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Abstract
For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to
future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by
picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people’s
preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing
shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences
from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-
based planning and perception with the few-shot summarization capabilities of large language models to infer generalized
user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2%
accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator
called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.
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1 Introduction

Building a robot that provides personalized assistance for
physical household tasks is a long-standing goal of robotics
research. In this paper, we investigate the task of tidying up a
room: moving every object on the floor to its “proper place.”
One of the challenges in performing this task is determin-
ing the correct receptacle (“proper place”) for every object.
This is difficult because where objects should go is highly
personal, and depends on cultural norms and individual pref-
erences. One person may want to put shirts in a dresser
drawer, another may want them on shelves, and a third may
want them hanging in a closet. There is no “one size fits all”
solution.

Classical approaches to the household cleanup task ask a
person to specify a target location for every object (Rasch
et al., 2019; Yan et al., 2021), which is tedious and imprac-
tical in an autonomous setting. Other works learn generic
(non-personalized) rules about where objects typically go
inside a house by averaging over many users (Kant et al.,
2022; Sarch et al., 2022; Taniguchi et al., 2021). Works that
focus on personalization aim to extrapolate from a few user
examples given similar choices made by other users, using
methods such as collaborative filtering (Abdo et al., 2015),
spatial relationships (Kang et al., 2018), or learned latent
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preference vectors (Kapelyukh & Johns, 2022). However,
all of these approaches require collecting large datasets with
user preferences or generating datasets from manually con-
structed, simulated scenarios. Such datasets can be expensive
to acquire and may not generalize well if they are too small.

Our approach is to utilize the summarization capabilities
of large language models (LLMs) to provide generalization
froma small number of example preferences.Weask a person
to provide a few example object placements using textual
input (e.g., yellow shirts go in the drawer, dark purple shirts
go in the closet, white socks go in the drawer), and then
we ask the LLM to summarize these examples (e.g., light-
colored clothes go in the drawer and dark-colored clothes
go in the closet) to arrive at generalized preferences for this
particular person.

The underlying insight is that the summarization capa-
bilities of LLMs are a good match for the generalization
requirements of personalized robotics. LLMs demonstrate
astonishing abilities to perform generalization through sum-
marization, drawing upon complex object properties and
relationships learned from massive text datasets. By using
the summarization provided by LLMs for generalization in
robotics, we hope to produce generalized rules from a small
number of examples, in a form that is human interpretable
(text) and is expressed in nouns that can be grounded in
images using open-vocabulary image classifiers. Using an
off-the-shelf LLM also avoids expensive collection of user
preference data and model training.

We investigate the proposed approach in a real-world
robotic mobile manipulation system for household cleanup,
which we call TidyBot (Fig. 1). Before the robot begins
cleanup, we ask the user to provide a handful of example
placements for specific objects, which are passed to an LLM
to be summarized into a generalized set of rules (personalized
to that user) mapping object categories to receptacles. The
nouns of these generalized rules are provided to an open-
vocabulary image classifier in order to identify objects on
the floor and determine target receptacles for them using the
rules. The robotwill then carry out the cleanup task by repeat-
edly picking up objects, identifying them, and moving them
to their target receptacles.

We evaluate our approach quantitatively on both a text-
based benchmark dataset and our real-world robotic system.
On the benchmark, we find that our approach generalizes
well, achieving an accuracy of 91.2% on unseen objects
across all scenarios in the benchmark. In our real-world test
scenarios, we find that TidyBot correctly puts away 85.0%
of objects. We also show that our approach can be easily
extended to infer generalized rules formanipulation primitive
selection (e.g., pick and place vs. pick and toss) in addition
to inferring object placements.

Our contributions are: (i) the idea that text summarization
with LLMs provides a means for generalization in robotics,

Fig. 1 Westudy the task of household cleanup,where each object on the
floor must be picked up and put away while following user preferences

(ii) a publicly released benchmark dataset for evaluating
generalization of receptacle selection preferences, and (iii)
implementation and evaluation of our approach on a real-
world mobile manipulation system.

This journal paper is an extended version of a previously
published conference paper (Wu et al., 2023). The newmate-
rial in this journal version includes:

1. A user study that evaluates whether humans prefer the
preferences learned by our approach, andwhether human
responses align with our benchmark’s ground truth

2. Quantitative analysis of the perception component of the
real-world system, including comparisons of different
visual language models

3. Additional statistics of our benchmark showing repre-
sentation of different sorting criteria in the dataset, along
with a breakdown of baseline results according to these
criteria

4. A summary of the limitations of our system

Please see our project page at https://tidybot.cs.princeton.
edu for additional supplementarymaterial, benchmarkdataset
and code, and qualitative videos of our real-world system
TidyBot in action.

2 Related work

2.1 Household cleanup

Many recent works in Embodied AI have proposed bench-
marks or methods for completing household tasks in sim-
ulated indoor environments (Kolve et al., 2017; Li et al.,
2022; Puig et al., 2018; Shridhar et al., 2020, 2021; Szot et
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al., 2021; Srivastava et al., 2022). For household cleanup in
particular, the object rearrangement task (Batra et al., 2020;
Ehsani et al., 2021; Gan et al., 2022; Puig et al., 2018; Szot
et al., 2021; Weihs et al., 2021) requires an embodied agent
to pick up and move objects so as to bring the environ-
ment into a specified state. Household cleanup has also been
studied in robotics works, in which instructions for object
rearrangement are specified via pointing gestures (Rasch et
al., 2019) or target layouts (Yan et al., 2021). The drawback of
these setups is that a target location must be manually speci-
fied for every object to be manipulated, which can require
significant human effort. Prior works have addressed this
challenge by automatically inferring object placements based
on human preferences for where objects typically go inside a
house (Kant et al., 2022; Taniguchi et al., 2021; Sarch et al.,
2022), eliminating the need to specifywhere every individual
object goes. However, these works predict human prefer-
ences that are generic rather than personalized. To handle the
variability in preferences across different users, other works
have used collaborative filtering (Abdo et al., 2015), spatial
relationships (Kang et al., 2018), or learned latent prefer-
ence vectors (Kapelyukh & Johns, 2022) to predict object
placements that are based on personalized user preferences.
These methods require the collection of large crowd-sourced
datasets for human preferences, which can be expensive. By
contrast, our approach uses off-the-shelf LLMswith no addi-
tional training or data collection. We are able to directly
leverage the commonsense knowledge and summarization
abilities of LLMs to build generalizable personalized prefer-
ences for each user.

2.2 Object sorting

Object sorting has been studied in robotics using approaches
such as clustering (Gupta & Sukhatme, 2012), active learn-
ing (Herde et al., 2018; Kujala et al., 2016), metric learn-
ing (Zeng et al., 2022), or heuristic search (Huang et al.,
2019; Pan & Hauser, 2021; Song et al., 2020). These setups
carry out pre-specified sorting rules using physical properties
such as color (Dewi et al., 2020; Gupta & Sukhatme, 2012;
Herde et al., 2018; Huang et al., 2019; Kujala et al., 2016;
Pan & Hauser, 2021; Szabo & Lie, 2012; Song et al., 2020),
shape (Herde et al., 2018), size (Dewi et al., 2020; Gupta &
Sukhatme, 2012;Herde et al., 2018), ormaterial (Lukka et al.,
2014). Notably, they are not able to sort based on semantics
or commonsense knowledge, nor are they able to automati-
cally infer sorting rules. More recently, Høeg and Tingelstad
(2022) studied whether classification of objects into general
high-level categories can be improved by using an LLM to
take in an object detector’s prediction and output a general
category for the object. In our work, we similarly tap into the
commonsense knowledge of LLMs to reason about object
sorting.However, whereas their setup uses pre-specified sort-

ing rules based on a fixed set of categories, ours is able to
infer generalizable sorting rules automatically.

2.3 LLMs for robotics

Large language models (LLMs) have been shown to exhibit
remarkable commonsense reasoning abilities (Brown et al.,
2020; Kojima et al., 2022; Madaan et al., 2022; Nye et al.,
2021; Rytting & Wingate, 2021; Wei et al., 2022a, b). As a
result, there has been increasing interest in harnessing the
capabilities of LLMs to build more commonsense knowl-
edge into robotic systems. Many recent works study how
LLM-generated high-level robotic plans (typically produced
using the few-shot learning paradigm (Brown et al., 2020))
can be grounded in the state of the environment. This can
be done with value functions (Brohan et al., 2022; Lin et al.,
2023), semantic translation into admissible actions (Huang
et al., 2022), scene description as context (Chen et al.,
2022; Mees et al., 2022; Singh et al., 2022; Zeng et al.,
2022), feedback (Huang et al., 2022; Yao et al., 2022), or
re-prompting (Raman et al., 2022). However, these works
assume a setup in which the LLM is expected to output
a single generic plan. This is not a good fit for personal-
ized household cleanup, because a “one size fits all” plan
would not address the wide variability in user preferences.
Instead, our system generates personalized plans that are tai-
lored to the preferences of a particular user. Other works in
robotics have used LLMs for PDDL planning (Silver et al.,
2022), code generation for robotic control policies (Liang et
al., 2022), parsing navigation instructions into textual land-
marks (Shah et al., 2022), room classification (Chen et al.,
2022), and tool manipulation (Ren et al., 2022). These works
all use LLMs as ameans of integrating commonsense knowl-
edge into robotic systems, which is also true in our case.
However, unlike these works, we additionally show that the
summarization ability of LLMs enables generalization in
robotics.

3 Method

We use the summarization capabilities of an off-the-shelf
LLM to generalize user preferences from a small number
of examples. Below, we describe how we use the LLM to
infer personalized rules for both receptacle selection and
manipulation primitive selection, and also how we deploy
the approach on a real-world mobile manipulation system
for household cleanup.

3.1 Personalized receptacle selection

Our systemfirst receives a fewexamples of object placements
reflecting the personal preferences of a user. For instance, the
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user may specify that yellow shirts and white socks go in the
drawer, while dark purple shirts and black shirts go in the
closet. We provide these examples to an LLM, which then
infers personalized rules on where objects belong. Specif-
ically, the LLM (i) summarizes the examples into general
rules, and then (ii) uses the summary to determine where to
place new objects.

Following recent work (Singh et al., 2022; Zeng et al.,
2022)), we convert the user examples into LLM prompts that
are structured as Pythonic code. This prompt form is advan-
tageous because LLMs are trained on large amounts of code,
and it also provides a structured output that is easy to parse. To
represent the user examples, the prompt first contains a list of
objects present in the scene and a list of potential receptacles
(see Appendix A for full prompt with in-context examples).
This is followed by a series of pick and place commands
reflecting where the objects should be placed according to
the user. Then, we ask the LLM to complete the last line,
which is a code comment summarizing what the preceding
code block does. Here is an example LLM completion where
the output from the LLM is highlighted:

objects = ["yellow shirt", "dark purple
shirt", "white socks", "black shirt"]
receptacles = ["drawer", "closet"]
pick_and_place("yellow shirt", "drawer")
pick_and_place("dark purple shirt", "closet")
pick_and_place("white socks", "drawer")
pick_and_place("black shirt", "closet")
# Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.

In this example, the LLM summarized the provided object
placements and inferred that light-colored clothes go in the
drawer while dark-colored clothes go in the closet. These
examples lead to a generalized rule for where objects belong,
personalized to this particular user.

Next, the summary is used by the LLM to generate place-
ments for novel, unseen objects. The prompt consists of the
summary from the LLM summarization step (in the form of a
code comment), a list of the unseen objects, a list of recepta-
cles, and a partial pick and place command for the first object.
We then ask the LLM to provide a placement for each object
by completing the prompt:

# Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.
objects = ["black socks", "white shirt", "navy
socks", "beige shirt"]
receptacles = ["drawer", "closet"]
pick_and_place("black socks", "closet")
pick_and_place("white shirt", "drawer")
pick_and_place("navy socks", "closet")
pick_and_place("beige shirt", "drawer")

The output pick and place commands can then be parsed
to determine where each unseen object should be placed.

3.2 Personalized primitive selection

Similar to the way we infer generalized rules for recepta-
cle selection, we can also infer generalized rules for how
to manipulate objects, again leveraging the summarization
capabilities of LLMs. First, we provide a few examples of
objects along with their user-preferred manipulation primi-
tive to the LLM, and ask it to summarize. Here is an example
completion where the output from the LLM is highlighted:

objects = ["yellow shirt", "dark purple
shirt", "white socks", "black shirt"]
pick_and_place("yellow shirt")
pick_and_place("dark purple shirt")
pick_and_toss("white socks")
pick_and_place("black shirt")
# Summary: Pick and place shirts, pick and
toss socks.

The summary can then be used as a generalized rule to
predict the appropriate primitive to use for unseen objects:

# Summary: Pick and place shirts, pick and
toss socks.
objects = ["black socks", "white shirt", "navy
socks", "beige shirt"]
pick_and_toss("black socks")
pick_and_place("white shirt")
pick_and_toss("navy socks")
pick_and_place("beige shirt")

3.3 Real-world robotic system

Given generalized rules from LLM summarization, we can
now implement these rules on a robot tasked with tidying
up a household environment. To do so, we use a perception
system to localize and recognize objects in the environ-
ment, and a predetermined set of manipulation primitives
to move objects into receptacles. For our setup, we use
pick_and_place and pick_and_toss as our primi-
tives, as they arewell-suited for household cleanup.However,
other sets of primitives could also be used.

For each new user, the systemwill receive a set of example
preferences and run the previously described LLM pipeline
to get personalized rules for the user. The rules contain a set
of generalized object categories produced by summarization
(e.g., light-colored clothes, dark-colored clothes), each of
which is matched to a preferred receptacle and manipulation
primitive for that category. The robot will tidy up the envi-
ronment by iteratively performing the following steps until
no more objects remain on the floor: (1) localize the nearest
object, (2) classify the object into a generalized category, (3)
determine the appropriate receptacle and manipulation prim-
itive for the object using generalized rules produced by the
LLM, and (4) use themanipulation primitive to put the object
into the receptacle. Figure 2 provides a conceptual illustra-
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ViLD

Overhead image Closest object

CLIP

Egocentric image

Category: can LLM Receptacle: recycling bin
Primitive: toss

Image classificationObject detection Object placement and primitive selection

Fig. 2 System overview. Once the user’s preferences have been sum-
marized with an LLM, TidyBot will localize the closest object on the
floor, move to get a close-up viewwith its egocentric camera, predict the
object’s category using CLIP, use the LLM-summarized rules to select a

receptacle andmanipulation primitive, and then execute the primitive to
put the object into the selected receptacle, repeating this entire process
until no more objects can be found on the floor

tion of this procedure, and Algorithm 1 outlines these steps
in pseudocode.

Algorithm 1 System pipeline
Input: Ereceptacle = {(o1, r1), (o2, r2), . . .}
Input: Eprimitive = {(o1, p1), (o2, p2), . . .}
Sreceptacle = LLM.Summarize(Ereceptacle)
Sprimitive = LLM.Summarize(Eprimitive)
C = LLM.GetCategories(Sreceptacle)
robot.Initialize()
while True do

Itop = GetOverheadImage()
o = ViLD.GetClosestObject(Itop)
robot.MoveTo(o)
Iego = robot.GetEgocentricImage()
c = CLIP.GetCategory(Iego, C)
r = LLM.GetReceptacle(Sreceptacle, c)
p = LLM.GetPrimitive(Sprimitive, c)
robot.PickUp(o)
robot.MoveTo(r )
robot.ExecutePrimitive(p)

end while

One important aspect of our approach is that the LLM
summarization automatically provides candidate categories
to the perception system. Nouns (or noun phrases) are
extracted from the summarization text as categories, and
used as the target label set for CLIP (Radford et al., 2021),
the open-vocabulary image classification model we use. For
example, the following LLM prompt will extract the two
general categories in the summary text (light-colored cloth-
ing and dark-colored clothing):

# Summary: Put light-colored clothes in the
drawer and dark-colored clothes in the closet.
objects = ["light-colored clothing",
"dark-colored clothing"]

This combination of summarization and open-vocabulary
classification is critical to the autonomy of the system, as
it enables the object classifier to work with a small set of

generalized object categories. The approach is (i) robust as
there are only a small number of categories to differenti-
ate between, and (ii) flexible because it supports arbitrary
sets of object categories for different users. In contrast, with-
out LLM summarization, the object classifier would have to
be able to recognize all possible fine-grained object classes,
which is much more difficult. Alternatively, the user would
have to manually specify the list of objects present in each
target scene, which would be impractical for an autonomous
system.

4 Experiments

We investigate the performance of our proposed approach
with two types of evaluation. For the first type of evalua-
tion, we design a benchmark for generalization of receptacle
selection using text-based examples, which enables direct
comparison to alternative approaches and ablation studies,
with quantitative metrics. For the second type of eval-
uation, we deploy our approach in a real-world mobile
manipulation system for tidying up a room based on user
preferences. Unless otherwise specified, the LLM we use is
text-davinci-003, a variant of GPT-3 (Brown et al.,
2020). All LLM experiments were run with temperature 0.

4.1 Benchmark dataset

In order to evaluate the proposed approach and to quanti-
tatively compare it to alternatives, we created a benchmark
dataset of object placements. The benchmark is comprised
of 96 scenarios, each of which has a set of objects, a set of
receptacles, a set of example “seen” object placements (pref-
erences), and a set of “unseen” evaluation placements, all
specified as text. The task is to predict the placements in the
“unseen” set given the examples in the “seen” set.
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Table 1 Representation of sorting criteria in benchmark

Category Attribute Function Subcategory Multiple

86/96 27/96 24/96 31/96 17/96

The benchmark scenarios are defined in 4 room types
(living room, bedroom, kitchen, pantry room), with 24 sce-
narios per room type. Each scenario contains 2–5 receptacles
(potential places to put objects, such as shelves, cabinets,
etc.), 4–10 “seen” example object placements provided as
input to the task, and an equal number of “unseen” object
placements (distinct from the seen examples) provided for
evaluation. There are 2 seen and 2 unseen object placements
per receptacle. In total, there are 672 seen and 672 unseen
object placements, which cumulatively reference 87 unique
receptacles and 1076 unique objects.

Success on this benchmark is measured by the object
placement accuracy: the number of objects placed in the cor-
rect receptacle divided by the total number of objects. We
evaluate accuracy separately for seen and unseen objects,
to tease apart memorization versus generalization. For each,
we compute the accuracy per scenario, and then average the
results across all scenarios to produce the numbers shown in
the tables.

Since different people may sort items in the home in many
different ways, our benchmark contains a diversity of pref-
erences with several kinds of sorting criteria represented in
the dataset:

• Category Sort objects based on general categories (e.g.,
put clothes here and toys there)

• Attribute Sort objects based on object attributes (e.g., put
plastic items here and metal items there)

• Function Sort objects based on function (e.g., put winter
clothes here and summer clothes there)

• Subcategory Sort objects such that a specific (subordi-
nate) subcategory is separated from the general (super-
ordinate) category (e.g., put shirts on the sofa and other
clothes in the closet)

• Multiple categories Sort objects frommultiple categories
into one receptacle (e.g., put both books and toys on the
shelf)

We show in Table 1 the representation of different sorting
criteria in our benchmark dataset, indicated by the fraction
of the 96 scenarios to which each criteria applies. Note that
multiple sorting criteria may apply to a single scenario.

4.2 Baseline comparisons

In our first set of experiments, we use the benchmark to
provide quantitative evaluation of our approach compared

Table 2 Comparisons to baselines

Method Accuracy (unseen) (%)

Examples only 78.5

WordNet taxonomy 67.5

RoBERTa embeddings 77.8

CLIP embeddings 83.7

Summarization (ours) 91.2

to several alternatives. The results are in Table 2. We also
show in Table 3 the same results but broken down by the
sorting criteria described in Sect. 4.1. Since the main chal-
lenge is to generalize from objects in the examples (seen) to
those in the evaluation set (unseen), we consider a variety
of baseline generalization approaches and report placement
accuracy metrics only for unseen objects.

The following paragraphs describe each baseline and pro-
vide a discussion of how the performance compares to that
of our proposed approach.

Examples only The first baseline provides a direct com-
parison to a system like ours if it did not use summarization.
The LLM is given a list of objects, receptacles, and example
placement preferences, along with a list of unseen objects
for a new scene. Then, the LLM is asked to directly infer
the proper placements (highlighted text) for unseen objects
in the new scene, without summarization as an intermediate
step:

objects = ["yellow shirt", "dark purple
shirt", "white socks", "black shirt"]
receptacles = ["drawer", "closet"]
pick_and_place("yellow shirt", "drawer")
pick_and_place("dark purple shirt", "closet")
pick_and_place("white socks", "drawer")
pick_and_place("black shirt", "closet")

objects = ["black socks", "white shirt", "navy
socks", "beige shirt"]
receptacles = ["drawer", "closet"]
pick_and_place("black socks", "drawer")
pick_and_place("white shirt", "closet")
pick_and_place("navy socks", "drawer")
pick_and_place("beige shirt", "closet")

The prediction accuracy of this method for unseen objects
(78.5%) is significantly worse than that of our method
(91.2%). Since the main difference between this method ver-
sus ours is that our method leverages summarization, this
result presents strong evidence for our main hypothesis—
i.e., summarization is useful for generalization. This finding
is also consistent with recent work showing that LLMs per-
form better when they are asked to output intermediate steps
of reasoning before the final answer (Nye et al., 2021; Wei
et al., 2022a). When looking at the predictions, we find that
this baseline approach generally predicts object placements
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Table 3 Comparisons to
baselines by sorting criteria

Method Category (%) Attribute (%) Function (%) Subcategory (%) Multiple (%)

Examples only 80.1 72.7 75.7 77.0 81.5

WordNet taxonomy 69.1 59.8 61.4 71.3 74.1

RoBERTa embeddings 78.6 75.5 71.8 71.7 87.5

CLIP embeddings 84.6 79.8 85.5 84.7 87.9

Summarization (ours) 91.0 85.6 93.9 90.1 93.5

that are sensible but may not be consistent with the user’s
preferences.

WordNet taxonomy This baseline uses a hand-crafted lex-
ical ontology called WordNet (Miller, 1995) to generalize
placements from seen to unseen objects. For each unseen
object, we place it in the same receptacle as the most similar
seen object, where similarity is measured using the shortest
path between two objects in the taxonomy. Since WordNet
is a hand-crafted taxonomy, it does not contain all possible
object names. For the 694 objects in our benchmark that are
missing fromWordNet, wemanuallymapped each of them to
the closestWordNet object name. Evenwith themanualmap-
ping, the performance of this WordNet baseline for unseen
objects (67.5%) is far worse than that of our method (91.2%).
This shows that LLM summarization provides better gener-
alization than using the hierarchy provided by a hand-crafted
ontology. When looking at the breakdown in Table 3, we see
that this baseline performs worse on the two criteria that are
not related to object categorization (attribute and function).
We hypothesize that WordNet is not able to generalize well
along these dimensions because it was constructed mainly
based on semantic relationships between categories.

Text embedding This baseline uses pretrained text embed-
dings to assist with generalization. For each unseen object,
we place it in the receptacle provided for the most similar
seen object, where similarity is defined by cosine similarity
between encoded object names in the RoBERTa (Liu et al.,
2019) or CLIP (Radford et al., 2021) embedding space. For
RoBERTa, we use the pretrained Sentence-BERT (Reimers
& Gurevych, 2019) model from the SentenceTransformers
library. Specifically,weuse theall-distilroberta-v1
variant which is a distilled (Sanh et al., 2019) version of
the RoBERTa (Liu et al., 2019) model that is fine-tuned
on a dataset of 1 billion sentence pairs. For CLIP, we use
the pretrained model provided by OpenAI. In either case,
the generalization performance for predicting placements of
unseen objects does not reach the performance of our pro-
posed summarization approach (77.8% for RoBERTa and
83.7% for CLIP, versus 91.2% for ours). Although text
embeddings trained on large datasets encode many types of
object similarities, particularly for related object categories,
they may not encode the object attributes relevant to the pref-
erences of a particular user (e.g., light objects go here, heavy

Table 4 Ablation studies

Method Seen (%) Unseen (%)

Commonsense 45.0 45.6

Summarization 91.8 91.2

Human summary 97.1 97.5

object go there). In contrast, our summarization approach is
able to correctly encode a larger variety of user preferences.

4.3 Ablation studies

In the second set of experiments, we use the benchmark to
evaluate the performance of several variants to our method.
The goal of these experiments is to compare its performance
to alternatives with far less information (using only common
sense, without preferences) or far more information (using
human-generated summarizations).We also study the impact
of using different LLMs. The benchmark metrics for both
seen and unseen objects are provided in Tables. 4 and 5.

CommonsenseOur first ablation study measures howwell
an LLM can perform the benchmark tasks using only com-
monsense reasoning—i.e., without using the preferences at
all. For each benchmark scene, we give the LLM the list of
objects and list of receptacles, and then ask it to generate
object placements (highlighted text) without using the pro-
vided user preferences:

# Put objects into their appropriate
receptacles.
objects = ["black socks", "white shirt", "navy
socks", "beige shirt"]
receptacles = ["drawer", "closet"]
pick_and_place("black socks", "drawer")
pick_and_place("white shirt", "closet")
pick_and_place("navy socks", "drawer")
pick_and_place("beige shirt", "closet")

This baseline performs poorly, even for seen objects
(45.0%), due to the high variability of object placement pref-
erences in the benchmark. The predicted object placements
are sensible but are not reflective of the particular user’s pref-
erences. In contrast, our method can learn preferences from
examples via summarization and performs much better for
both seen and unseen objects (91.8% and 91.2%).
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Table 5 Comparison of
different LLMs

Model Commonsense Summarization
Seen (%) Unseen (%) Seen (%) Unseen (%)

text-davinci-003 45.0 45.6 91.8 91.2

text-davinci-002 41.8 37.5 84.1 75.7

code-davinci-002 41.4 39.4 88.6 83.2

PaLM 540B 45.5 49.6 84.6 75.7

Human summary This ablation studies how the sum-
maries provided by the LLM compare to summaries crafted
manually by a human. For each benchmark scenario, a
human-written summary was used by the LLM (in place of
the LLM-produced summary) to predict object placements
for the test objects. The results achieved with this “oracle”
summarization are better than the LLM summarization by
6% for both seen and unseen objects. This result suggests
that the LLM summarizations are already quite good, and
that improvements to LLM summarization could enable fur-
ther gains for our method in the future.

Different LLMs Table 5 reports our performance on the
benchmark using different LLMs. We find that text-
davinci-002 and code-davinci-002 (Chen et al.,
2021), which are older variants of GPT-3, are not as good
as the newest one (text-davinci-003). In particular,
there is a much larger gap between seen and unseen objects.
This is because the older models are more likely to gener-
ate summaries that list out individual objects in the seen set,
which does not generalize well to the unseen objects. For
PaLM 540B (Chowdhery et al., 2022), we find that while
it shows slightly higher performance on commonsense rea-
soning, it does not do as well as text-davinci-003
on summarization, particularly in scenarios where there is
a larger number of receptacles to choose from.

4.4 Human evaluation

To evaluate whether humans prefer the preferences learned
by our method, we conduct a user study based on the scenar-
ios in our benchmark dataset. The study asks participants to
compare the object placements generated by our method to
those of CLIP embeddings, which is the strongest baseline.
The study has 2 objectives:

1. Evaluate whether humans prefer the object placements
generated by our LLM summarizationmethod over those
of the CLIP embeddings baseline

2. Evaluate whether human-preferred object placements
align with the ground truth placements in our benchmark

Study setup We recruited 40 participants (24 males and
16 females) consisting of affiliates from author institutions
and asked them to fill out an online survey. Each participant

Fig. 3 Example user study question. This screenshot shows an example
survey question from our user study. On the left are preferences, on
the right are two placement options corresponding to the two methods
being compared. The participant is asked to select the option that is best
aligned with the given preferences

was assigned 24 scenarios randomly selected from the 96
scenarios in the benchmark. Each scenario in the benchmark
is evaluated by 10 participants, giving 960 evaluations in
total.

For each scenario, we provide (i) example placements of
“seen” objects indicating user preferences, and (ii) place-
ments of “unseen” objects from both our LLM summariza-
tion method and the CLIP embeddings method (example
shown in Fig. 3). The participant is then asked to specify
which of the two object placement options better aligns with
the given preferences, or if they are equally preferable. For
the convenience of the participants, we highlight the object
placements that differ between the twomethods.We random-
ize the order of scenarios as well as the order of methods for
each scenario (the participant is unaware of which option
goes with which method). For some of the scenarios, both
methods give the exact same object placements, so we pres-
elect the third “equally preferred” option and exclude them
from the surveys given to participants.

Results Our results across all 960 evaluations are shown
in Table 6. Overall, we find that our LLM summarization
method is preferred over the CLIP embeddings baseline
46.9% of the time, whereas the baseline is preferred 19.1%
of the time, and both methods are equally preferred 34.1% of
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Table 6 User study results by
sorting criteria

Method Category (%) Attribute (%) Function (%) Subcategory (%) Multiple (%) Overall (%)

CLIP embeddings 19.7 23.7 11.2 22.6 21.2 19.1

Summarization (ours) 47.4 41.9 60.0 46.1 40.6 46.9

Equally preferred 32.9 34.4 28.8 31.3 38.2 34.1

the time. When considering the results broken down by sort-
ing criteria, we find that our method performs particularly
well relative to the baseline for the function criteria (e.g.,
formal vs. casual clothes). Even though the corresponding
benchmark accuracy is relatively high (CLIP embeddings in
Table 3), the baseline method usually sorts by object cate-
gory (as described in Sec. 4.2) which can lead to egregiously
wrong placements (e.g. store dress pants with sweatpants)
when the intended sorting criteria is function.

We ran a statistical analysis with the following null
hypothesis (H0): There is no significant difference between
the preference for our method versus the baseline method. In
other words, the mean fraction of time participants prefer our
method over the baseline is equal to 0.5. For each study par-
ticipant, we calculated the fraction of time our method was
preferred over the baseline method across the 24 scenarios
for that participant. For scenarios where both methods were
equally preferred, we gave them both equal weight. We then
conducted a paired t-test, and found a significant difference
between our method and the baseline method, with a cal-
culated t-statistic of 9.93 (df = 39), p < 0.001, indicating
strong evidence to reject the null hypothesis and suggesting
that the observed difference in human preference between
our method and the baseline is unlikely to have occurred due
to random chance.

We also evaluate how well the participant responses align
with the ground truth in our benchmark. For each sce-
nario, we identify which of the two methods is closer to the
benchmark ground truth based on unseen object placement
accuracy on that scenario. We then calculate the percent of
human responses that prefer the method that is closer to the
ground truth. Overall, across the 40 participants, we find that
human responses were aligned with benchmark ground truth
82.2% ± 7.7% of the time, or 95.4% ± 4.1% if “equally
preferred” is treated as a wildcard.

4.5 Real-world experiments

In our final set of experiments, we test the proposed approach
on a robot performing a cleanup task in the real world
(Fig. 1). The robot base is a holonomic vehicle capable of
any 3-degree-of-freedom motion on the ground plane. This
maneuverability comes from the vehicle’s Powered-Caster
Drive System (Holmberg &Khatib, 2000), which consists of
four caster wheels that are powered to roll and steer as needed

to achieve the desired vehicle motion. The robot manipulator
is a Kinova Gen3 7-DoF arm mounted on top of the mobile
base with a Robotiq 2F-85 parallel jaw gripper as its end
effector.

The robot is placed inside a room with various objects
and receptacles on the floor and is then tasked with picking
up all the objects and putting them into the correct recep-
tacles according to user preferences. The preferences are
provided as a set of textual examples for a particular user
(as in the benchmark). As described in Sect. 3.3 and illus-
trated in Fig. 2, the robot iteratively locates the closest object
on the floor, navigates to it, recognizes its category, picks
it up, determines the appropriate receptacle for the object,
navigates to the receptacle, and then puts the object inside.

Implementation The robot uses two overhead cameras for
2D robot pose estimation (x , y, θ ) and 2D object localization
(x , y). The pose of the robot base is estimated using ArUco
fiducial markers (Garrido-Jurado et al., 2014) mounted on
its top plate (see Fig. 1). The object locations are detected
in the overhead camera using ViLD (Gu et al., 2021), while
the receptacle locations are hard-coded for each scenario.
We found that these design choices work well for our mobile
robot system. However, other pose trackers and object detec-
tors could also be used instead.

To navigate in the scene, the robot calculates the shortest
collision-free path to the target position using an occupancy
map that includes obstacles in the scene such as receptacles.
It then uses the pure pursuit algorithm (Coulter, 1992) to
follow the computed path.

After the robot arrives at the closest object, it uses a camera
mounted on its base (and pointed forward at the ground) to
take a close-up, centered image of the object, then determines
the object category using cosine similarity between text and
image features in the CLIP embedding space (Radford et al.,
2021). The set of object categories in the LLM summary is
automatically extracted and used as the target label set for
CLIP. Note that without these categories from LLM summa-
rization, a human would have to manually specify a list of
fine-grained object classes potentially present in the target
scene in order to use CLIP for object classification.

After the object category is identified, the system uses the
LLM summarization to predict the appropriate receptacle
and manipulation primitive for the object. The robot then
moves the object into the receptacle with a sequence of two
high-level manipulation primitives: (i) pick and (ii) place or
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Fig. 4 Real-world scenarios. We evaluate our mobile manipulation system in 8 real-world scenarios, encompassing a wide variety of objects and
receptacles

Fig. 5 Real-world objects. 70 unique “unseen” test objects are repre-
sented in our real-world scenarios

toss. The “pick” primitive uses the gripper to grasp at the
center of the detected object. The “place” primitive moves
the gripper to a location just above the selected receptacle
and drops the grasped object in. The “toss” primitive swings
the robot arm and releases the gripper with timing that results
in tossing (Zeng et al., 2020) of the grasped object into the
selected receptacle.

Real-world evaluationUsing thismobile robot system,we
ran tests on 8 real-world scenarios as shown in Fig. 4, each
with its own set of 10 objects, 2–5 receptacles, 4–10 “seen”
examples indicating preferences for which objects should go
into which receptacles and which primitive should be used
to put them there, as well as 10 “unseen” test objects. Across
all 8 scenarios, 70 unique “unseen” test objects (Fig. 5) and
11 unique receptacles (Fig. 6) are represented.

For each scenario, we asked the robot to perform 3 runs of
the cleanup task and measured its success throughout opera-
tion. Overall, the systemwas able to put 85.0% of the objects
into the correct receptacle during these tests. For qualita-

Fig. 6 Real-world receptacles. 11 unique receptacles are represented
in our real-world scenarios

tive examples, please refer to the supplementarymaterial and
additional videos at https://tidybot.cs.princeton.edu.

Looking at the results in more detail, there were 240
objects to be cleaned up in total (8 scenarios, 10 objects
per scenario, 3 runs per scenario). We observed that the
overhead camera was able to localize 92.5% of the objects,
and the object classifier correctly identified the object cate-
gory for 95.5% of the localized objects. Given the predicted
object category, the LLM selected the appropriate receptacle
and manipulation primitive for 100% of localized objects.
Additionally, the robot succeeded in executing the chosen
primitive for 96.2% of the localized objects. In terms of
speed, the robot took on average 15–20s to pick up and put
away each object.

Visual language model (VLM) evaluation In this section,
we perform a quantitative comparison of different visual lan-
guage models (VLMs) within our real robot system. Recall
that for each object successfully localized by the overhead
camera, the real robot will first use its egocentric camera
to take a close-up image of the object before picking it up.
This image is given to a VLM to determine the category of
the object. To conduct our analysis, we save all egocentric
images from our real world evaluation (222 in total across all
test runs) and annotate them.

To evaluate a VLM, we run all 222 images through the
model and determine the fraction of images in which the cen-
tered foreground object is correctly recognized. We compare
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Table 7 Comparison of different VLMs

CLIP (%) ViLD (%) OWL-ViT (%)

Summarized categories 95.5 76.1 45.9

Scenario object names 70.7 59.9 24.8

All object names 52.3 36.5 18.5

along two axes: (i) model type and (ii) vocabulary used for
the target label set. The model types we consider (all open-
vocabulary) are (i)CLIP (Radford et al., 2021),whichwas the
image classifier used in our final system, and two alternatives,
(ii) ViLD (Gu et al., 2021) and (iii) OWL-ViT (Minderer
et al., 2022). The vocabulary options we consider are (i)
the set of categories output by LLM summarization (e.g.,
clothing, fruit,...), which was used in our final system, (ii) a
list of human-annotated names for all objects in the current
scenario (e.g., blue jeans, apple,...), and (iii) a list of human-
annotated object names across all scenarios (instead of just
one scenario). Note that the human-annotated options for the
vocabulary are for analysis only, as it would be infeasible
to ask a human to annotate every object encountered during
robot operation. Results are shown in Table 7.

Looking at the results comparingdifferentVLMs (columns
of Table 7), we find that CLIP performs the best out of all the
models. One reason is that CLIP will always output a pre-
diction, whereas the object detectors (ViLD and OWL-ViT)
will sometimes detect no objects in the image. Addition-
ally, ViLD and OWL-ViT are derived from CLIP, and it is
possible that the process of adapting the models to localize
bounding boxes degrades their performance on object clas-
sification.

Qualitatively, the main failure mode of CLIP is reporting
the class of an object in the background rather than that of
the foreground object. This is expected since CLIP performs
an image-wide classification. We also observe that CLIP is
often not able to consider noun phrases as complete units.
For example, the phrase “white socks” may match strongly
with anything that looks white.

For ViLD and OWL-ViT (both object detectors), we use
the bounding box closest to the center of the image as the
detection, since the egocentric camera is pointed directly at
the pick location on the floor. We expected that this localiza-
tionwould improve accuracy since foreground objects can be
isolated from background objects (unlike with CLIP). How-
ever, we find that quantitatively, both ViLD and OWL-ViT
perform worse than CLIP. Qualitatively, ViLD works well
with small rigid objects, but struggles with larger deformable
objects (such as clothes or stuffed animals), outputting many
extraneous detections corresponding to parts of objects.
Additionally, for both ViLD and OWL-ViT, we find that
the foreground object is sometimes not detected at all, even

though it is always prominently placed in the center of the
image.

When looking at results for different vocabularies (rows of
Table 7),wefind that using the categories from theLLMsum-
mary performs the best. This is partly because theVLMhas to
differentiate between amuch smaller number of options (2–5
categories vs. 10 or 65 object names). Note again that the use
of object names is not actually feasible in a real system due to
the human annotation burden. By contrast, our use of LLM
summarized categories allows the system to directly gener-
alize to novel objects as the VLM only needs to correctly
identify the closest category rather than what the specific
object is.

4.6 Limitations

4.6.1 LLM summarization

While LLMs are generally able to summarize preferences
well, we find that there are still cases in which the generated
summary is not quite right. Themost common failuremode is
when the generated summary simply lists out the seen objects
rather than summarizing into categories. Summaries of that
nature are too specific and do not generalize well to unseen
objects. Another failure mode is when the LLM summarizes
receptacles by grouping them together (e.g., top drawer and
bottom drawer might be summarized as drawers), resulting
in poor performance when using the summary for receptacle
selection.

4.6.2 Real-world system

Our implementation of the real-world system contains sim-
plifications such as the use of hand-written manipulation
primitives, use of top-down grasps, and assumption of known
receptacle locations. These limitations could be addressed by
incorporating more advanced primitives into our system and
expanding the capabilities of the perception system. Addi-
tionally, since the mobile robots cannot drive over objects,
the systemwould not work well in excessive clutter. It would
be interesting to incorporate more advanced high-level plan-
ning, so that instead of always picking up the closest object,
the robot could reason about whether it needs to first clear
itself a path to move through the clutter.

5 Conclusion

In this work, we showed that the summarization capabilities
of large language models (LLMs) can be used to gener-
alize user preferences for personalized robotics. Given a
handful of example preferences for a particular person, we
use LLM summarization to infer a generalized set of rules
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to manipulate objects according to the user’s preferences.
We show that our summarization approach outperforms
several strong baselines on our benchmark, and we also
evaluate our approach on a real-world mobile manipula-
tor called TidyBot, which can successfully clean up test
scenarios with a success rate of 85.0%. Our approach pro-
vides a promising direction for developing personalized
robotic systems that can learn generalized user prefer-
ences quickly and effectively from only a small set of
examples. Unlike classical approaches that require costly
data collection and model training, we show that LLMs
can be directly used off-the-shelf to achieve generaliza-
tion in robotics, leveraging the powerful summarization
capabilities they have learned from vast amounts of text
data.
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Appendix A: LLM prompts

This section contains the full prompts used for all LLM text
completion tasks. Each prompt consists of 1–3 in-context
examples in gray followed by a test example that we ask the
LLM to complete. The portion of the test example that is
generated by the LLM is highlighted. We use the same in-
context examples across all scenarios in both the benchmark
and the real-world system. For each scenario, only the final
test example is modified.

A.1 Summarization for receptacle selection

objects = ["dried figs", "protein bar",
"cornmeal", "Macadamia nuts", "vinegar",
"herbal tea", "peanut oil", "chocolate bar",
"bread crumbs", "Folgers instant coffee"]
receptacles = ["top rack", "middle rack",
"table", "shelf", "plastic box"]
pick_and_place("dried figs", "plastic box")
pick_and_place("protein bar", "shelf")
pick_and_place("cornmeal", "top rack")
pick_and_place("Macadamia nuts", "plastic
box")
pick_and_place("vinegar", "middle rack")
pick_and_place("herbal tea", "table")
pick_and_place("peanut oil", "middle rack")
pick_and_place("chocolate bar", "shelf")
pick_and_place("bread crumbs", "top rack")
pick_and_place("Folgers instant coffee",
"table")
# Summary: Put dry ingredients on the top
rack, liquid ingredients in the middle rack,
tea and coffee on the table, packaged snacks
on the shelf, and dried fruits and nuts in the
plastic box.

objects = ["yoga pants", "wool sweater",
"black jeans", "Nike shorts"]
receptacles = ["hamper", "bed"]
pick_and_place("yoga pants", "hamper")
pick_and_place("wool sweater", "bed")
pick_and_place("black jeans", "bed")
pick_and_place("Nike shorts", "hamper")
# Summary: Put athletic clothes in the hamper
and other clothes on the bed.

objects = ["Nike sweatpants", "sweater",
"cargo shorts", "iPhone", "dictionary",
"tablet", "Under Armour t-shirt", "physics
homework"]
receptacles = ["backpack", "closet", "desk",
"nightstand"]
pick_and_place("Nike sweatpants", "backpack")
pick_and_place("sweater", "closet")
pick_and_place("cargo shorts", "closet")
pick_and_place("iPhone", "nightstand")
pick_and_place("dictionary", "desk")
pick_and_place("tablet", "nightstand")
pick_and_place("Under Armour t-shirt",
"backpack")
pick_and_place("physics homework", "desk")
# Summary: Put workout clothes in the
backpack, other clothes in the closet, books
and homeworks on the desk, and electronics on
the nightstand.
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objects = ["jacket", "candy bar", "soda can",
"Pepsi can", "jeans", "wooden block",
"orange", "chips", "wooden block 2", "apple"]
receptacles = ["recycling bin", "plastic
storage box", "black storage box", "sofa",
"drawer"]
pick_and_place("jacket", "sofa")
pick_and_place("candy bar", "plastic storage
box")
pick_and_place("soda can", "recycling bin")
pick_and_place("Pepsi can", "recycling bin")
pick_and_place("jeans", "sofa")
pick_and_place("wooden block", "drawer")
pick_and_place("orange", "black storage box")
pick_and_place("chips", "plastic storage box")
pick_and_place("wooden block 2", "drawer")
pick_and_place("apple", "black storage box")
# Summary: Put clothes on the sofa, snacks in
the plastic storage box, cans in the recycling
bin, wooden blocks in the drawer, and fruits
in the black storage box.

A.2 Receptacle selection

# Summary: Put clothes in the laundry basket
and toys in the storage box.
objects = ["socks", "toy car", "shirt", "Lego
brick"]
receptacles = ["laundry basket", "storage
box"]
pick_and_place("socks", "laundry basket")
pick_and_place("toy car", "storage box")
pick_and_place("shirt", "laundry basket")
pick_and_place("Lego brick", "storage box")

# Summary: Put clothes on the sofa, snacks in
the plastic storage box, cans in the recycling
bin, wooden blocks in the drawer, and fruits
in the black storage box.
objects = ["jacket", "candy bar", "soda can",
"Pepsi can", "jeans", "wooden block",
"orange", "chips", "wooden block 2", "apple"]
receptacles = ["recycling bin", "plastic
storage box", "black storage box", "sofa",
"drawer"]
pick_and_place("jacket", "sofa")
pick_and_place("candy bar", "plastic storage
box")
pick_and_place("soda can", "recycling bin")
pick_and_place("Pepsi can", "recycling bin")
pick_and_place("jeans", "sofa")
pick_and_place("wooden block", "drawer")
pick_and_place("orange", "black storage box")
pick_and_place("chips", "plastic storage box")
pick_and_place("wooden block 2", "drawer")
pick_and_place("apple", "black storage box")

A.3 Summarization for primitive selection

objects = ["granola bar", "hat", "toy car",
"Lego brick", "fruit snacks", "shirt"]
pick_and_toss("granola bar")
pick_and_place("hat")
pick_and_place("toy car")
pick_and_place("Lego brick")
pick_and_toss("fruit snacks")
pick_and_place("shirt")
# Summary: Pick and place clothes and toys,
pick and toss snacks.

objects = ["jacket", "candy bar", "soda can",
"Pepsi can", "jeans", "wooden block",
"orange", "chips", "wooden block 2", "apple"]
pick_and_place("jacket")
pick_and_toss("candy bar")
pick_and_toss("soda can")
pick_and_toss("Pepsi can")
pick_and_place("jeans")
pick_and_place("wooden block")
pick_and_toss("orange")
pick_and_toss("chips")
pick_and_place("wooden block 2")
pick_and_toss("apple")
# Summary: Pick and place clothes and wooden
blocks, pick and toss snacks and drinks.

A.4 Primitive selection

# Summary: Pick and place clothes, pick and
toss snacks.
objects = ["granola bar", "hat", "toy car",
"Lego brick", "fruit snacks", "shirt"]
pick_and_toss("granola bar")
pick_and_place("hat")
pick_and_place("toy car")
pick_and_place("Lego brick")
pick_and_toss("fruit snacks")
pick_and_place("shirt")

# Summary: Pick and place granola bars, hats,
toy cars, and Lego bricks, pick and toss fruit
snacks and shirts.
objects = ["clothing", "snack"]
pick_and_place("clothing")
pick_and_toss("snack")

# Summary: Pick and place clothes and wooden
blocks, pick and toss snacks and drinks.
objects = ["jacket", "candy bar", "soda can",
"Pepsi can", "jeans", "wooden block",
"orange", "chips", "wooden block 2", "apple"]
pick_and_place("jacket")
pick_and_place("jeans")
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pick_and_place("wooden block")
pick_and_place("wooden block 2")
pick_and_toss("candy bar")
pick_and_toss("soda can")
pick_and_toss("Pepsi can")
pick_and_toss("orange")
pick_and_toss("chips")
pick_and_toss("apple")

A.5 Category extraction for real-world system

# Summary: Put shirts on the bed, jackets and
pants on the chair, and bags on the shelf.
objects = ["shirt", "jacket or pants", "bag"]

# Summary: Put pillows on the sofa, clothes on
the chair, and shoes on the rack.
objects = ["pillow", "clothing", "shoe"]

# Summary: Put clothes on the sofa, snacks in
the plastic storage box, cans in the recycling
bin, wooden blocks in the drawer, and fruits
in the black storage box.
objects = ["clothing", "snack", "can",
"wooden block", "fruit"]

A.6 Receptacle selection for real-world system

# Summary: Put clothes in the laundry basket
and toys in the storage box.
objects = ["socks", "toy car", "shirt", "Lego
brick"]
receptacles = ["laundry basket", "storage
box"]
pick_and_place("socks", "laundry basket")
pick_and_place("toy car", "storage box")
pick_and_place("shirt", "laundry basket")
pick_and_place("Lego brick", "storage box")

# Summary: Put clothes on the sofa, snacks in
the plastic storage box, cans in the recycling
bin, wooden blocks in the drawer, and fruits
in the black storage box.
objects = ["clothing", "snack", "can", "wooden
block", "fruit"]
receptacles = ["recycling bin", "plastic
storage box", "black storage box", "sofa",
"drawer"]
pick_and_place("clothing", "sofa")
pick_and_place("snack", "plastic storage box")
pick_and_place("can", "recycling bin")
pick_and_place("wooden block", "drawer")
pick_and_place("fruit", "black storage box")

A.7 Primitive selection for real-world system

# Summary: Pick and place clothes, pick and
toss snacks.
objects = ["granola bar", "hat", "toy car",
"Lego brick", "fruit snacks", "shirt"]
pick_and_toss("granola bar")
pick_and_place("hat")
pick_and_place("toy car")
pick_and_place("Lego brick")
pick_and_toss("fruit snacks")
pick_and_place("shirt")

# Summary: Pick and place granola bars, hats,
toy cars, and Lego bricks, pick and toss fruit
snacks and shirts.
objects = ["clothing", "snack"]
pick_and_place("clothing")
pick_and_toss("snack")

# Summary: Pick and place clothes and wooden
blocks, pick and toss snacks and drinks.
objects = ["clothing", "snack", "can", "wooden
block", "fruit"]
pick_and_place("clothing")
pick_and_place("wooden block")
pick_and_toss("snack")
pick_and_toss("can")
pick_and_toss("fruit")
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