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Main Problem and Motivation

Description of the problem

Object manipulation through imitation learning is a newly developing field in 
robotics. Concretely, robots learn to acquire diverse manipulation skills, such as 
table wiping or cooking shrimp, by taking advantage of human demonstrations.
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Main Problem and Motivation

Challenges

• High-precision and robust closed-loop control is demanded.

• The high-dimensional action space makes it difficult for models to infer time-

consistent action responses.

• Real-time control is indispensable, calling for computionally efficient models.

3Junlin Wang 2024.4.12



AncoraSIR.com

Main Problem and Motivation

Motivation

Diffusion models (DM) have shown great effectiveness in handling high-

dimensional data while capturing multi-modal distributions. Applying DM in 

object manipulation may boost models’ capabilities of inferring multi-modal 

actions in the high-dimensional action space.
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Related Work

1. Explicit Policy

• Directly maps from world state or observation to action [1] [2].

2. Implicit Policy

• Define distributions over actions by using Energy-Based Models [3] [4].
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Limitations of Prior Work

• Not suitable for modeling multi-modal demonstrated behavior.

• Struggles with high-precision tasks.

• Unstable to train.
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Methodology

7Junlin Wang 2024.4.12



AncoraSIR.com

Preliminary

1. Imitation Learning
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Preliminary

2. Denoising Diffusion Probabilistic Models (DDPM)
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• Forward Process: Adding noise to the original image.

• Reverse Process: Recover the original image by denoising.
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Action Chunking
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At time step t, the policy takes as input the 

lastest T0 steps of observation and predict 

Tp steps of actions, of which Ta steps of 

actions are executed on the robot without 

re-planning.
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Diffusion Policy
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Visual encoder: ResNet-18 [1]

Conditioning: FiLM [2] (CNN),

cross attention (Transformer)

Backbone: UNet [3] (CNN), 

MinGPT [4] (Transformer) 

[1] He, Kaiming et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015): 770-778.
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Experimental Setup - Simulation
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1. Datasets

• Robomimic, Push-T, Multimodal Block Pushing, Franka Kitchen.

2. Evaluation Metrics

• The metric for most tasks is success rate, except for the Push-T task, which is target area 
coverage.

3. Training

• State-based tasks are trained for 4500 epochs, and image-based tasks for 3000 epochs.
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Experimental Setup - Real World
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1. Tasks

• Push-T, Mug Flipping, Sauce Pouring and Spreading.

2. Evaluation Metrics

• IoU, success rate, coverage rate, duration.
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 Limitations 
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• Reach suboptimal performance with inadequate demonstration data.

• High computational costs and inference latency.
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Future Work

•  Exploit diffusion model acceleration methods such as new noise schedules, 

inference solvers, and consistency models.
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Extended Readings
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Summary
• This work proposed a novel approach for manipulation, dubbed diffusion policy, 

which achieved state-of-the-art performance on 4 benchmarks with an average 

improvement of 46.9%.

• Action trajectory generation was formulated as a reverse Gaussian denoising process 

conditioned on the latest observation and current iteration through FiLM modulation 

or cross attention. 

• Experiments demonstrated that diffusion policy possessed strong abilities of 

modeling highly expressive multimodal distribution while maintaining temporal 

consistency and training stability.
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