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Abstract— This paper presents a novel model-free reinforce-
ment learning (RL) framework to design feedback control poli-
cies for 3D bipedal walking. Existing RL algorithms are often
trained in an end-to-end manner or rely on prior knowledge of
some reference joint trajectories. Different from these studies,
we propose a novel policy structure that appropriately incor-
porates physical insights gained from the hybrid nature of the
walking dynamics and the well-established hybrid zero dynam-
ics approach for 3D bipedal walking. As a result, the overall RL
framework has several key advantages, including lightweight
network structure, short training time, and less dependence
on prior knowledge. We demonstrate the effectiveness of the
proposed method on Cassie, a challenging 3D bipedal robot.
The proposed solution produces stable limit walking cycles
that can track various walking speed in different directions.
Surprisingly, without specifically trained with disturbances to
achieve robustness, it also performs robustly against various
adversarial forces applied to the torso towards both the forward
and the backward directions.

I. INTRODUCTION

3D bipedal walking is a challenging problem due to
the multi-phase and hybrid nature of legged locomotion.
Properties like underactuation, unilateral ground contacts,
nonlinear dynamics, and high degrees of freedom signifi-
cantly increase the model complexity. Existing approaches on
bipedal walking can be roughly grouped into two categories:
model-based and model-free methods. In [1], the authors
provide a comprehensive review of model-based methods,
feedback control, and open problems of 3D bipedal walking.
One of the main challenges for model-based methods is the
limitation of mathematical models that capture the complex
dynamics of a 3D robot in the real world. This results
in non-robust controllers that require additional heuristic
compensations and tuning processes, which can be time-
consuming and requires experiences.

Reduced order models, such as Linear Inverted Pendulum
and its variants [2], have been studied extensively in the
literature. For these simple models, stable walking conditions
can be stated in terms of the ZMP (zero moment point) [3]–
[5] or CP (capture point) [6], [7], which can significantly
simplify the control design. However, these approaches rely
on some strong assumptions that often lead to quasi-static
and unrealistic walking behaviors. Optimization-based meth-
ods such as Linear Quadratic Regulator (LQR) [8], Model
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Fig. 1: Cassie in simulation: gait recovering from the back-
ward adversarial force with our proposed method.

Predictive Control (MPC) [9], [10], and Hybrid Zero Dynam-
ics (HZD) [11], [12] use the full order model of the robot
to capture the underlying dynamics more accurately, which
yields more natural dynamic walking behaviors. In particular,
HZD is a formal framework for the control of bipedal robots
with or without underactuation through the design of nonlin-
ear feedback controllers and a set of virtual constraints. It has
been successfully implemented in several physical robots,
including many underactuated robots [13]–[16]. Nonetheless,
these methods are computationally expensive and sensitive to
model parameters and environmental changes. Particularly
for 3D walking, additional feedback regulation controllers
are required to stabilize the system [17]–[19]. Notably, recent
work has successfully realized robust 3D bipedal locomotion
by combining Supervised Learning with HZD [20].

With recent progress on deep learning, Reinforcement
Learning (RL) has become a popular tool in solving chal-
lenging control problems in robotics. Existing RL methods
often rely on end-to-end training without considering the
underlying physics of the particular robot. A NN function
is trained with policy gradient methods that directly maps
the state space to a set of continuous actions [21]–[23].
Despite the empirical success, such methods are often sam-
pling inefficient (millions of data samples) and are usually
over-parameterized (thousands of tunable parameters). They
may also lead to non-smooth control signals and unnatural
motions that are not applicable to real robots. Through
incorporating HZD with RL training, [24] generated feasible
trajectories that are tracked by PD controllers to produce
sustainable walking gaits at different speeds. However, this
method only works for a simple 2D robot model. For the
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more complex 3D bipedal walking, [25] adopts RL methods
as part of the feedback control. The method relies on prior
knowledge of a good joint reference trajectory and only
learns small compensations added to the known reference
trajectory, which does not provide the overall control solu-
tion. An imitation learning inspired method is proposed for
a 3D robot [26], which also requires a known walking policy
and gradually improves the policy through learning.

In this paper, we propose a novel hybrid control structure
for robust and stable 3D bipedal locomotion. It harnesses the
advantages of parameterized policies obtained through RL
while exploiting the structure of the intuitive yet powerful
additional regulations commonly used in 3D bipedal walking.
The regulation terms embedded in the design of policy
structure and reward functions differentiate our proposed
method from the previous work of [24] that is also inspired
by HZD. We evaluate the performance of our method on
Cassie, which is also a much more challenging robot than
the 2D Rabbit [24]. We further summarize the primary
contributions of the present paper as follows:
• Model-free: The trained policy naturally learns a fea-

sible walking gait from scratch without the need of a
given reference trajectory or the model dynamics. To
the best of our knowledge, this is the first time that
a variable speed controller for a 3D robot is learned
without using previously known reference trajectories
or training separate policies for different speeds.

• Efficiency: By incorporating the physical insight of
bipedal walking, such as its hybrid nature, symmetric
motion, and heuristic compensation, into the control
structure and learning process, we significantly simplify
the design to a shallow neural network (NN) with
only 5069 trainable parameters. To the best of our
knowledge, this is the smallest NN ever reported for
Cassie. As a result, the NN policy is easy to train. It
is also fast enough for real-time control with 1 kHz
frequency on single process CPU (the low-level PD
controller runs at 2 kHz).

• Robustness: The learned controller is capable of sta-
bly tracking a wide range of walking speeds in both
longitudinal and lateral directions with just one trained
policy. The robustness of the controller is also evaluated
by several disturbance rejection tests in simulation.

II. PROBLEM FORMULATION

In this section, we will review the classic HZD based
feedback controllers for dynamic 3D walking robots. Inspired
by the HZD framework, we then propose to study a model-
free control problem using RL techniques.

A. Existing Challenges of the HZD Framework

One of the main challenges of 3D bipedal walking is to
find feasible trajectories that render stable and robust limit
walking cycles while keeping certain desired behaviors, such
as walking speeds of the system. In the HZD framework, to
obtain such trajectories, an offline optimization problem is
solved using the full-order model, and virtual constraints are

Fig. 2: An example of 3D bipedal walking controller with
heuristic feedback regulations.

introduced as a means to synthesize feedback controllers that
realize stable and dynamic locomotion. By designing virtual
constraints that are invariant through impact, an invariant
sub-manifold is created—termed the hybrid zero dynamics
surface—wherein the evolution of the system is dictated
by the reduced-dimensional dynamics of the under-actuated
degrees of freedom of the system [11], [12].

However, the mathematical models used in this opti-
mization cannot completely capture the complex dynamics
of a 3D bipedal robot. Consequently, additional heuristic
compensation controllers or regulators are often required on
top of the PD tracking controllers to stabilize the robot [18],
[19]. An example of such a control structure with feedback
regulations for a 3D walking robot is shown in Fig. 2. The
compensations δq will either modify the original reference
trajectories qd , or exert extra feed-forward torques based
on additional feedback information, such as the lateral hip
velocity or torso orientation, to improve the stability and
robustness of the walking gaits in experiments. The new
regulated reference trajectory qreg is then tracked by PD
controller through the control action u.

B. Structure of HZD-Based Feedback Controller

From a high-level abstraction, the problem of 3D bipedal
walking can be divided in two stages: trajectory planning
and feedback control.
Virtual Constraints Let q be the vector of joint coordinates
of a general 3D bipedal robot, and τ(t) ∈ [0,1] be a time-
based phase variable (see (3) for explicit definition), then the
virtual constraints are defined as the difference between the
actual and desired outputs of the robot [27]:

y2 := ya
2(q)−yd

2(τ(t),α), (1)

where yd
2 is a vector of desired outputs defined in terms of 5th

order Bézier polynomials parameterized by the coefficients
α , given as:

yd
2(τ(t),α) :=

5

∑
k=0

α[k]
M!

k!(M− k)!
τ(t)k(1− τ(t))M−k. (2)

In this paper, we choose τ(t) to be the scaled relative time
with respect to step time interval, i.e.,

τ(t) =
t− t−

tstep
, (3)

where tstep is the duration of one walking step, and t− is the
time at the beginning of the step. It is important to denote

8747

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 09,2024 at 07:21:06 UTC from IEEE Xplore.  Restrictions apply. 



that by properly choosing the coefficients of these Bézier
polynomials, one can achieve different walking motions.

In the HZD framework, the Bézier coefficients are ob-
tained from the solution of an optimization problem whose
cost function and constraints are determined by the desired
behavior of the robot. Then, the Bézier Polynomials define
the desired trajectories to be tracked in order to drive the
virtual constraints to zero. However, for 3D bipedal walking
robots, simply tracking desired trajectories is not enough to
achieve a stable walking motion. Therefore, the following
regulations are added to the controller: foot placement, torso
regulation, and ankle regulation.

Foot placement controller has been widely used in 3D
bipedal walking robots with the objective of improving the
speed tracking and the stability and robustness of the walking
gait [17], [19], [28]. Longitudinal speed regulation, defined
by (4), sets a target offset in the swing hip pitch joint,
whereas lateral speed regulation (5) do the same for the
swing hip roll angle. In these equations, vx[k] and vy[k] are
the average longitudinal and lateral speeds of the robot at
the middle of step k, vd

x , vd
x are the reference speeds, and

Kpx ,Kdx ,Kpy ,Kdy are manually tuned gains.

δ
sw
hpitch[k] = Kpx(vx[k]− vd

x )+Kdx(vx[k]− vx[k−1]), (4)

δ
sw
hroll [k] = Kpy(vy[k]− vd

y )+Kdy(vy[k]− vy[k−1]). (5)

Torso regulation is applied to keep the torso in an upright
position, which is desired for a stable walking gait. Assuming
that the robot has a rigid body torso, simple PD controllers
defined by (6) and (7) can be applied respectively to the hip
roll and hip pitch angle of the stance leg:

ust
hroll = Kptroll (φ −φ

d)+Kdtroll (φ̇ − φ̇
d), (6)

ust
hpitch = Kpt pitch(θ −θ

d)+Kdt pitch(θ̇ − θ̇
d), (7)

where φ and θ are the torso roll and pitch angles, and
Kptroll ,Kdtroll ,Kpt pitch ,Kdt pitch are manually tuned gains.

Ankle regulation is applied to keep the swing foot flat
during the whole swinging phase, including the landing
moment. For Cassie, this can be done by using forward
kinematics for the reference trajectory of the swing ankle
joint, given as

γ
sw = θ −13deg−50deg, (8)

where γsw is the ankle joint corresponding to the pitch angle
of the swing foot. In addition, to stabilize the walking gait,
especially when walking on soft surfaces [19], the stance
foot pitch angle of the robot will be set to be passive.

It is important to denote that the speed and torso regula-
tions presented above are fixed, intuitive, and applicable to
any general 3D bipedal walking robot. However, given the
decoupled structure of the controller used for the different
regulations, there are several gains that need to be manually
tuned in order to achieve improved stability, which is time-
consuming and requires experience. However, this process
can be easily automated within an RL framework.

C. Tackling the Problem with Reinforcement Learning

Inspired by the nice properties of HZD (low-dimensional
space, accounting of the hybrid nature of walking, virtual
constraints), we propose an RL framework that incorporates
those properties in the learning process to solve the complex
problem of 3D walking. The main objective is to create a
unified policy that can handle both problems presented in
Fig. 2: trajectory planning and feedback control.

By this, we aim to address two specific challenges gener-
ally present in the current methods for 3D bipedal walking (i)
eliminating the hideous task of manually tuning the gains of
the feedback regulations by including them into the learning
process, and (ii) improving the data efficiency of the RL
method by reducing significantly its number of parameters.

To validate the proposed approach, we use Cassie-series
bipedal robot, designed by Agility Robotics, as our test-bed
in this paper. This underactuated biped has 20 degrees of
freedom (DOF) in total. Each leg has seven joints, in which
five of them are directly actuated by electrical motors and the
other two joints are connected via specially designed leaf-
spring four-bar linkages for additional compliance. When
supported on one foot during walking, the robot is underac-
tuated due to its narrow feet. Agility Robotics has released
dynamic simulation models of the robot in MuJuCo [29],
which will be used later in this paper.

III. APPROACH

In this section, we propose a non-conventional RL frame-
work that combines a learning structure inspired by the
HZD with the foot placement, torso and ankle regulation
introduced in section II. We incorporate useful insights from
traditional control framework into the learning process of the
control policy. By HZD-inspired, we refer to the fact that
the learning structure uses a low dimensional representation
of the state and a time-based phase variable to command
the behavior of the whole system while enforcing invariance
of the virtual constraints through impact and symmetry
conditions of the walking gait.

A. Overall Framework

We formally present a non-conventional RL framework
that uses a low dimensional state of the robot to learn a
robust control policy able to track different walking speeds
while maintaining the stability of the walking limit cycle.
The proposed framework first establishes a NN function that
maps a reduced order of the robot’s state to (i) a set of coef-
ficients of the Bézier polynomials that define the trajectory
of the actuated joints, and (ii) a set of gains corresponding to
the derivative gain of the joints PD controller, as well as the
gains for the foot placement and torso regulations described
in section II-B. Independent low level PD controllers are
then used to track the desired output for each joint, which
enforces the compliance of the HZD virtual constraints.

A diagram of the overall RL framework is presented
in Fig. 3. At each time step, the trained policy maps the
inputs of the desired walking velocity, the average actual
velocity, the average velocity tracking error, and the torso
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Fig. 3: Overall structure of the proposed RL framework.

orientation and angular velocity to the set of coefficients
α , the derivative gains of the joint PD controller, and
the compensation gains for the foot placement and torso
regulation. A detailed explanation of the NN structure will be
given in Section III-B. Then, α is used jointly with the phase
variable τ(t) to compute each joint’s desired position and
velocity. Compensation gains are used in the foot placement
regulation and torso regulation to compute the trajectory
compensation for hip roll and pitch angle of the stance and
swing leg of the robot. In addition, the ankle regulation
computes the trajectory for the swing and stance leg ankle
joints. The PD controller uses the tracking error between the
desired and actual value of the output to compute the torque
of each actuated joint, which is the input of the dynamic
system that represents the walking motion of the robot. To
close the control loop, the measurement of the robot’s states
are used as feedback for the inner and outer control loops.

It is worth mentioning that the reference trajectories are
learned from scratch and naturally obtained by the proposed
RL framework. This is in contrast to some existing studies
of RL [30], [25], [26], which rely on some given working
policy providing the joints reference trajectories.

B. Neural Network Structure

Fig. 4 shows the structure of the NN implemented for the
learning process. Cassie’s dynamics model contains 40 states,
the robot’s pelvis position, velocity, orientation, and angular
velocity, plus the angle and angular velocity of all the active
and passive joints of the robot. However, the proposed NN
only contains 12 dimensional reduced-order state: desired
longitudinal and lateral velocity (vd

x , vd
y ), average longitudinal

and lateral velocity (vx vy), average longitudinal and lateral
velocity error (evx , evy ), roll, pitch and yaw angles (φ ,θ ,ψ),
and roll, pitch and yaw angular velocities (φ̇ , θ̇ , ψ̇). Here, we
consider the average speed as the speed during one walking
step of the robot, which takes about 350 ms. All the inputs
are normalized in the interval [−0.5,0.5]. The value of the
desired velocity is uniformly sampled from a continuous
space interval from -0.5 to 1.0 m/s.

The output of the NN corresponds to the coefficients of
the Bézier polynomials, denoted by α , and the set of gains of
the PD controller, foot placement and torso compensations,
denoted by Kd , K f p and Kt , respectively. Initially, since the

Fig. 4: Neural network used during the training process.

robot has ten actuated joints and each Bézier polynomial is of
degree 5, the total size of the set of parameters α should be
60 for the right stance and 60 for the left stance. In addition,
the same derivative gains Kd are used for the corresponding
joints of the left and right legs, which is possible because
of the symmetric nature of the walking gait. Finally, by
equations (4)-(6), K f p and Kt are of the form

K f p = [Kpx ,Kdx ,Kpy ,Kdy ],

Kt = [Kptroll ,Kdtroll ,Kpt pitch ,Kdt pitch ].
(9)

Then Kd is of dimension 5, and both, K f p and Kt , are of
dimension 4. This results in a total of 133 outputs. Nonethe-
less, by considering the physical insight of the dynamic
walking, we can significantly reduce the number of outputs
of the NN from 128 to 45. This will be explained in detail
in Section III-C. The number of hidden layers of the NN
is 4, each with 32 neurons. ReLU activation functions are
used between hidden layers, whereas the final layer employs
a sigmoid function to limit the range of the outputs. As
compared with other methods in the literature [21], [25], the
proposed NN is much smaller in size, making the overall RL
method sample efficient and easy to implement.

Finally, due to the properties of the family of polynomials
used to parameterize the joints trajectories, the set of Bézier
coefficients accurately define the upper and lower bounds of
the desired output trajectories. That is, for each set of Bézier
coefficients αi and desired trajectory qd

i associated with the
ith joint, we have

qmin
i < α

min
i < qd

i < α
max
i < qmax

i . (10)

Therefore, the output range of the set of parameters can be
limited by the physical constraint of each actuated joints, or
even more, by the expected behavior of the robot (qmin

i ,qmax
i ).

This critical feature significantly reduces the continuous
interval of the output, which decreases the complexity of
the RL problem and improves the efficiency of the learning
process.

C. Reduction of Output Dimension

For a general walking pattern, there exists a symmetry
between the right and left stance. Therefore, given the set
of coefficients for the right stance αR ∈ R6x10, where each
column represents the Bézier coefficients for a desired joint
trajectory, we can easily obtain the set of coefficients for the
left stance αL ∈ R6x10 by

αL = αRT (11)
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where T ∈R10x10 is a very sparse transformation matrix that
represents the symmetry between the joints of the right and
left legs of the robot.

To encourage the smoothness of the control actions after
the ground impact, we enforce that at the beginning of every
step the initial point of the Bézier polynomial coincides with
the current position of the robot’s joints. That is, for each
joint i with Bzier coefficients αR ∈ R6x10, we have

αi[0] = qi(τ(0)). (12)

In addition, to encourage the invariance of the virtual con-
straints through impact, we enforce the position of the hip
joints and knee joints to be equal at the beginning and end
of the step (τ(t) = 0 and τ(t) = 1 respectively).

Finally, the ankle regulation enforces the stance ankle to
be passive and the trajectory of the non-stance ankle to be
defined by forward kinematics accordingly to (8). Thus, we
do not need to find the Bézier coefficients for the ankle joints.

D. Learning Procedure

Provided the NN policy structure and the reduced desired
output of actions, the network is then trained with the evo-
lution strategies [31]. Note that our proposed method is not
limited to a particular training method. It can be trained using
any RL algorithm that can handle continuous action space,
including evolution strategies, proximal policy optimization
[22], and deterministic policy gradient methods [32].

In this paper, we adopt the following reward function in
training for Cassie:

r = wT r, (13)

with a vector of 8 customized rewards r and the weights w.
Specifically,

r = [rvx ,rvy ,rh,ru,rCOM,rang,rangvel ,r f d ]
T . (14)

This encourages better velocity tracking (through rvx ,rvy ),
height maintenance (rh), energy efficiency (ru) and natural
walking gaits (rCOM,rang,rangvel ,r f d). Starting from a random
initial state close to a ”stand-up” position with zero velocity
and a uniformly sampled desired velocity, we collect a
trajectory of states, actions and rewards, referred as an
episode. The episode length is 10000 iterations and it has
an early termination if any of these conditions is violated:

ψ|< 0.5, |θ |< 0.5, |φ |< 0.5,
0.75 < pz < 1.1, ∆ f < 0.05,

(15)

where pz is the height of the robot’s pelvis and ∆ f is the
distance between the feet.

IV. SIMULATION RESULTS

To validate the proposed method, a customized environ-
ment for Cassie was built using Mujoco [33]. We used
the model information of Cassie robot provided by Agility
Robotics, which is publicly available [29]. The number of
trainable parameters for the NN is 5069, and the training
time is about 10 hours using a single 12-core CPU machine.
Visualized results of the learning process and evaluation of

Fig. 5: Performance of the learned policy while tracking a
fixed desired longitudinal walking speed.

the policy in simulation can be seen in the accompanying
video submission [34]. This section presents the performance
of the control policy obtained from the training in terms
of (i) speed tracking, (ii) disturbance rejection, and (iii) the
convergence of stable periodic limit cycles.

A. Speed Tracking

Due to the decoupled structure, the learned controller can
effectively track a wide range of desired walking speeds in
both longitudinal and lateral directions. The performance of
tracking a fixed desired speed of 0.5 m/s in the forward
direction is shown in Fig. 5. From Fig. 5(c), one can see the
controller is capable of keeping the upright position of the
torso while walking. This particular behavior is encouraged
by the reward function during the training process, and it
also contributes to the stability of the walking gait.

The performance of continuously tracking various desired
speeds is shown in Fig. 6, in an interval from -0.5 to 1.0
m/s longitudinally (vx), and an interval from -0.3 to 0.3 m/s
in the lateral direction (vy). Note that walking at negative
vx means the robot is walking backward, whereas moving
at positive vy implies the robot is taking side steps to the
left. In both cases, the controller is able to handle any speed
change without falling or losing track of the reference, even
after steep changes in the desired velocity.

B. Disturbance Rejection

To evaluate the robustness of our controller, we applied
an adversarial force directly at the robot’s pelvis in both the
forward and the backward directions. It is worth emphasizing
that we do not inject any torso disturbance throughout the
training process. The robustness of the policy is achieved nat-
urally through the constant updates of the Bézier coefficients,
the derivative gains of the adaptive PD controller, and the
gains of the foot placement, torso and ankle regulators. In the
results shown in Fig. 7 and Fig. 8, we adopt the adversarial
force with the same magnitude of 25 N in both directions. It
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Fig. 6: Performance of the learned policy while tracking
varying desired longitudinal and lateral walking speeds.

Fig. 7: Robustness of the controller when an adversarial force
is applied in the forward direction.

is applied 2 seconds after starting the test and lasts for 0.1
seconds. Throughout our tests, the robot can handle up to 40
N in the forward direction and 45 N in the backward direction
without falling, but the speed tracking may take a long time
to recover with an external force of high magnitude.

Fig. 7 illustrates the response of the controller for a for-
ward adversarial force when the robot is walking in place and
walking forward at 0.5 m/s. Fig. 8 illustrates the response
of the controller when the same force of 25 N is applied in
the backward direction while the robot is walking forward
at 0 and 0.8 m/s. Throughout the four tests, the robot never
falls and always closely recovers to the desired velocity.

C. Periodic Stability of the Walking Gaits

Periodic stability is one of the most important metrics for
assessing the stability of walking gaits. In this paper, we
only empirically evaluated the stability by observing the joint
limit cycles of a periodic walking gait. Fig. 9 shows that the
convergence of several representative robot actuated joints to
periodic limit cycles during a fixed speed walking. Moreover,
the orbit described by the left and right joints demonstrates
the symmetry of walking gaits. This is due to the specific
feature we encouraged in the design of the control policy.

Fig. 8: Robustness of the controller when an adversarial force
is applied in the backward direction.

Fig. 9: Walking limit cycle of the learned policy with the
desired longitudinal velocity of 0.5 m/s.

Although all the results presented in this section are
simulation-based, a future direction of this work is to transfer
the policy learned in simulation to the real robot. How-
ever, some considerations need to be taken to reduce the
simulation-reality gap. For example, injecting noise to the
sensors and actuators during the training process to improve
the robustness of the learned policy.

V. CONCLUSION

This paper presents a novel model-free RL approach for
the design of feedback controllers for 3D bipedal robots.
The unique decoupled structure of the learned control policy
incorporates the physical insights of the dynamic walking
and heuristic compensations from classic 3D walking con-
trollers. The result is a data-efficient RL method with a
reduced number of parameters in the NN that can learn
stable and robust dynamic walking gaits from scratch, with-
out any reference motion or expert guidance. The learned
policy demonstrates good velocity tracking and disturbance
rejection performances on a 3D bipedal robot. The main
contribution of this work does not focus on the control
algorithm but on a novel RL framework with enhanced
features over traditional RL methods. Therefore, we have not
consider the comparison of the proposed framework against
traditional control techniques.
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