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Main Problem

Unclear correlation between design parameters and robot behavior

Leg-Shape (A. Ananthanarayanan et al., 2012)

Table 3. Fixed leg dimensional parameters.

Parameter Symbol  Vector  Value (mm)
Foot length M OA 90
Radius length R AB 240
Tricep extension length L BC 62
Humerus H BS 220
Tricep T, i 100
Tricep connector length C ST 48
Ladder lock connector L CG 20

Mini Cheetah (B. Katz et al.,2019)

TABLE I: Actuator Specifications

HyQ (C. Semini et al., 2011)

Table IV _Geometric parameters of leg and hydraulic joint kinematics

Table III Mass and inertia properties of the HyQ robot Legl2

Leg Segment/Part Mass Inertia Location Pavameter Value
Leg lo 0.08m
Leg-torso attachment 1.31kg - 1 0.35m
Electric motor 1.53kg - 1, 0.35m
Hip assembly (with hip cylinder) 2.48kg 0.00675 kg m* Iy 0.02m
leg (with ki li 1.77k 0704 kg m’ .
Upper leg (with knee cylinder) 77kg 0.0704 kg m2 hip a/a % range: [-90° to +30°]
Lower leg 1.48kg 0.0486 kg m hip fle - 0322m
I s
Foot 0.37kg - 2 l
by 0.045m
Total 8.94kg - -
cy see equation (2)
o
Table V_Technical specifications of the quadruped robot HyQ Ci 624
Description Value Lefn see equation (5)
— 1.0m x 0.5m x 0.98m qu range: [-70° to +50°]
Dimensions (fully stretched legs) (Length x Width x Height)
8 5 knee fle a 0.322m
Leg length (hip a/a axis to ground) from 0.339m (q¢=0°, q,=-70°, q;=140°, q;=0m)
(uncompressed spring) to 0.789m (q,=0°, q,=-10°, 4:=20°, q;=0m) b;;, 0.045m
Distance of left to right hip a/a axis 0.414m Cy see equation (6)
Distance of front to hind hip fe axis 0.747m
Weight 70kg (external hydraulic system), €21 8.04°
cig 91kg (onboard hydraulic system) €22 6.0°
Number of active DOF 12 (8 hydraulic and 4 electric) Let‘tz see equation (7)
Joint range of motion 120° (for each joint) " 5 &
Hydraulic actuator type double-acting cylinders (80mm stroke and 16mm bore) 9z range: [20 to 140 ]
Electric actuator type DC brushless motor with harmonic gear (1:100) ankle (passive) qs range: [_0035m to Om]

Maximum torque (hydraulic)

145Nm (peak torque at Pmax=16MPa)

Mass 440¢g
Dimensions 96 mm O.D.,40 mm axial length
Maximum Torque 17N m
Continuous Torque 6.9 N m
Maximum Output Speed 40 rad/s@24 volts

Maximum torque (electric)

140Nm (peak torque at nominal voltage)

Maximum Output Power

+250/ — 680watts

Onboard sensors

joint position (relative and absolute), joint torque,
cylinder pressure, foot spring compression, IMU

Current Control Bandwidth

4.5kHz@4.5N m, 1.5kHz@Q17N m

Onboard computer

PC104 Pentium, real-time Linux

Output Inertia

0.0023 kg m?

Control frequency

1kHz
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[.imitations of Prior Work |

In conventional paradigm of design optimization

Sparse principle in conventional robotic design
*Bio-inspired Leg

"Cheetah Leg Design by Approximation "HyQ
(A. Ananthanarayanan et al., 2012)

(C. Semini et al., 2011)

Knee Actuator

Hydraulic
system

Ab/Ad Actuator

RH leg LH leg
(right hind) (left hind)
RF leg LF leg
P Fig. 2: The robot can easily reach a wide range of orientations without (right front) (left front)

moving its feet, thanks to the large range of motion at every joint
Fig. 3: CAD Diagram of a Mini Cheetah Leg. Ab/ad actuator is highlighted
green, hip actuator purple, and knee actuator red.

“This elasticity, however, is believed to have a negative impact on the controller
bandwidth and has to be further analysed.

The performance of two-stage servovalves with zero overlap and faster response are
i s e currently being investigated along with the effect of hose length on the actuator

pin-jointed structure.
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[Limitations of Prior Work 11

In computational paradigm of design optimization

Dependence of model-based approach in computational optimization
* Over-simplified model constraints
* Results specifying in predetermined tasks or trajectories

B. Motion generation C. Task Description

We utilise the single rigid body dynamics (SRBD) trajectory For trotting, the high-level motion task is to take two
generation framework TOWR to generate motion plans for steps forward, each of 0.05m, with a fixed step height of
the robots described in this paper. The framework allows us 0.05m. We allocated 22 and 37 knots! for the swing and

to abstract the task for the user by simply using computer-
aided design (CAD) model of the robot, a desired (complex)
terrain and preferred gait parameters. A SRBD model is a
dynamic model used in trajectory optimization, which is based
on centroidal dynamics. Here, the individual rigid bodies

double support phases of the motion, respectively, and used
a symplectic Euler integrator with time-step of 10ms.

For jumping, the high-level motion task is to jump forward
0.1m with a step height of 0.15m. We used the same

of the robot are lumped together into a SRBD model with integrator and time-step as in the trotting case. We defined
constant inertia anchored at the center of mass (COM), which is 20 knots for the flight phase and 40 knots for the take-off
controlled by the contact forces at the end-effectors (EE) [19]. and landing phases.
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Model-Free RL 1n Design Parameters Controlling
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Figure 1: The Actor-Mimic and expert DQN training curves for 100 training epochs for each of the 8 games.
A training epoch is 250,000 frames and for each training epoch we evaluate the networks with a testing epoch
that lasts 125,000 frames. We report AMN and expert DQN test reward for each testing epoch and the mean
and max of DQN performance. The max is calculated over all testing epochs that the DQN experienced until
convergence while the mean is calculated over the last ten epochs before the DQN training was stopped. In the
testing epoch we use € = 0.05 in the e-greedy policy. The y-axis is the average unscaled episode reward during
a testing epoch. The AMN results are averaged over 2 separately trained networks.

Multi-task training policy based on Meta-RL
(C. Finn et al., 2017)

half-cheetah, forward/backward

half-cheetah, goal velocity

ant, goal velocity ant, forward/backward

—— MAML (ours)
--=- pretrained
-+~ random
----- oracle

average refurn

o 1 2 3 o 1 2 3 o 1 2. 3 o
number of gradient steps number of gradient steps number of gradient steps

1 2 3
number of gradient steps

Figure 5. Reinforcement learning results for the half-cheetah and ant locomotion tasks, with the tasks shown on the far right. Each
gradient step requires additional samples from the environment, unlike the supervised learning tasks. The results show that MAML can
adapt to new goal velocities and directions substantially faster than conventional pretraining or random initialization, achieving good
performs in just two or three gradient steps. We exclude the goal velocity, random baseline curves, since the returns are much worse
(< —200 for cheetah and < —25 for ant).
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Proposal of Meta-RL to Quadrupedal Locomotion

* A robust, adaptive neural network controller framework
* A Meta-RL locomotion control policy
* Experimental results on a quadrupedal robot
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Proposed Approach
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Policy training: Design optimization:
Meta Reinforcement Learning(Meta-RL) genetic algorithm
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Algorithm

Markov Decision Process(MDP)
Defined by:
A tuple of state space S
Action space A
The transition probability density P(s; 1 |s¢, a;)
A reward function R(s;,a¢,8i41) :SxAxS 5 R

The objective of RL:
Obtain an optimal policy &, that maximizes the cumulative discounted rewards

E[Zfig V7]
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Algorithm

Fast Adaptation with Meta-learning

Model-Agnostic Meta-Learning (MAML)
a distribution of tasks p(T)
training process:

Algorithm 1: Policy meta-training with MAML
Input: Parametrized policy 7y, Distribution over tasks
p(7T), Number of policy updates N,
Meta-batch size M, length of collected rollouts
K. Step-size hyperparameters «, 3
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Initialize 6;

—y

2 for N policy updates do
3 Sample batch of M design parameter tuples
Ti ~p(T);
foreach 7; do
Sample policy rollouts of length K
D= {(81,051,?"1, S usaan ,SK)};
6 Compute adapted parameters for current task:
7 0. =0 —aVeLlr,(mg);
8 Sample new trajectories D, using adapted
policy mg: in 7;;
9 end
10 | Update 0 < 6 — BV ZT) Lr,(mg:), using the
collected D’;

11 end
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Algorithm

Design Optimization Algorithm 2: Design optimization with meta-policy
Input: Trained meta-policy 7p,, Number of
generations G, Initial design population Py,

Obtain a set of design parameters . .
o . . step-size hyperparameter «, number of gradient
that maximizes a given fitness function f(7) € R updates U, lenght of collected rollouts 7.
G d t f l .th for k in [1...G] do
ra len = ree a gorl m foreaCh Di c Pk dO
Use CMA-ES for the optimization

1
2
3 Set current design to p;;

4 Set policy parameters to initial value: 6 <— 6g;
5 for U gradient updates do

6 Sample policy rollouts of length T

D = {(817a1}T1382? . ,ST)};

The fitness function (the Monte-Carlo estimation):

. - — K 2 = . 7 Perform adaptation step:
C(st): S =R ie. f(T)=Egng(m)[=Cls:)] 7 g iy
9 end
10 Compute fitness score for p; and store it;
11 end
12 Update P using the computed scores.
13 end
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Experimental Setup

Oxmcdef
Domain [ TR
datasets:
some established leg parameters
tasks:
speed tracking error Batch of

Designs

joint torque
joint positive mechanical power

robot hardware setups:

simulated environment Raisim, includes simplified models for the speed and torque
limitations of real actuators.
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Experimental Setup

Baselines:
Vitruvio

Scientific hypotheses tested:

Using a design optimization framework based on meta reinforcement learning
(Meta RL) can quickly adapt to different design instances and achieve near
optimal performance.
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Experimental Setup

Evaluate metrics:

Analyzing the average rewards obtained under different parameters compared
to naive strategies and specifically given strategies.

Tracking Error Torque Mechanical Power EASY HARD
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Experimental Results

1. The meta-policy consistently outperforms the naive multi-task policy in
all cases.

2. After the adaptation steps, the meta-policy reaches rewards comparable
to the specialized policies, achieving close-to optimal capabilities.

TABLE I
OPTIMIZED LINK SCALES WITH RESPECT TO THE NOMINAL DESIGN

Objective Flat Easy Hills Mid Hills Hard Hills Easy Steps Mid Steps Hard Steps
Thigh Shank Thigh Shank Thigh Shank Thigh Shank Thigh Shank Thigh Shank Thigh Shank
Co 1.02 0.99 1.01 1.01 1.06 1.03 1.23 1.18 1.05 1.0 1.07 1.06 1.21 1.17
C- 0.61 0.63 0.63 0.67 0.64 0.68 0.75 0.80 0.70 0.68 0.76 0.77 0.94 0.97
Cp 1.05 0.94 1.07 0.95 1.06 0.93 1.10 0.97 1.04 0.93 1.07 0.96 1.17 1.13
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Experimental Results

TABLE 1l
MEAN IMPROVEMENT IN OPTIMIZATION OBJECTIVES COMPARED TO THE
NOMINAL DESIGN.

o o o
Flat 1.27% | 43.53% | 4.30%
Easy| Hills 2.16% | 43.85% 5.07%
Mid Hills 4.32% 39.72% 3.01%
Hard Hills | 27.85% | 16.36% | 13.47%
Easy Steps 4.50% 37.47% | 4.10%
Mid Steps 6.45% 28.98% 5.47%
Hard Steps | 24.79% | 4.13% 16.01%
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Experimental Results

The most interesting result is:

They further verify the performance of our meta-policy by comparing 1t
against a set of policies trained for specific designs (specialized policy). After
the adaptation steps, the meta-policy reaches rewards comparable to the
specialized policies, achieving close-to optimal capabilities
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Discussion of Results

They would like to highlight the flexibility of their approach in considering
the robot’s operating environment during the design process, which can be

limited 1n the conventional optimization-based approach, where we need analytic
dynamics models.
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[Limitations

1. The cost functions could not capture the actual dynamics of the system.

2. The ratio of different sources isunclear
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Future Work for Paper

Subsequent optimization work

* Adding cost functions for the design optimization.

* Adding more design parameters including discrete and continuous.

* Build prototypes of optimized designs and validate them on the physical system.
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Extended Readings
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Extended Readings

Annual Conference on Robot Learning

Home Attending Contributions Program Information  Organizing Committee  About CoRL  Contact Papers MiBIEDS Bhiotos Program InfRrmaEtion Grganizing Commitiee

2023 Conference on Robot

Learning - -2022 Conference on

Atlanta, GA
Nov 6-9, 2023

Robot Learning

¢ Sir OwenGiGlen Building - 12 Grafton Road, Auckland-CBDB, Auckiand 1010

http://corl2023.org/ http://corl2022.org/
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http://corl2023.org/
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Summary

* The reading is discussing optimal design of legged robots by using meta
reinforcement learning.

* It is hard because there are many parameters affect final performance.

* The key limitation of prior work 1s the design needs tedious manual tuning.

* The key 1nsight of the proposed work 1s Model-Free Reinforcement Learning
for robot controlling.

* This paper demonstrate that RL 1s an 1deal solution to solve the inner
optimization problem of the design optimization.
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Thank you for your listening!
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