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Main Problem and Motivation

Description of the problem

Object manipulation through imitation learning 1s a newly developing field in
robotics. Concretely, robots learn to acquire diverse manipulation skills, such as

table wiping or cooking shrimp, by taking advantage of human demonstrations.
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Main Problem and Motivation

Challenges
* High-precision and robust closed-loop control 1s demanded.

* The high-dimensional action space makes it difficult for models to infer time-

consistent action responses.

* Real-time control 1s indispensable, calling for computionally efficient models.
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Main Problem and Motivation

Motivation

Diffusion models (DM) have shown great effectiveness in handling high-
dimensional data while capturing multi-modal distributions. Applying DM in
object manipulation may boost models’ capabilities of inferring multi-modal

actions 1n the high-dimensional action space.
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Related Work

1. Explicit Policy
* Directly maps from world state or observation to action [1] [2].
2. Implicit Policy

* Define distributions over actions by using Energy-Based Models [3] [4].

[1] Rahmatizadeh, Rouhollah et al. “Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-to-End Learning from Demonstration.” 2018 IEEE
International Conference on Robotics and Automation (ICRA) (2017): 3758-3765.

[2] Zhang, Tianhao et al. “Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation.” IEEE International Conference on Robotics and
Automation (2017).

[3] Florence, Peter R. et al. “Implicit Behavioral Cloning.” ArXiv abs/2109.00137 (2021): n. pag.
[4] Jarrett, Daniel et al. “Strictly Batch Imitation Learning by Energy-based Distribution Matching.” ArXiv abs/2006.14154 (2020): n. pag. SUSTech
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[imitations of Prior Work

* Not suitable for modeling multi-modal demonstrated behavior.
* Struggles with high-precision tasks.

 Unstable to train.
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Methodology
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Preliminary

1. Imitation Learning

Algorithm 1 Imitation Learning

Given: Observation O, human demonstration H.
1: Randomly initialize policy P.
2: while not converge do

3 Sample o € O, hy € H

4: a;=P(os)

5 minimize M SE(aq, hy)

6: return P
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Preliminary

2. Denoising Diffusion Probabilistic Models (DDPM)
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* Forward Process: Adding noise to the original image.

* Reverse Process: Recover the original image by denoising.
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Action Chunking
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Diffusion Policy
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[1] He, Kaiming et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015): 770-778.
[2] Perez, Ethan et al. “FiLM: Visual Reasoning with a General Conditioning Layer.” AAAI Conference on Artificial Intelligence (2017).

[3] Janner, Michael et al. “Planning with Diffusion for Flexible Behavior Synthesis.” International Conference on Machine Learning (2022).

[4] Shafiullah, Nur Muhammad (Mabhi) et al. “Behavior Transformers: Cloning k modes with one stone.” ArXiv abs/2206.11251 (2022): n. pag. SUSTech
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Experimental Setup - Simulation

1. Datasets
* Robomimic, Push-T, Multimodal Block Pushing, Franka Kitchen.

2. Evaluation Metrics

* The metric for most tasks 1s success rate, except for the Push-T task, which is target area

coverage.

3. Training

* State-based tasks are trained for 4500 epochs, and 1image-based tasks for 3000 epochs.
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Experimental Setup - Real World

1. Tasks
* Push-T, Mug Flipping, Sauce Pouring and Spreading.

2. Evaluation Metrics

* IoU, success rate, coverage rate, duration.
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[Limitations

* Reach suboptimal performance with inadequate demonstration data.

* High computational costs and inference latency.
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Future Work

* Exploit diffusion model acceleration methods such as new noise schedules,

inference solvers, and consistency models.
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Extended Readings
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Summary

* This work proposed a novel approach for manipulation, dubbed diffusion policy,
which achieved state-of-the-art performance on 4 benchmarks with an average

improvement of 46.9%.

 Action trajectory generation was formulated as a reverse Gaussian denoising process
conditioned on the latest observation and current iteration through FiLM modulation

Or Cross attention.

* Experiments demonstrated that diffusion policy possessed strong abilities of

modeling highly expressive multimodal distribution while maintaining temporal

consistency and training stability:.
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