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Abstract—The development of robotic arms has gained sig-
nificant momentum in recent years, revolutionizing various
sectors such as industry, medicine, and daily life. Among the
advancements, the integration of gesture recognition technology
with robotic arms stands out as a cutting-edge approach. By
combining robotic arms with computer vision technology, this
advanced system captures and analyzes the position, posture,
and movements of human gestures using visual devices like cam-
eras, depth sensors, and infrared sensors. Employing computer
vision algorithms, the system accurately classifies and recognizes
gestures by leveraging machine learning and pattern recognition
techniques. Based on these recognition results, the robotic arm
mimics and tracks the user’s hand movements by precisely
controlling each joint’s motion using only average 83.54s, which
proves to be efficiently compares to other control methods. We
also use this control methods to collect data for mimic learning on
training manipulator. This hand motion tracking technology finds
applications in numerous fields, including surgical assistance in
medicine and enhancing interactive experiences in virtual reality
and gaming.

I. INTRODUCTION

In recent years, the development of robotic arms has become
increasingly widespread. The application of robotic arms has
made great contributions to the industrial field, medical field,
and daily life. Among them, the robot arm with gesture
recognition technology is an advanced robot technology. It
combines robotic arms and computer vision technology, cap-
turing the position, posture, and movements of human gestures
through visual devices such as cameras, depth sensors, and
infrared sensors. Through the processing of computer vision
algorithms, the system can classify and recognize gestures.
These algorithms utilize machine learning and pattern recogni-
tion techniques to train machines to recognize various gesture
actions and associate them with specific tasks or commands.
Based on the recognition results, the robotic arm simulates
and tracks the user’s hand movements by controlling the
movements of each joint. The robotic arm technology that
tracks user hand movements has wide applications in many
fields. For example, in the medical field, it can serve as a
surgical aid to provide better support for patients and medical
staff. In the fields of virtual reality and gaming, hand motion
tracking technology can make interactive experiences more
realistic.

We now propose a pose control system for desktop robotic
arms. This system allows users to use natural hands to
control robotic arm posture for daily assistance needs. The
goal of the project is to develop a desktop robotic arm that
can recognize user’s hand posture and reproduce movements.
The key challenge is to accurately convert user’s expected

movements into robotic arm movements. The robot arm can
be precisely controlled by position control, but this method
needs to consider the solution of the forward kinematics
and inverse kinematics of the human arm. Therefore, after
reviewing the research of Li Fei-Fei’s group [1], we decided
to consult their research and adopt a simpler speed control
method as the control method for this robotic arm. When
the user’s hand movement is detected, the corresponding
commends are generated, speed and acceleration information
is directly transmitted to the robotic arm. This system has
several advantages, including ease of use, flexibility, and the
ability to train the robotic arm through imitation learning,
whereby the arm can learn from human demonstrations.

This project is divided into two main objectives. Firstly,
to realize gesture recognition control. Tracking user hand
movements faces some challenges, such as the demand for
high-performance calculations and algorithms for accurate
recognition and real-time tracking of complex gestures. Also,
the structural design of the robotic arm affects the smoothness
of the movements. Secondly, through imitative learning train-
ing, the robot arm is expected to perform tasks independently,
which will make task execution more efficient and accurate.
Imitative learning reduces the need for complex programming
and improves the accuracy and naturalness of motion. The
quality and quantity of training samples have a particularly
important impact on training effectiveness, therefore it is
necessary to ensure the diversity and representativeness of the
samples.

Fig. 1. Our work: Gesture and pose control of manipulator in simulation.



II. RELATED WORK

Imitation learning and offline reinforcement learning have
been applied in several fields, such as playing table tennis,
Go and video games. Imitation learning can learn the task
strategy of the task (for example, BC-Behavioral Cloning)
or solve the RL by inferring an underlying reward function
[2]. However, both BC and IRL need to demonstrate the
same short-sighted manipulation task multiple times, and are
affected when attempting to mimic the long-sighted activity,
even though they are consisted of the demonstrated short-
sighted skills. In our experiments, the core idea of the IRIS
algorithm is to combine behavioral cloning and incremental
reinforcement learning for offline robot operation learning
through the interaction of planner and policy.

A. Learning Task-Oriented Grasping

Past research has explored ways to use deep learning
[2][3][4] techniques to learn robotic grasping strategies. These
methods often rely on data collected from the real world
or on simulations via object models [4].This paper pro-
poses a method based on simulation self-supervision for
learning grasping strategies in task-oriented tool operations.
This method achieves the ability to learn grasping strate-
gies from large-scale simulated data by combining simulated
environments and deep learning techniques. There are two
main components: a grab evaluator and a grab generator.
The grasping evaluator predicts the success probability of
grasping by inputting the image and the tool pose. The grab
generator uses this evaluator to generate grab poses with a
high probability of success. Through self-supervised learning
on large-scale simulated data, the robot can learn grasping
strategies adapted to different tasks and tools. The paper also
proves experimentally that the proposed method shows good
performance and migration ability in the tool operation tasks
in the real world.

B. Random Cropping Ensemble Neural Network

In the robot arm grasping system, image classification is a
key task, which can help the robot to quickly and accurately
identify different objects and make corresponding grasping
decisions [5]. Traditional image classification methods often
rely on manually designed feature extractors and classifiers[6].
These methods require knowledge and experience from do-
main experts, and performance in complex scenarios may be
limited. In contrast to these methods, our method uses simu-
lated self-supervised learning, trained using large-scale simu-
lated data, to learn more general grasping strategies in different
task and tool contexts. Compared to traditional methods, our
method exploits the powerful representation learning ability of
neural networks, which is able to automatically learn features
from the data and classify them. Deep learning methods have
achieved remarkable success in image classification tasks.
Convolutional neural network (CNN) is a commonly used
deep learning model, which can learn a hierarchical feature
representation from images. Our method is also based on deep
learning but introduces the idea of random tailoring ensemble

to further improve the classification performance. Our method
borrows the idea of ensemble learning by introducing random
cropping ensemble in the image classification task. Multiple
image fragments with different sizes and positions were gen-
erated by randomly tailoring the input images and fed into
multiple neural network models for classification. Finally, the
prediction results from multiple models are integrated to obtain
more accurate classification results.

C. RoboTurk

The article[7] provides 6 degrees of freedom intuitive mo-
tion control, the mobile phone movement mapping to the robot
arm movement. Users can watch the autonomous robot arm try
to solve the task and help, if necessary, to help the robot learn
from errors. RoboTurk You can host multiple simultaneous
users, each controlling a robot arm in their own workspace,
and multiple users in a shared workspace, to demonstrate
collaboration and adversarial tasks. Meanwhile the latency
is very low and can control simulated and physical robotic
arms from around the world through real-time robots. This
has been stress-tested by controlling the Stanford robotic arm
from distant places such as China and India.

In our experiment, we used MediaPipe in gesture recogni-
tion part, through MediaPipe recognition to gesture, and then
the gesture binding to our control code, so as to achieve a
gesture to control a movement, in the demo, they used the
keyboard control, and in stanford roboturk, they used the
phone for mechanical arm control. We trained our data with
several methods: BC, HBC and IRIS.

III. DATA

For the simulation and datasets, factors like accuracy, real-
time performance and the cost-effectiveness and flexibility
detemind why we choose to use these rather than others.
What’s more, the availability integration, comprehensive doc-
umentation, community support, and prior experience with
these tools also influenced our decision.

Our project relies on utilizing data from the Mediapipe li-
brary for hand pose and gesture detection. Mediapipe provides
a robust and efficient solution for real-time hand tracking
within the simulation environment. By detecting the coor-
dinates of human pose and hand, we are able to extract
essential information for recognizing and classifying various
hand gestures. All these coordinates data can be obtained by
access to Landmarks of pose, which is in world coordinate
system.

Regarding the simulation environment, we opted to utilize
Robosuite as our platform of choice. Robosuite offers a
comprehensive set of tools, control access, and manipulator
models necessary for our research objectives. By leveraging
Robosuite, we could focus on developing and implementing
the hand gesture-based control system without the need for
physical robots. This allowed us to iterate and experiment
more rapidly while significantly reducing costs and logistical
challenges associated with physical hardware. In addition
to hand gesture detection and control, an essential aspect



Fig. 2. Hand detection key points

of our project involves leveraging RoboMimic to learn the
demonstration of gesture control and enable the manipulator to
perform tasks autonomously. The utilization of RoboMimic’s
imitation learning capabilities further demonstrates our appli-
cation of the ideas and skills acquired during the quarter. By
leveraging the collected demonstration data and employing
different imitation learning algorithms, we have effectively
trained the manipulator to perform tasks autonomously based
on the gestures detected by our system. Since robosuite and
robomimic is development by a same lab, the dataset that
records simulation data can be converted to each other in very
simple maner. In fact, their structure is actually the same.

Fig. 3. Every set of demonstrations is collected as a demo.hdf5 file. The
reason for storing mujoco states instead of raw observations is to make it
easy to retrieve different kinds of observations in a postprocessing step. This
also saves disk space (image datasets are much larger).

Therefore, We run our pose controller to demonstrat how to
finish the task and collect them into a *.hdf5 file. Then convert
the dataset to low dimension dataset that can be accessed by
robomimic.

By selecting this approach, we have effectively applied the
ideas and skills developed during our quarter of study to
address the problem of manipulator control and training based
on hand gesture detection. We have leveraged state-of-the-art
libraries and simulation environments, enabling us to develop
an efficient and practical solution.

IV. METHODS

Throughout the quarter, we acquired essential knowledge
and skills related to gesture recognition, control systems,
and simulation environments. By applying these ideas and

skills, we have successfully developed and implemented the
gesture control system for the manipulator To provide a visual
representation of our methodology, Figure 1 illustrates an
overview of the gesture control system. It demonstrates the
flow of information from hand gesture detection to gesture
classification, command mapping, and manipulator control.
Through the combination of Mediapipe, Robosuite, and our
expertise in control systems and simulation environments, we
have effectively tackled the problem of gesture control of the
manipulator. The application of our ideas and skills developed
during the quarter has enabled the creation of an accurate,
intuitive, and cost-effective solution.

Fig. 4. Overall description of the Gesture Control System. Including
simulation setting, gesture detection and action recording

In addition, we conducted machine learning training on the
datasets collected after the robotic arm completed the specified
task in the simulation environment. By using different machine
learning algorithms, we have gotten models that can initially
implement specific grasping task.

A. Gesture Control

1) Approach to Problem Solving: Our approach to gesture
control of the manipulator consists of several key components
that work together seamlessly to achieve precise and intuitive
control. These components include hand gesture detection,
gesture classification, gesture-to-command mapping, and ma-
nipulator motion control.

• Hand Gesture Detection using Mediapipe: We employ
the Mediapipe library for hand pose estimation and
gesture detection. This powerful tool accurately tracks



TABLE I
GESTURES CONTROLS COMMAND

Gestures Command
Five-Move in four directions Move arm horizontally in x-y plane

Two-Move up and down Rotate arm about x-axis
Four-Move up and down Rotate arm about y-axis
Six-Move up and down Rotate arm about z-axis

Good Down
Stone Up

SpaceBar Gripper(Open/Close)
q Reset

ESC Quite

Fig. 5. Description of gesture control method with icons. Users can simply
follow these actions to control a manipulator in simulation environment. They
can also change gestures according to their habits.

the coordinates of the hand and its key landmarks in real-
time. By leveraging the robust hand tracking capabilities
of Mediapipe, we can capture the intricate movements
and positions of the hand, enabling effective gesture
recognition.

• Gesture Classification: Once the hand landmarks are
detected, we employ a gesture classification algorithm to
analyze the finger positions and movements. By consider-
ing the relative positions and angles of the fingers, we can
classify various hand gestures, such as ”Five,” ”Good,”
”Stone,” ”Two,” ”Four,” and ”Six.” This classification
process is crucial for accurately interpreting the user’s
intended gestures.

• Gesture-to-Command Mapping: After classifying the
gestures, we establish a mapping between the recognized
gestures and the corresponding manipulator commands.
This mapping enables the translation of gestures into
precise control instructions for the manipulator. For ex-
ample, the ”Five” gesture can be mapped to control the
manipulator’s movement in the x-y plane, while ”Good”

and ”Stone” gestures can be associated with vertical mo-
tion (up and down). Similarly, ”Two,” ”Four,” and ”Six”
gestures can be mapped to control rotational movements
around the x-axis, y-axis, and z-axis, respectively.

• Manipulator Motion Control: To translate the recog-
nized gestures into manipulator movements, we utilize
appropriate control techniques such as inverse kinematics
(IK) or operation space control. The first one is move
relative to the global coordinate frame. The second one
is relative to the local robot end effector frame. These
techniques enable us to calculate the required joint angles
or operational space coordinates for the manipulator to
execute the desired actions accurately. By integrating the
gesture control system with the manipulator’s controller,
we achieve real-time and precise motion control based on
the recognized gestures.

• Gesture Adjustment and Real-time Feedback: We pro-
vide users with the ability to adjust the gestures according
to their preferences and habits. This customization allows
for a personalized interaction with the manipulator. Fur-
thermore, real-time visual is incorporated to provide users
with immediate awareness of the manipulator’s response
to their gestures, enhancing the overall user experience.

By combining these components and features, our approach
offers an accurate, intuitive, and interactive gesture control
system for the manipulator. Users can effortlessly communi-
cate their intentions to the manipulator through hand gestures,
enabling a natural and user-friendly control interface.

B. Training from human demonstration

There are three steps to carry out robot arm training:
1) Data collection and processing: Datasets are constructed

by observing and recording the expert-demonstrated state
and action data. We have completed data collection in the
process of gesture control of the robot arm and implemented
post-process for the datasets to guarantee compatibility with
robomimic.

2) Model selection and training: The agent(robot arm)
learn experience knowledge from the obtained trajectories
rather than interact with the environment, so we choose
imitative learning and offline reinforcement learning as the
models. We employed three different algorithms to train the
dataset that we processed in the first step. By comparing these
methods, we can analyze the most suitable training approach
and identify areas for improvement in the dataset.

For imitation learning, we utilize Vanilla Behavioral
Cloning(BC) algorithm and Hierarchical Behavioral
Cloning(HBC[7]) algorithm to implement training process.
As for this BC algorithm, we use a simple supervised
regression from observations to actions, along with some
variants such as stochastic GMM policy and stochastic VAE
policy. Unlike traditional BC, HBC focuses on learning and
copying the behavior of experts on multiple levels. For offline
reinforcement learning, we utilize Implicit Reinforcement
without Interaction at Scale(IRIS[8]) algorithm to implement
training process. The planner is responsible for learning an



initial strategy from the offline data, and then takes its output
as the goal of the strategy for further incremental augmented
learning.

3) Model evaluation and analysis: The effect of completing
tasks of the robot arm will be reflected in validation losses:
The model parameters will be updated every time we conduct
training, and the updated model will be used for calculating
validation loss. By observing and analyzing the variation of
validation losses with the number of training sessions, the
model can be evaluated.

V. EXPERIMENTS

A. Experiments Setting

In our experiments, we focused on evaluating the effective-
ness and efficiency of our gesture control system using five
simulated tasks: Block Lifting (Lift), Block Stacking (Stack),
Wiping (Wipe), Pick Place items (PickPlace), and Nut-and-peg
Assembly (Assembly), as illustrated in Fig.6.

1) Block Lifting (Lift): This task serves as a diagnostic
example and involves lifting a cube using the UR5e
robot arm. It provides a simple scenario to evaluate the
basic functionality of the gesture control system.

2) Block Stacking (Stack): In this task, the goal is to stack
blocks on top of each other, requiring precise manipula-
tion and coordination of the manipulator’s movements.

3) Wiping (Wipe): The wiping task involves moving the
manipulator in a wiping motion, simulating cleaning or
wiping actions. This task tests the system’s ability to
perform continuous and controlled motions.

4) Pick Place items (PickPlace): In this task, the manipula-
tor is tasked with picking objects from one location and
placing them in another. It assesses the system’s capabil-
ity to perform accurate object grasping and placement.

5) Nut-and-peg Assembly (Assembly): This task represents
a more complex and challenging scenario, where the
manipulator needs to assemble nuts onto pegs. It tests
the system’s ability to handle intricate and precise ma-
nipulation tasks.

To evaluate the effectiveness and performance of our gesture
control system, we conducted a user study involving 10 stu-
dents aged 20-25. Each participant provided 20 demonstrations
on the block lifting task and 5 demonstrations on each of the
other tasks. This user study allowed us to collect a diverse
range of gesture data and assess the system’s robustness across
different tasks. To compare the efficiency of our controller,
we compared the number of actions taken with official pro-
fessional datasets and datasets collected using other interfaces.
This analysis provides insights into the efficiency and effec-
tiveness of our gesture control system compared to alternative
approaches. Additionally, we compared the completion time
and maneuverability of our system with RoboTurk phone
interface and other interfaces. This evaluation allowed us to
assess the system’s performance in terms of task completion
speed and the user’s ability to maneuver the manipulator
accurately and efficiently using the gesture control system.

Fig. 6. Five Tasks we test in our experiments. Lifting: Lift a box. Stacking:
Stack one small box on another big box. Pick and Place: Pick four different
real world item to there own place. Wipe: wipe the dirty things on the table.
Nut Assemble: Put nut on peg.



By conducting these experiments and evaluations, we aim
to demonstrate the efficacy of our gesture control system
across various tasks, compare its efficiency with alternative
approaches, and assess its performance in terms of completion
time and maneuverability. These findings provide valuable
insights into the capabilities and limitations of our system and
contribute to its further refinement and development.

To develop an intelligent robot arm, we used the datasets
which collected by ourselves to train a model that can com-
plete the “lift” task. The datasets contain 100 successfully
captured trajectories with certain differences in task comple-
tion effect. As we proposed before, we will use total two
algorithms, BC and HBC, to train the collected datasets. By
comparing the grasping effect and training numbers of the
three algorithms, we hope to find an algorithm suitable for
the training set and get a model that can quickly complete
the task. Since these algorithms can reuse trajectories in the
datasets, we stop training when the loss reaches a stable value
rather than setting an best loss value.

In this experiment, we firstly trained a model that could
perform the same task ”lift” using the datasets provided by the
robomimic official website and the three algorithms mentioned
before. Then, the trained models were compared with the
models trained with the collected datasets. We ploted the
validation losses from the robomimic datasets trained with
each algorithm. After horizontal comparison, We ploted each
models success rates after convergence for vertical compari-
son. Based on the comparison results, methods to optimize the
training results are found from datasets, training algorithms
and other aspects.

B. results

1) Experiment 1: Comparison of Number of Actions:
According to the data structure, we can collect number of
actions that are needed for task completion. Here we compare
our average number of actions with official datasets, which was
collected with operator using RoboTurk platform and machine-
generated actions. There is also distinguish difference between
professional operator and normal operator, so we classify them
into two categories: Proficient-Human, Multi-Human that in-
clude different level of operators. Our dataset is consist of 500
demonstrations that recorded after 10mins practice. Proficient-
Human (PH): The average number of actions required for task
completion was 3. Multi-Human (MH): The average number
of actions required for task completion was 12. Machine-
Generated (MG): The average number of actions required for
task completion was 8. Pose-demonstrations (our work): Our
Pose-demonstrations approach achieved a significantly lower
average number of actions, with only 5 actions required for
task completion. These results demonstrate that our Pose-
demonstrations approach outperforms the other datasets in
terms of efficiency and streamlined task completion.

2) Experiment 2: Comparison of Interfaces: We evaluated
our Pose-Control interface by comparing it with other con-
trol interfaces such as Keyboard, 3D Mouse, VR Controller,
and Phone. The Kolmogorov-Smirnov statistics were used

Fig. 7. Comparison of number of actions: For two tasks, Lifting and
NutAssemable, we compare four datasets. The proficient-Human(PH), Multi-
Human(MH) and machine-Generate are from the official datasets. The last
one is our collection from pose-demonstrations. The less action it use, the
better control it will be. Clearly, our dataset show good performance, just use
more actions than the proficient operator.

Fig. 8. The Kolmogorov-Smirnov statistics were used to measure the
difference between completion times in the Lifting task across different
interfaces, followed by associated p-values. Our work is similar to the Phone
and VR Controllers, which completion time is rather low in this group.

to measure the difference between completion times in the
Lifting task across different interfaces, followed by associated
p-values. The results are presented in the table1.

Based on our collection of completion times, we observe
the following order in terms of increasing completion times:
Phone ≈ VR Controller ≈ Pose-control > 3D Mouse >
Keyboard. These results suggest that our Pose-control interface
performs competitively compared to other interfaces, with
faster completion times than Keyboard and 3D Mouse, and
comparable performance to VR Controller and Phone. Our
Pose-control interface provides a balance between intuitive
control and efficient task completion.

3) Experiment 3: Comparison of models trained with col-
lected datasets: To gain insights, we applied three distinct
algorithms, BC, HBC, and IRIS, to train and analyze the data.
The Fig.10 illustrates the models validation losses obtained
from these algorithms. After training the collected datasets, we
made a horizontal comparison of their validation losses: Upon
closer examination, we noticed substantial fluctuations in the
loss function values across all three algorithms. However,
an encouraging trend emerged – the loss function converged



Fig. 9. Comparison of completion time of different interfaces: The figure
shows the mean values of the completion time using different interfaces,
which show the competence of each interface. The less time it use, the more
adaptable the interface fit for people to use.

over time for each algorithm. Despite the initial volatility, the
overall trajectory pointed towards convergence.

Delving deeper into the analysis, we compared the conver-
gence speeds and stability of the algorithms based on the loss
function values. Remarkably, the HBC algorithm outperformed
the others in terms of both convergence speed and achieving
a lower stable value for the loss function. This indicates that
HBC exhibited faster learning and converged to a more optimal
solution compared to BC and IRIS.

4) Experiment 4: Official datasets training results com-
pared with ours: After training the robomimic datasets, we
firstly made a horizontal comparison of their validation losses.
The accompanying Fig.11 illustrates the loss function of the
test results datasets obtained from three algorithms. Upon
analyzing the results obtained from the three datasets in
Imitation Learning, it can be found that with the increase of
training times, except for the HBC algorithm, the losses of
other algorithms on the whole present a trend of substantial
and rapid decline , slow decline and convergence. On the
other hand, HBC algorithm presents first rapidly decline,
then slow decline to the lowest value, then slow rise, and
convergence finally. As can be seen from the shape of the
image, BC algorithm and IRIS algorithm show relatively stable
performance and satisfactory convergence. BC algorithm tends
to converge after 200 training sessions, while IRIS algorithm
tends to converge after 100 training sessions. However, HBC
algorithm reaches the lowest point after about 25 training
sessions which means that the convergence speed of this
algorithm is significantly higher than the other two algorithms.

Then We made statistics and comparison on the success
rates of each algorithm after convergence, and divided each
algorithm into two categories according to different datasets,
respectively collected datasets and robomimic datasets. Fig.12
shows the comparison of success rates of each algorithm.

We can find that the success rates of all models trained
using robomimic datasets are above 92.5%, which means that

Fig. 10. Comparison of validation losses for models trained using the
collected datasets: The figure shows the validation losses of models trained by
different algorithms. From top to bottom are Behavioral Cloning, Hierarchical
Behavioral Cloning, and Implicit Reinforcement without Interaction at Scale.
The X-axis represents the number of training sessions

these models can complete the lift task well. Especially for
the model obtained through the HBC algorithm, the success
rate is as high as 97.5%. In contrast, the models trained with
collected datasets have poor performance. Although the model
trained under the HBC algorithm still has the highest success
rate, the success rate is only 47.5% which even less than half
of 97.5%. The model with the lowest success rate is trained
using the BC algorithm, which only reaches 2.5%. This means
that the BC method is completely unsuitable for the collected
datasets. As the only offline reinforcement learning algorithm



Fig. 11. Comparison of validation losses for models trained using the
robomimic datasets. The algorithms used from top to bottom are Behavioral
Cloning, Hierarchical Behavioral Cloning, and Implicit Reinforcement without
Interaction at Scale. The X-axis represents the number of training sessions

in the testing algorithms, IRIS is significantly superior to BC
algorithm. While the success rate of 37.5% is still slightly
lower than HBC algorithm.

C. Evaluations

In our experiments, we compared five user interfaces for
robot control: Keyboard, 3D Mouse, Virtual Reality (VR)
Controller, Phone (RoboTurk), and Pose-control (Our work).
Each interface offers unique advantages and trade-offs in terms
of cost, accuracy, and ease of use.

Fig. 12. Comparison of success rates of each algorithm: The figure shows
the success rates of all algorithms after convergence. The higher rate it have,
the better the success rate of the trained model to complete the task.

• Keyboard: The keyboard is the most widely available
interface but lacks natural 3D control. It may lead to de-
generate demonstrations that do not accurately represent
free-form, 6-DoF movement.

• 3D Mouse: The 3D mouse interface allows simultaneous
translation and rotation along multiple axes. The local
movements of the 3D mouse are mapped to the robot
end effector.

• Virtual Reality (VR) Controller: The VR Controller,
specifically the HTC Vive, provides high-fidelity tracking
and natural 3D control. However, it requires specialized
VR hardware and may not be as readily accessible as
other interfaces.

• Phone (RoboTurk): The Phone interface, implemented
through RoboTurk, offers a mobile and convenient control
option. However, it may have limitations in terms of accu-
racy and control precision compared to more specialized
interfaces.

• Pose-control (Our work): We designed the Pose-control
interface based on pose-tracking, aiming to combine the
ease of control and accuracy of a VR controller with
the ubiquity of a keyboard. This interface utilizes hand
and pose tracking to interpret gestures and translate them
into robot control commands. It offers an intuitive and
accessible control method.

We evaluated the performance of our Pose-control interface
based on the following metrics:

1) Number of Actions: We compared the average number
of actions required for task completion using our Pose-
control interface with the official datasets collected using
Roboturk and machine-generated actions. Our Pose-
control approach achieved a lower average number of
actions, indicating more efficient and streamlined control
for task completion.

2) Completion Times: We measured the completion times
for each task across different interfaces. Our Pose-
control interface demonstrated significantly lower com-
pletion times compared to the professional datasets and
other interfaces in simple tasks like lifting a box. In more



complex tasks like fitting nuts, our Pose-control interface
showed competitive completion times, outperforming
the professional datasets and some other interfaces.

3) User Study Feedback: During the user study with 10
participants, we gathered qualitative feedback to assess
the usability and user experience of our Pose-control
interface. Participants reported that the interface was
intuitive and easy to use, allowing them to perform
tasks with minimal effort. The natural mapping of hand
gestures to robot actions facilitated a sense of direct
control and improved task performance.

4) Comparison with Other Interfaces: Based on the
Kolmogorov-Smirnov statistics, our Pose-control inter-
face showed statistically significant differences in com-
pletion times compared to the other interfaces, demon-
strating improved control precision and reduced comple-
tion times.

5) Robustness Evaluation: We evaluated the robustness of
our Pose-control interface by examining its performance
under different user conditions and variations in ges-
tures. This showcases the robustness and adaptability
of our approach to accommodate user preferences and
variations in gesture patterns.

Overall, our Pose-control interface offers a compelling
alternative to traditional control interfaces, providing a balance
between intuitive control, accessibility, and task performance.
The results of our evaluation highlight the effectiveness, ef-
ficiency, user experience, and robustness of our Pose-control
approach.

In order to test whether the trajectory datasets of robot arm
completed by gesture control can be used for the training
of intelligent robot arm, we conducted multiple experiments
for lift task and summarized the trajectory datasets. After
processing the datasets, we used three different algorithms,
BC, HBC and IRIS, for model training. The results show that
the model validation losses generally change from high to low
with the increase of training times. However, all the models
have small reduction range and poor stability after conver-
gence, which will fluctuate greatly near a value. So as to find
reference targets for the test results, we used the robomimic
official datasets to train the models separately under the same
algorithms. These models all have a large decline ranges and a
small fluctuation after convergence, indicating that the trained
models are obviously better than the models trained using the
collected datasets. A more intuitive comparison is the value
of validation success rate after each model converges. The
results show that the success rates of the models trained with
the robomimic datasets are significantly higher than that of
the models trained with the collected datasets. However, for
the HBC algorithm, the success rate of the model obtained
by training with the collected datasets is close to 50%, which
means that we have preliminarily realized the training of the
intelligent robot arm. Applying this model to a robot arm can
make it realize the specific task to a certain extent.

The quality of the datasets we collected are poor compared
to the robomimic datasets, which is attributed to the challenges

encountered during the data collection process. Due to the
limitation of the camera in the simulation environment, the
end-effector may poke the desktop and cause interference
when controlling the end effector to grasp the task. In the
process of machine learning, this behavior may lead to the
unexpected failure of the arm’s motion to converge. At present,
the control method based on gesture recognition only realizes
that one action corresponds to one direction of the robot arm,
which leads to more steps in the process of data recording. As
mentioned earlier, the collected datasets steps average around
200 with considerable fluctuations ranging from 100 to 960,
presenting a stark contrast to the robomimic datasets average
step length of around 50. The higher number of steps, the
more complex the task and the more difficult machine learning
becomes. It is worth noting that longer steps often require
more data to support training.

In order to get good training results in offline reinforcement
learning and imitation learning, sufficient data is also essential.
With a maximum of 100 trajectories, our datasets pales in
comparison to the robomimic datasets, which comprise over
200 trajectories. This scarcity of data leads directly to numer-
ous situations where rewards cannot be effectively provided,
subsequently impeding the convergence process.

In light of these observations, it becomes evident that
substantial improvements are necessary to attain optimal per-
formance. Notably, HBC algorithm is superior to the other
two test algorithms both in convergence speed and success
rate. Moving forward, addressing the identified issues, such
as refining data collection methods to mitigate inaccuracies
and expanding the datasets size, will undoubtedly contribute
to the overall advancement of our approach. By undertaking
these measures, we aim to bridge the performance gap and
achieve results that align more closely with the standards set
by the robomimic datasets.

VI. CONCLUSION

In this project, we have completed the function of gesture
recognition and successfully transmitted the recognition infor-
mation to the manipulator. The recognition information will
be converted into velocity and acceleration information and
transmitted to the robotic arm, which has the advantage of high
flexibility. The smoothness and stability of gesture recognition
have been verified.

In the experiment of training the trajectory of the robotic
arm, we compared the BC, HBC, and IRIS algorithms based
on convergence speed and success rate, and a low-level success
rate was achieved.

Future work will focus on adapting to other visual device
(such as improving latency). At the same time, gesture recog-
nition has been realized to control the robot arm, so we can
continue to try to control the movement of a complete robot
in a similar way. In addition, one of the important reasons for
the insufficient success rate of imitation training is the poor
quantity and quality of sample datasets, so we will continue
to make efforts in improving sample datasets.
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