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Meta Reinforcement Learning for Optimal Design of
Legged Robots

Álvaro Belmonte-Baeza , Joonho Lee , Giorgio Valsecchi , and Marco Hutter , Member, IEEE

Abstract—The process of robot design is a complex task and
the majority of design decisions are still based on human intuition
or tedious manual tuning. A more informed way of facing this
task is computational design methods where design parameters are
concurrently optimized with corresponding controllers. Existing
approaches, however, are strongly influenced by predefined control
rules or motion templates and cannot provide end-to-end solutions.
In this paper, we present a design optimization framework using
model-free meta reinforcement learning, and its application to the
optimizing kinematics and actuator parameters of quadrupedal
robots. We use meta reinforcement learning to train a locomotion
policy that can quickly adapt to different designs. This policy is used
to evaluate each design instance during the design optimization. We
demonstrate that the policy can control robots of different designs
to track random velocity commands over various rough terrains.
With controlled experiments, we show that the meta policy achieves
close-to-optimal performance for each design instance after adap-
tation. Lastly, we compare our results against a model-based base-
line and show that our approach allows higher performance while
not being constrained by predefined motions or gait patterns.

Index Terms—Reinforcement Learning, Mechanism Design,
Legged Robots.

I. INTRODUCTION

D ESIGNING a robot is an arduous task, since there are
many parameters that affect its final performance. In the

case of legged robots, these design parameters can include limb
lengths, drive-train parameters such as gear ratio, and control
parameters such as gait parameters and duration [1]. The wide
range of continuous and discrete design parameters results in a
combinatorial problem with often unclear correlations between
the design parameters and the resulting robot behavior.

Unfortunately, literature on the design principles of the legged
robot is very sparse. In order to make design decisions, design-
ers often rely on approximations, simulations, or bio-inspired
solutions [2]. Some examples of quadrupedal robots designed
in this conventional paradigm are Mini Cheetah [3], HyQ [4], or
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Fig. 1. Optimal designs for different situations.

ANYmal [5]. Some mention that the range of motion and inertia
are considered in leg design [3] or certain performance goals [4]
are examined, but often it is unclear how the final values are
determined.

For a more quantitative approach to robot design, compu-
tational optimization methods have been introduced to search
for an optimal design [6]. In this paradigm, designing a robot
is formulated as a bilevel optimization problem. Optimizing
the design parameters is the outer optimization problem, and
determining optimal control parameters for each design instance
is the inner problem. Usually, the inner loop entails multiple
sub-objectives, and is generally not differentiable with respect
to the design parameters.

Existing works can be broadly separated into two categories:
Gradient-based and gradient-free methods. Gradient-based
approaches try to define a differentiable relationship between
the control performance (the result of the inner loop) and the
design parameters. In Ha et al. [7], the relationship between
motion parameters and design parameters is defined via the
implicit function theorem such that the gradient computation
is feasible. De Vincenti et al. [8] directly differentiated inverse
dynamics-based whole body controllers to optimize the leg
design of a quadrupedal robot. Dinev et al. [9] also employed
gradient-based optimization to optimize the base and leg shape
of a quadrupedal robot.
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Gradient-free methods are better suited for non-convex prob-
lems. Starting from the computer graphics community [10], this
paradigm has extended its scope to mechanical design optimiza-
tion. In [11], joint optimization of design and control parameters
is performed to maximize the linear speed of a quadrupedal
robot using Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [12]. It was also employed by Ha et al. [13] to
optimize a 2D model of a legged robot. Chadwick et al. [1]
introduced a framework for obtaining optimal leg designs for
walking robots using a genetic algorithm.

All the aforementioned works have one common building
block: they rely on model-based control approaches. The model-
based control methods are generalizable and intuitive, but they
have several limitations for complex systems like legged robots.
Firstly, they often rely on simplified models to reduce com-
plexity. For example, the trajectory optimization method used
in [1] relies on centroidal dynamics and ignores limb masses.
Thus, the design parameters are optimized under the significant
dynamics mismatch and the resulting controller cannot be used
on the physical system. Secondly, the resulting motions rely
on handcrafted primitives and are restricted to predetermined
tasks and trajectories, e.g., predefined gait patterns or base
trajectory [1], [8], [9]. Lastly, since the motion parameters and
simplified dynamics models are often developed/tuned for a
certain instance by hand, it is hard to claim that the optimized
motion is truly optimal for each design.

An alternative control method that has recently gained a
lot of attention for robot control is Model-Free Reinforcement
Learning (RL) [14]. The field of legged locomotion has been
especially active, and has shown very promising results.

Lee et al. [15] demonstrated that it is possible to learn a con-
trol policy for blind quadrupedal locomotion over challenging,
natural environments, and Miki et al. [16] extended this to also
leverage exteroceptive perception of the environment, resulting
in an increase in robustness and speed. These last contributions
validated the viability of the RL in this context.

RL can be an ideal solution to solve the inner optimization
problem of the design optimization since we can obtain a control
policy without model simplification and heuristics. However, RL
has been barely used in the design optimization literature, with
examples in simpler 2D scenarios [17], or multi-object airfoil
optimization for better aerodynamic performance [18].

We extend the work carried out by Won and Lee [19], where
they handle changes in body size and proportions of virtual
characters. A single controller is trained to control characters
with different dimensions on the run, without re-training. This
method suggests that it is possible to obtain a control policy
capable of managing a range of designs.

Although a good starting point, a naive multi-task RL, where
a policy is trained with randomly sampled tasks, often results
in a policy that performs “generally well” in the task space
and cannot reach the performance of a specialized policy for
a certain task [20]. Using a “generally performant” controller
won’t suffice for the design optimization because each design
parameter needs to be evaluated with the best performance.
Hence, we want to train a policy that achieves the performance of
a specialized policy with the least amount of fine-tuning effort.

Meta-learning [21] has proven to be a promising direc-
tion to allow quick adaptation of a neural network model to
a certain task by leveraging information from other similar
tasks [22], [23]. This is done by training a single model in a
range of different tasks, shaping the model parameter space in
a way that favors few-shot adaptation to newly encountered
tasks during test time. Finn et al. [22] demonstrated that a
Meta Reinforcement Learning (Meta-RL) training enables a
fast-adapting control policy.

Based on these insights, we present a framework for design
optimization that evaluates each design parameter using a fast-
adapting Meta-RL policy. We demonstrate its application to
the optimization of quadrupedal robots. Fig. 1 shows designs
optimized for different objective-environment pairs.

Our main contributions are:
� A design optimization framework using a robust, adaptive

neural network controller.
� A Meta-RL approach to obtain a locomotion control policy

that can be easily fine-tuned for different robot designs.
� Experimental results in simulation demonstrating the in-

fluence of different design objectives and operating envi-
ronments on the robot’s design.

II. METHOD

Our approach aims to exploit the robustness and versatility
of RL-based control methods to obtain a locomotion policy that
is not constrained to a specific motion and environment. This
allows us to perform design optimization based on data obtained
from a wide variety of motions, resulting in an optimized design
not constrained to a specific situation.

Fig. 2 shows an overview of our approach. Our method
consists of two different phases: First, we use Meta-RL to train
a policy with randomly sampled design parameters and terrains.
We used the RL environment by Lee et al. [15] with terrain
curriculum. Secondly, the trained policy is used to evaluate
different designs and find a design that maximizes a design
objective. Importantly, since the policy training and the design
optimization are separated, the trained meta-policy can be reused
for different design optimization tasks.

In this section, we describe our Meta-RL approach to train
an adaptive locomotion policy and the implementation of our
design optimization framework.

A. Markov Decision Process

We model the locomotion control problem as a Markov Deci-
sion Process (MDP). MDP is a mathematical framework for for-
mulating a discrete-time decision-making process which is com-
monly used in RL. An MDP is defined by a tuple of state spaceS ,
action spaceA, the transition probability densityP(st+1|st, at),
and a reward functionR(st, at, st+1) : S ×A× S → R. Every
timestep, the learning agent receives a state st ∈ S from the
environment and takes an action at ∈ A depending on its policy
πθ(at|st), receiving a reward value rt.

The objective of RL is to obtain an optimal policy π∗ that
maximizes the cumulative discounted rewards E[

∑∞
t=j γ

trt]
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Fig. 2. Overview of the proposed design optimization pipeline. We first train a control policy that adapts to different design instances within a range of design
parameters via Meta-RL, then perform the design optimization using a genetic algorithm.

throughout interactions with its environment in an iterative
fashion, where γ is known as the discount factor.

We define the MDP akin to the “teacher policy training”
from [15] and [16]. st is composed of the velocity command,
linear and angular body velocity, joint states, frequency and
phase of the gait pattern generators for each foot (the policy
learns to modulate periodic leg phases), and the two last actions
taken by the policy. Since our design optimization is conducted
in simulation, we also make use of the privileged observations
consisting of contact states from the different parts of the robot,
and terrain height information around each foot.Additionally,
our observation vector includes the design parameters, as in [19].

Our reward function consists of velocity tracking rewards for
the command 〈vtarget

x , vtarget
y , ωtarget

z 〉 like in [16], which denotes
linear velocity in x, y direction and angular velocity along
z-axis in base frame. We also favor stability of the base by
penalizing velocities orthogonal to the command. We encourage
stepping by rewarding the number of feet not in contact with the
ground, and penalize collisions with the rest of the parts of the
robot. To encourage smooth motion, we penalize differences
both in outputs and velocity between time steps. Finally, we
also penalize joint torques to increase efficiency and prevent
damage. A complete definition of the reward function is provided
in Table IV in the appendix.

The policy πθ(at|st) is modeled as a Gaussian policy, i.e.,
at ∼ N (mθ(st), σθ) using a Multi Layer Perceptron (MLP)
for mθ(·) and a state-independent σθ. We use Proximal Policy
Optimization (PPO) [24] for policy optimization.

B. Fast Adaptation With Meta-Learning

The Model-Agnostic Meta-Learning (MAML) [22] approach
is used to train our meta-policies.1 In this framework, we define

1We followed the author’s implementation: github.com/cbfinn/maml

a distribution of tasks p(T ) that we want the policy to be able
to adapt to. p(T ) is a uniform distribution over the design
parameters in our setup. Algorithm II-C describes the training
process. Each policy update involves training the policy for
M different tasks sampled separately from p(T ) (Lines 4-9),
gathering samples with fine-tuned policies πθ′

i
for each (Ti),

and updating the policy using the aggregated data (Line 10).
This approach enables fast fine-tuning to a task from p(T ) with
a small amount of data possible during test time.

C. Design Optimization

The goal of the design optimization is obtaining a set of design
parameters that maximizes a given fitness function f(T ) ∈ R.
Due to the non-differentiable way we evaluate each design
parameter, our design optimizer should be a gradient-free al-
gorithm. We use CMA-ES [12] for the optimization, which has
been widely used in the design optimization literature as stated
in section I.

The fitness function is the Monte-Carlo estimation of a per-
formance metric C(st) : S → R, i.e.,

f(T ) = Est∼ξ(πθT )
[−C(st)],

where ξ(π(T )) denotes trajectories generated by a policy πT
fine-tuned for T ∼ p(T ). We will define C in the next section.

For every T , we perform an adaptation of our meta-policy in
the optimization loop, in order to achieve optimal performance
for each design. The inclusion of these adaptation steps is
described in Algorithm II-C.

III. EXPERIMENTAL RESULTS

In this section, we first validate the effectiveness of our
Meta-RL approach and then present the outcomes of the design
optimization under different objectives and environments. The
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policy behavior and the optimized designs in motion can be seen
in the supplementary video.

A. Experimental Setup

1) Design Parameters: As shown in Fig. 2, Our goal is to
optimize the design of a robot’s legs. A base design comes from
a robot currently being developed, which consists of ANYmal
C [25] main body with longer legs. The nominal length is
350 mm for both thigh and shank links, on the basis of simplified
considerations similar to those mentioned in [2]. This value is a
starting point for the optimization algorithm and does not have
to be accurate.

The parametrization of the design consists of lt, ls ∈
[0.6, 1.4], which are scale factors for the nominal link lengths.

For example, the shank length is ls × 350mm. 〈lt, ls〉 defines
a task T . We adapt the link masses by applying the same scale
factor, since a cylinder’s mass scales linearly with its length.

Other parameters have also been considered, such as the gear
ratio of the actuators, the geometry of the linkage transmission,
the attachment point of the legs to the base, and the orientation
of the first actuator. We decided to restrict the optimization to
the link lengths for the more in-depth experiments, to make
the results more understandable and to compare with previous
works. In section III-F, we will extend the parameter space to
include the gear ratios of the actuators.

2) Design Optimization Objectives: We perform the design
optimization as described in Algorithm II-C using different cost
functions (C(T ) : T → R) to verify our framework. We define
three optimization objectives to be minimized:
� Velocity tracking:

Cv =
∑

t∈[0,T ]

((ev)
2
t + (eω)

2
t ),

� Weighted joint torque:

Cτ =
∑

t∈[0,T ]

wt

⎛
⎝ ∑

i∈{1,..12}
(τi)

2
t

⎞
⎠

� Weighted joint positive mechanical power:

Cp =
∑

t∈[0,T ]

wt

⎛
⎝ ∑

i∈{1,..12}
max((φ̇iτi)t, 0.0)

⎞
⎠ ,

where ev = ‖vtarget
x,y − vx,y‖2, eω = ‖ωtarget

z − ωz‖2, and wt =

exp(1.5((ev)
2
t + (eω)

2
t )). τ and φ̇ denote joint torque and ve-

locity, respectively. We clip wt to a maximum value of 100 for
stability of the optimization process.

When defining the optimality of a robot design, there is an
important trade-off to consider: performance versus efficiency.
Strong and versatile robots usually consume more power or
require higher joint torques. With the weighting factor wt, we
account for this trade-off. When the tracking error (ev, eω) is
large, wt grows exponentially. This weighting leads to a Pareto
optimum between minimizing the selected metric, while still
maintaining a good performance level.

The trade-off is often not considered in existing model-based
approaches like [1] since they rely on pre-defined kinematic
trajectories. They are inherently bound by the motion generator
that does not consider different designs. On the other hand, we
can explicitly optimize for the trade-off since our framework can
generate optimal motions for any design instances from p(T ).

3) Implementation Details: The training environments are
implemented using Raisim [26] simulator. In addition, a simpli-
fied model for the velocity and torque limits of the real actuator
is included in the simulation. All the policies are trained for
N = 2000 epochs using the same hyperparameters for PPO,
which are detailed in Table V in the appendix. Each epoch runs
1000 training environments with random velocity commands
and terrain parameters.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 15,2024 at 09:30:39 UTC from IEEE Xplore.  Restrictions apply. 



12138 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

The design optimization is implemented using PyCMA [27]
library. The design optimization is performed forG= 30 genera-
tions, with a population of 35 different designs. For each member
of the population, the meta-policy is adapted using U = 5 PPO
updates with rollouts of length T = 50. Then, 250 transitions are
collected with the adapted policy to compute the fitness score
for CMA-ES. The adaptation and score computations for each
member of the population are done with data from 300 parallel
simulated environments, each of them with a randomly sampled
command and differently generated terrains.

The design optimization takes about 1.4 hours of wall clock
time using a desktop machine (CPU: AMD Ryzen 7 4800 h,
GPU: Nvidia GeForce GTX 1650Ti, 16 GB Memory) without
parallelization of the evaluation for each member of the popu-
lation in the CMA-ES algorithm.

B. Effect of Meta-Learning on the Policy Adaptation

We validate our Meta-RL approach for training design-
conditioned policies. We compare a policy trained as described
in Algorithm II-C (meta-policy) against a naive policy trained
over uniformly sampled design parameters (naive-policy).

Fig. 3-(a) shows a comparison of the average reward obtained
by the two policies across different parameters. The rewards
are computed from 3000 rollouts of 500 time steps each. The
meta-policy consistently outperforms the naive multi-task policy
in all cases.

We further verify the performance of our meta-policy by
comparing it against a set of policies trained for specific designs
(specialized policy). The result is given in Fig. 3-(b). After the
adaptation steps, the meta-policy reaches rewards comparable to
the specialized policies, achieving close-to-optimal capabilities.

Based on this analysis, we use our meta-policy for the follow-
ing design optimization experiments. For each evaluated design
instance, we fine-tune our meta-policy.

C. Design Optimization Using Different Objectives

We conduct design optimization comparing three scenarios:
(1) Performance-only, (2) Reducing joint torques, and (3) Re-
ducing power consumption.Cv ,Cτ , andCp are used, respectively.
The result is shown in Tables I, II, and Fig. 4.

On flat terrain (Table I-Flat), the result for (1) is similar to the
nominal design, which is designed by an engineer, with a slight
increase in the thigh length (2 %), so no major improvement
is obtained. The torque-minimized design (Cτ ) opts for the
minimal possible leg length, thereby reducing the moment arm
and total mass and inertia. This results in a drastic improvement
of 43.5 % in the optimization score compared to the nominal
design (Table II-Flat).

The positive mechanical power (Cp) minimization results in
a design with similar legs, and with a higher thigh/shank pro-
portion (1.05:0.94). This design aims to find a balance between
reducing leg lengths to reduce the joint torque as in the previous
case, but also avoiding high joint speed to limit power consump-
tion. In addition, the longer thigh seeks for higher end-effector
velocities with smaller joint speed. With this, we can get a 4.3 %
reduction in weighted mechanical power consumption compared
to the nominal design (Table II-Flat).

Fig. 3. (a) Evaluation of average reward obtained by our meta-policy against
a parametrized policy trained by randomizing the design parameters. (b) Eval-
uation of average reward obtained by our meta-policy against policies trained
specifically for given designs.

Fig. 4. Optimal designs for different objectives on flat terrain.

D. Optimal Designs for Rough Terrains

We evaluate how different terrains affect the optimal leg
design. We use parameterized terrains presented by [15]. Two
types of terrains are simulated: hilly terrain and discrete steps.
The former entails smooth transitions between slopes and flat
terrains, and the latter simulates discrete height changes and
foot-trapping while walking. The terrain parameters are ran-
domized during training as well as friction coefficients for each
foot. Examples of the terrains are shown in Fig. 5. We modulate
the difficulty level by changing the roughness, frequency, and
amplitude of the hills in the first case, and modifying the step
width and height in the second case.

We investigate how the design changes when optimized for
diverse terrains with increasing difficulty levels. The optimiza-
tion results are given in Table I and Table II. The general trend is
that with increasing terrain roughness, the design tends to have
longer legs that allow the robot to overcome obstacles in the
terrain with ease.

For maximizing tracking performance (Cv), the designs main-
tain the slight increase in thigh/shank ratio as in flat terrain,
although augmenting the overall leg length as the terrain gets
harder. This increment in limb longitude translates into a better
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TABLE I
OPTIMIZED LINK SCALES WITH RESPECT TO THE NOMINAL DESIGN

TABLE II
MEAN IMPROVEMENT IN OPTIMIZATION OBJECTIVES COMPARED TO THE

NOMINAL DESIGN

Fig. 5. Examples of rough terrains with different difficulty levels used for the
optimization.

command tracking performance as complexity levels rise, with
improvements of 25-27 % in the extreme cases.

The results for torque and mechanical power minimization
continue this trend. In addition, in these cases we clearly see
the importance of wt, which trades-off command tracking
performance. For torque minimization, the design optimizer
always seeks to reduce the link lengths as much as possible
while still maintaining enough workspace to locomote through
the hills and steps present in the environment. Similar behavior
can be seen in the power minimization case, where the higher
thigh scale ratio is preserved while increasing the leg length in
the most extreme cases.

E. Comparison With a Model-Based Baseline

We validate our framework by comparing with a previous
work: Vitruvio [1]. Vitruvio evaluates each design instance using
a trajectory optimization method [28] in the design optimization
loop. [1] presented leg link optimization of the ANYmal-B
robot [5] on flat terrain with fixed forward directional command
(section III-B in [1]). We solve the same design optimization
task using our framework, and compare the resulting designs
with respect to the design objectives defined by [1].

1) Experimental Setup: We optimize the link lengths of the
ANYmal-B robot for the task of forward locomotion on flat

terrain. The robot is commanded to walk at 0.36 m/s in x di-
rection. Vitruvio introduced three different metrics to minimize:
Joint torque minimization, mechanical power minimization, and
Mechanical Cost Of Transport (MCOT) minimization. The two
first metrics are the same introduced in section III-A, but without
the weighting factor wt. MCOT is defined as follows:

MCOT =
Pmech

mg|v|
In contrast to [1]. where the optimization is performed for

each leg independently, we treat the system as a whole, so the
MCOT is computed using the total mass and mechanical power
of the robot.

Additionally, we used neural network dynamics model of
ANYdrive actuator to enhance the simulation fidelity [29], such
that the data used for the optimization is more realistic. Note
that Vitruvio cannot take into account such a complex actuation
dynamics. Our policy can be deployed on the robot while Vit-
ruvio’s motion requires additional regularization and a whole
body controller [28].

2) Results: we build 12× 12 cost maps over the design
space for the objectives presented above (Fig. 6). The value at
each cell is the average value of 500 episodes in 500 different
environments for each design instance.

As it can be seen in Fig. 6, optimal designs by Vitruvio
(blue dots) tend to have a big difference between thigh and
shank lengths, and do not reside in the low-cost area of the cost
map according to our simulation (dark area). In contrast, our
designs (stars) do fall in these areas and present more moderate
differences between thigh and shank scales.

The mismatch can come from different reasons, such as the
modelling simplifications (centroidal dynamics, lack of actuator
model, optimizing each leg independently) or the difference in
the capability of the control methods. One important source is
the kinematic restriction imposed by the pre-computed motion
trajectory. Vitruvio relies on a predefined trajectory generated
by trajectory optimization [28], and rejects designs that cannot
fit in (e.g., too long or too short legs).

In addition, our result is consistent with the results reported
by Ha et al. [13] where it is shown by controlled experiments
that the optimal design for torque minimization of two-link legs
for quadrupedal robots falls within a shank/thigh ratio between
1.0 and 1.5. Results from other frameworks [8], [9] also follow
this trend.

F. Higher Dimensional Experiment

To verify the effectiveness of our approach in a higher dimen-
sional example, we also include the gear ratios for both the hip
and the knee actuators as design parameters. This results in a
4D design space; 2 for leg lengths, 1 for knee gear ratio, and 1
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Fig. 6. Cost maps of ANYmal-B for different metrics. Yellow stars represent optimal designs found with our framework, and blue dots are optimal designs
reported in Vitruvio [1].

TABLE III
OPTIMIZED DESIGNS AND MEAN IMPROVEMENT WITH RESPECT TO NOMINAL

DESIGN FOR 4D DESIGN SPACE

for hip gear ratio. The nominal values for these parameters are
5.6 and 8.0 for the hip and knee gears, respectively.

We run the design optimization for flat terrain and rough
terrains. The result is shown in Table III. The optimized designs
have higher hip gear ratio and lower knee gear, which results in
stronger hips and faster knees.

The two additional optimized design parameters result in
higher improvements in our considered optimization objectives
compared to the 2D cases.

G. Computational Benefit

Having a policy that adapts fast and performs nearly optimally
for each design instance enables us to run the design optimization
without training specialized policies for different designs. In
our setup (see III-A), Each specialized policy takes about 12
hours of wall clock time to train, while training a meta-policy
takes approximately 72 hours until convergence. The design
optimization runs for 30 generations, with 35 different designs
per generation. This means that each generation would require
about 420 h if the policy training is done in series. On the other
hand, the design optimization including policy adaptation using
our meta-policy takes only about 1.4 h.

IV. CONCLUSION

We present a novel approach to the design optimization
problem by introducing an adaptive RL-based locomotion con-
troller during the optimization process. The locomotion policy

is conditioned on the design parameters such that it can act
as an optimal policy for each design instance. We use Meta
Reinforcement Learning to enable the fast adaptation of the
policy to a specific design during design optimization. The
pretrained meta-policy is used for design optimization alongside
a genetic algorithm and any user-defined optimization metric. In
principle, our framework can be applied to any design problem
since both the controller (meta-policy) and the design optimizer
(genetic algorithm) are model-free.

We would like to highlight the flexibility of our approach in
considering the robot’s operating environment during the design
process, which can be limited in the conventional optimization-
based approach, where we need analytic dynamics models.

We applied our framework to optimize leg link lengths of two
quadrupedal robots. Our results show that with Meta-RL, we
can obtain a policy that achieves close-to-optimal locomotion
control of the robot within a range of design specifications
with only few adaptation steps. Furthermore, in contrast to
model-based methods, the policy can deal with unanticipated
changes in the environment. This results in designs optimized
in a more versatile sense, not overfitted to specific motions
and environments. Our case studies show that a considerable
improvement can be obtained compared to a hand-crafted design
(nominal design). Additionally, we conducted a qualitative
comparison with an existing framework (Vitruvio) and showed
that our approach results in lower-cost designs that are consistent
with existing literature.

One of the limitations of our framework is the cost functions
used for the design optimization. Although being standard met-
rics in the design optimization literature, these cost functions
could not capture the actual dynamics of the system. E.g., the
power consumption of the physical system consists of not only
the joule heating or mechanical energy, but also other factors like
transmission losses that are not reflected in our cost functions.
Furthermore, the ratio of different sources is unclear. Thus,
further research in realistic cost functions is required, but this
wasn’t part of the scope of this project.

Future work should seek to build prototypes of optimized
designs and validate them on the physical system. The addition
of more design parameters, both discrete and continuous, is also
a possible work direction in order to evaluate how Meta-RL
behaves with a wider parameter space.
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TABLE IV
REWARD FUNCTION DEFINITION

TABLE V
PPO HYPERPARAMETERS

APPENDIX

The reward function consists of two main terms: rv and rω .
These terms make the policy learn to follow the given velocity
command, both linear and angular. The remaining values are
regularization terms, which improve the overall quality of the
motion.
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