to be mainly utilized in this project as this newest version
possesses the most updated and optimized function of object
recognition.



B. ChatGPT Implementation.

Implementing ChatGPT as a medium for instruction con-
version enables seamless communication between users and
robotic arms for executing various tasks and commands. Inte-
grate the ChatGPT model into our system’s architecture enable
users more easily to interact with the system, in another word,
more user friendly, while ensuring the accuracy of executing
commands.

There are several crucial capabilities of ChatGPT implemen-
tation. Firstly, text generation is one of the most basic function
of ChatGPT. OpenAlI’s text generation models, such as GPT-
4 and GPT-3.5, are trained to comprehend both natural and
formal language. These models, including GPT-4, produce text
outputs in response to inputs, often referred to as “prompts”.
Crafting a prompt essentially acts as programming for a model
like GPT-4, typically involving instructions or examples to
guide task completion. These models find utility across diverse
tasks, including content and code generation, summarization,
conversation, creative writing, and more.

OpenAl’s text generation models undergo pre-training using
extensive text data. To optimize their usage, we incorporate in-
structions and occasionally multiple examples within a prompt.
Employing demonstrations to illustrate task execution is com-
monly known as “few-shot learning.” Fine-tuning enhances
few-shot learning by training on a significantly larger number
of examples than what can be accommodated within the
prompt, thereby enabling superior performance across various
tasks. Following fine-tuning, fewer examples are required in
the prompt, leading to cost savings and facilitating faster
response times.

Other than that, text embeddings measure the relatedness of
text strings. An embedding consists of a list of floating-point
numbers, forming a vector. The proximity between two vectors
indicates their correlation, with short distances implying strong
correlation and long distances indicating weak correlation.

Besides, the function calling enables particular tasks or
actions to be carried out upon receiving commands. This
capability enables it to understand commands and invoke the
suitable routines for tasks such as object grasping.

Last but not least, text-to-speech and speech-to-text con-
version are able to enhance the interaction between users
and robot. For the text-to-speech, the Audio API integrates
a speech endpoint leveraging the TTS model with the func-
tionalities include converting written blog posts into spoken
narratives, generating spoken content in multiple languages,
and providing real-time audio output through streaming. For
the speech-to-text, the Audio API provides two speech to text
endpoints, transcriptions and translations.

V. RESULTS

To evaluate the effectiveness of our proposed system, we
will employ a comprehensive approach that encompasses
various aspects and datasets:

A. Performance Metrics

We will measure the accuracy, speed, and efficiency of
the robotic arm in executing tasks within the simulation.
Accuracy will be determined by the percentage of correctly
identified and placed items. Speed will be evaluated based on
the time taken to complete tasks, including object recognition
and grasping. Efficiency will be assessed by comparing the
performance of the robotic arm with manual sorting methods.

B. Simulation Dataset Evaluation

We will evaluate the quality and coverage of the simulation
dataset to ensure it adequately represents various types of
items and scenarios. Techniques such as cross-validation will
be utilized to verify the robustness and generalization ability
of the trained models.

C. Real-time Simulation Testing

We will simulate real-world daily tasks within the simula-
tion environment and observe the performance of the robotic
arm. We will test its adaptability to different scenarios and
environments and its ability to handle obstacles.

D. Performance Comparison

Finally, we will compare our system with baseline methods
to evaluate its advantages and limitations in the simulated
environment. Through these evaluation methods, we aim to
gain comprehensive insights into the performance of our
proposed system in a simulated environment and guide future
improvements

REFERENCES

[1] Guoguang Du, Kai Wang, Shiguo Lian, and Kaiyong
Zhao. Vision-based robotic grasping from object localiza-
tion, object pose estimation to grasp estimation for parallel
grippers: a review. Artificial Intelligence Review, 54(3):
1677-1734, 2021.

[2] Anis Koubaa. Rosgpt: Next-generation human-robot in-
teraction with chatgpt and ros. 2023.

[3] Hyunsoo Shin, Hyunho Hwang, Hyunseok Yoon, and
Sungon Lee. Integration of deep learning-based object
recognition and robot manipulator for grasping objects. In
2019 16th international conference on ubiquitous robots
(UR), pages 174-178. IEEE, 2019.

[4] Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun
Takamatsu, and Katsushi Ikeuchi. Chatgpt empowered
long-step robot control in various environments: A case
application. IEEE Access, 2023.

[5] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network
for 6d object pose estimation in cluttered scenes. arXiv
preprint arXiv:1711.00199, 2017.



	Introduction
	Problem Statement
	Object identification
	Implement ChatGPT

	Literature Review
	Machine Learning for Visual Grasp
	Integrating ChatGPT for Command Input

	Technical Approach
	Object Identification.
	ChatGPT Implementation. 

	Results
	Performance Metrics
	Simulation Dataset Evaluation
	Real-time Simulation Testing
	Performance Comparison


