
Review on GGCNN: A Real-time, Generative,
Grasp Synthesis Approach

Wang Siyuan, Zhao Ruihan, Su Zhaowen, Liu Ziyu, Lin Peijun

Abstract—The development of intelligent robotic grasping
(IRG) is important in various household and industrial appli-
cations, but it is complex due to the different shapes of objects
and environmental factors. Deep convolutional neural networks,
such as the generative grasping CNN (GG-CNN), have facilitated
IRG by generating grasping strategies for unknown objects.
However, factors such as dataset and annotation methods, type of
robotic arm and simulation environment, and training methods
and hardware devices impact the accuracy and applicability of
the model. In this study, we reproduced GG-CNN and proposed
some improvements after identifying potential limitations. Un-
der our task setting, GGCNN achieved an average of 83.9%
successful grasp rate and a 101.12ms prediction duration, while
GGCNN2 achieved 93.7% and 116.8ms on average. Based on
our experimental results, GGCNN and GGCNN2 can effectively
predict planar grasping poses from a depth image at a fast rate.
GGCNN has relatively lower computational requirements, while
GGCNN2 requires a little more computing time and shows a
better performance. However, our work reveals that GGCNN’s
grasp depth prediction is unreliable for objects with hollow
structures.

I. INTRODUCTION

Intelligent robotic grasping (IRG) is a challenging problem
in various household and industrial applications. Precisely and
intelligently grasping unfamiliar objects in unknown environ-
ments is complex because of the different shapes of the objects
and the impact of environmental factors. The emergence of
deep convolutional neural networks (CNNs) and new designs
of various CNN architectures have facilitated the development
of IRGs, allowing for the planning of grasping strategies for
unknown objects.

The deep learning grasping approaches have been actively
investigated recently. Peter Corke and Morrison provide a way
to predict multiple grasps and calculates the grasp scores based
on FCNs. By using feature maps representing pixelwise grasps
on the images, the proposed generative grasping CNN (GG-
CNN) in predicts a set of grasps with corresponding quality
from the depth image. The obvious advantage is that dense
grasp generation and the corresponding primary evaluation can
be accomplished with only a single prediction of the FCN.

However, several factors, such as the dataset and annotation
methods employed, the type of robotic arm and simulation
environment used, as well as the training methods and hard-
ware devices utilized, have a significant impact on the accuracy
and applicability of the model. For this reason, we intend to
reproduce Peter Corke’s work (GG-CNN)[9] and analyze the
performance differences between our approaches. And finally,
we have identified some potential limitations of GG-CNN and
have proposed some improvement strategies.

II. RELATED WORK

Grasp synthesis is the process of developing a stable robot
grasp for a specific object. This topic has been widely studied,
and numerous techniques have been proposed. These ap-
proaches can be generally classified into analytic and empirical
methods (Bohg et al., 2014)[1]. Analytic methods use math-
ematical and physical models to determine stable grasps, but
they do not perform well in the real world due to challenges
in modeling physical interactions between the manipulator and
the object (Rubert et al., 2017)[11].

Empirical methods, on the other hand, rely on experience-
based approaches and models to determine grasping points.
Some of these methods use offline databases of known ob-
jects or object classes, but they are unable to generalize to
new objects. In the 2017 Amazon Robotics Challenge, many
teams were presented with novel objects just before their
challenge run to test their ability to generalize (Morrison et
al., 2018b)[10].

Deep-learning techniques have improved object grasping in
recent years, with numerous techniques developed by several
researchers (Lenz et al., 2015)[4]. Typically, these approaches
sample grasp candidates from an image or point cloud and rank
them using convolutional neural networks before executing
the best grasp candidate open-loop. However, this method
demands precise calibration between camera and robot, robot
control, a static environment, and can be time-consuming.

To overcome the issue of long execution times, various
techniques are used to reduce the number of grasp candidates.
For instance, some approaches pre-process and eliminate un-
feasible grasp candidates, while others simultaneously predict
the quality of a specific set of grasp candidates (Johns et al.,
2016)[3]. However, these approaches trade off execution time
against the number of grasp candidates that are sampled. As
a result, they may overlook some potential grasps.

Instead of sampling grasp candidates, Douglas Morrison,
Peter Corke, and Jurgen Leitner et al. present a novel approach
to perform object-independent grasp synthesis from depth
images via deep neural networks. Their generative grasping
convolutional neural network (GG-CNN) overcomes short-
comings in existing techniques, namely discrete sampling of
grasp candidates and long computation times while achieving
better performance.

We reproduce their work, address the issues of execution
time and grasp sampling by directly generating grasp poses
for every pixel simultaneously, using a comparatively small
neural network.



III. DATA

A. Datasets

In order to train the GG-CNN to perform dense, pixel-wise
grasp prediction we require a densely labeled grasping dataset.
First, we used the smaller, hand-labeled Cornell Grasping
Dataset (Lenz et al., 2015)[4]. It represents antipodal grasps in
RGB and depth images as rectangles using pixel coordinates
(Yun Jiang et al., 2011)[2].

The Cornell Grasping Dataset contains 885 RGB-D images
of real objects, with 5,110 human-labeled positive and 2,909
negative grasps. While this is a relatively small grasping
dataset compared with some other, synthetic datasets (Mahler
et al., 2017, 2016)[7], the data best suits our pix-elwise grasp
representation as multiple labeled grasps are provided per
image. This is a more realistic estimate of the full pixel-wise
grasp map, than using a single image to represent one grasp,
such as in Mahler et al. (2017)[6].

B. Simulation Environment

Due to the limitations of real-world devices and the con-
venience of developing simulation environment packages, we
chose to use pybullet to build our simulation environment.
In the field of machine learning, PyBullet is commonly used
for reinforcement learning research and development. PyBul-
let provides a physics simulation environment that allows
us to create complex environments for training and testing
reinforcement learning agents. It allows for simulation of
complex dynamics environments, including contact dynamics,
deformable objects, and soft-body dynamics. Another advan-
tages of PyBullet is it provides a flexible and intuitive way to
interact with the simulation environment, which is useful for
debugging and visualization of machine learning algorithms.

We deployed the Panda robotic arm in the pybullet simula-
tion environment. The Panda robotic arm is a collaborative
robot developed by the German robotics company Franka
Emika. It consists of seven interconnected joints, allowing
it to move with six degrees of freedom. The Panda robotic
arm is designed to be lightweight, precise, and easy to use,
making it suitable for a wide range of industrial and research
applications, such as pick-and-place operations and material
handling, and provides a safe, efficient, and cost-effective
way to test and develop our generative grasping convolutional
neural network (GG-CNN) algorithms.

IV. METHODS

A. Data Processing

In the general two-finger manipulator plane grasping model,
the vertical desktop grasping of a mechanical arm is restricted,
meaning that the roll and pitch of the arm are fixed values.
The model predicts the grasping parameters [x, y, z, ϕ, w],
where [x, y, z] represents the world coordinates of the grasping
point. ϕ represents the rotation angle of the manipulator along
the z-axis or the angle between the closing direction of the
manipulator and the horizontal axis of the image. The value

Fig. 1. Generation of training data for our GG-CNN. Left: The cropped and
rotated depth images from an antipodal grasping dataset, with the ground-
truth positive grasp rectangles shown in green. NB: The RGB image is added
for illustration only and is not used by our system. Right: The grasp quality
(Q̃), grasp angle (ϕ̃), and grasp width (W̃ ) images to train our network. The
angle is further decomposed into cos (2ϕ̃) and sin (2ϕ̃) for training.

of z can be either output by the neural network or calculated
using a separate algorithm.

When it comes to grabbing a rectangular box, the algorithm
needs to predict the opening width of the manipulator, denoted
as ’n’, and the size of the manipulator claw or grip set, denoted
as ’m’. The product of ’n’ and ’m’ represents the grasp of the
rectangular box. In the Cornell dataset, objects are labeled with
rectangular bounding boxes representing the grasp region. To
conform to the input requirements of the GGCNN network,
the authors extract a central 1/3 area of the rectangle box and
use it as the grasp width input.

Fig. 2. Re-Label objects using grasp point and grasp width.

During the experiment, we re-labelled the data from the Cor-
nell dataset. To match the input requirements of the network,
lines were drawn on the object to represent the grasping area.



Fig. 3. Network Architecture for GG-CNN2

The width of the line could be adjusted to change the size of
the grasping area. The grasping width is always perpendicular
to the line representing the grasping area, and its direction can
be modified. In addition to drawing the grab line, for round or
spherical objects, you can set the grab point and grab radius,
that is, the grab Angle is 360° for a particular grab point.

After the object is annotated and the label is obtained, the
grasping point and grasping Angle are calculated according to
the annotation information, and the grasping width is set and
saved as mat type file.

B. Network Architectures and Design

When designing the networks author performed a number
of parameter sweeps, varying the number of convolutional
filters, filter sizes and dilation parameters in order to find
the network design that offers the best performance while
still being small enough to allow for real-time inference.They
use GG-CNN as a baseline to design an improved network
for real-time grasp prediction, which called GG-CNN2. GG-
CNN2 is a fully convolutional network based on the semantic
segmentation architecture from Yu and Koltun (2016)[12],
which uses dilated convolutional layers to provide improved
performance in semantic segmentation tasks. The GG-CNN2
uses the same input and outputs as the GG-CNN. To accelerate
evaluation, we use the IoU metric for local testing of many
different network configurations, and use the SGT simulator
for only a smaller subset of well-performing networks. In the
experiments, we mainly use GG-CNN2 to train our network
shown in figure 3.

V. EXPERIMENTS

A. Simulation Environment Setup

In pybullet, we constructed a test ground envolves a franka
panda robot, a traybox, and an invisible RGBD camera (which
is defined using conventions from OpenGL). Befor each grasp-
ing task, target objects will be generated somewhere around
the world origin.

1) Environment settings: The entire test environment is
carried out on a ground palne with the acceleration of gravity
set to 9.81; The position where the traybox is placed (0.5, 0,
0); The camera is located at position (0, 0, 0.5) and shoots

Fig. 4. Simulation Environment Setup in pybullet

Fig. 5. Intrinsic and extrinsic matrices definition

in the negative direction of the z-axis; The Panda robotic
arm is located at position (0, -0.5, 0); When generating the
target objects, the objects fall in random positions and random
orientations in the three-dimensional square space of -0.2 to
0.2 on the x-axis, -0.1 to 0.2 on the y-axis, and 0.1 to 0.2 on
the z-axis.

2) Camera settings: The camera is placed 0.5m high above
the world origin, vertically downward, to acquire images
near the origin, where the target objects would be initialized.
This pybullet camera is set to captures both RGB and depth
images in 480*640 after certain methods to restore from raw
information with the help of pybullet api. Thanks to the task
is carried out in the simulation environment, since the camera
is generated under our wishes, so we can decide everything
about the camera, so that the camera calibration work is not
necessary during the mapping process from camera image
coordinates to world coordinate systems, i.e. from a 2D pixcel
point to 3D point in the world coordinates. According to



the camera setting parameters of OpenGL (Pybullet support
tinyRenderer and OpenGL to render the simulated world, com-
monly OpenGL is used for its powerful features. Therefore,
pybullet directly uses OpenGL’s conventions when defining
cameras), we could manually calculate the intrinsic parameter
matrix of the camera, and obtain the extrinsic parameter matrix
of the camera by the matrix operation of the Euler angle of rpy
convention. See Fig.6 for definition of intrinsic and entrinsic
matrices.

3) Robot motion settings: All motion control methods of
the robotic arm adopt position control, the movement of the
robot arm in the gripping task is divided into several phases,
each corresponding to a simulation interval in which the end
of the robot arm is expected to reach the position and attitude
specified at the current stage; The robot’s inverse kinematics
work is completed by pybullet’s built-in inverse kinematics
solver. In order to better plan the movement of the robotic
arm in this task, the robotic arm is set with seven motion
states; First state, the end effector of panda arm reaches the
starting position at coordinates (0, 0, 0.2). Second, the end
effector move to a place 8 centimeter above the target. Third,
the end effector move to the place of the target object waiting
for grasping. Fourth and fifth, close the gripper to hold the
target object and return to the starting position of the first
state. Finally, move the end effector to the position 0.2 m
above the traybox and release the target object in the last two
state of motion. After this grasping round is completed,

B. Dataset Preperation

In the experiment, we prepare three sets of data to train the
ggcnn models respectively.

1) Cornell Dataset: As indicated in the previews section,
we use another labelling method to extract the Cornell dataset
label information.

2) Lego Dataset: To verify the performance of GGCNN
on other datasets, we have decided to generate our own
dataset through collecting images in pybullet and and man-
ually labelling. In all, we collected 200 images as well as
their labels. Afterward, we evaluated trained GGCNN and
GGCNN2 network on this dataset to see how it perform
and how it shows similarity between properties illustrated in
the original paper. The reasons why we only use images of
single lego model would be explained later. In the Pybullet
simulation environment, we randomly generate random scalled
Lego objects with random poses within a specified area. We
recorded and saved RGB and depth images, then carried out
the annotation procedures follow the exact same methodology
as what we did to Cornell dataset.

To be mentioned with, before creating this Lego dataset,
we tried to the dataset with objects provided by pybullet built
in package folder named random urdfs. This folder includes
1000 different urdf models, after resizing the model to an
appropriate scale to panda robot gripper, we collect 3 images
for each model from index 0 to 49, 150 in total, to built
our dataset. However after the network training was finished,
the final accuracy was as low as about 0.2, which could not

converge. After summarizing and reviewing this bad result, we
got some experience and reflection as follow.

a) On the one hand, the training set was so small and the
objects were so complex in shape that the training process
can hardly converge. Each object only covered 3 images and
3 labels, which was not enough to teach a generalized grasping
policy to the network. b) On the other hand, the objects from
pybullet built in package folder are often of weird shapes,
this makes it very difficult to label the grasp information,
and it is nearly impossible to ensure the standardization of
between different people when labelling, which further makes
it difficult for the model to converge.

So we decided to just use Legos of different sizes to make
a simple dataset for evaluation. Actually the lego can be seen
as three collections, with its side surface up, upward face up
and upward face down, which is equivalent to 200 annotations
for three sets. At the same time, in order to further ensure the
quality of the dataset, we had only one person to carry out all
the labeling work, and agree to only label once on the long side
when the side surface faces upward, and two vertical labels
when upward face up or down, as shown in figure 6.

Fig. 6. Examples of labeling our Lego dataset

In our codes, before training, a choice of the network type
between GG-CNN and GG-CNN2 is supposed to be made , as
well as the training dataset. The GPU used in the experiment
is NVIDIA 1660S, and the CPU is AMD 3500X. To maximize
training efficiency, the batch size is set to a default value of
40, the learning rate is set to 0.0045, and the weight decay
value is set to 1e−9. The input image size to the network is set
to a default of 360x360 pixels. Another option is to include
depth images or RGB images as inputs to the network.

C. Model Evaluation

After the trained models are ready, evaluation tasks are
designed to test how well the models actually preform in
real world (simulation environment). The computer hardware
environment we used at this time was a laptop equipped with
an AMD R4800u CPU and an AMD Radeon(TM) Graphics
integrated graphics card with a memory of memory 256MB.

The evaluation baseline we designed is actually very simple.
First, set up multiple rounds of grabbing tasks (L rounds),
initialize the scene at the beginning of each round of grabbing
tasks, as well ad generate N objects to be grasped near
the origin (that is, within the camera’s field of view). In a
single-round grabbing task, the panda robotic arm performs



Fig. 7. Evaluation Task Setup

N predictions and grabs respectively. Regardless of whether
the N grabs are successful or not, after N grabs, the round is
considered to be over, all objects in the current scene would
be cleared, then goes into the next round of grabbing, and this
cycle is repeated until the completion of the whole L round
test. The flow chart is shown in figure 8.

1) Part 1: Evaluation performance of GGCNN and
GGCNN2 trained on lego dataset:

We chose to experiment with the network trained on the
LEGO dataset first, because on the one hand, this dataset is
relatively small and the cost of testing is low, and on the other
hand, it can provide experience for the experiment settings
of testing for larger networks trained on the Cornell dataset.
Since we have manually labeled the lego images we generated
in pybullet, we trained a ggcnn and ggcnn2 model to see how
they actually perform in a grasping lego task.

In this experimental part, we performed 50 rounds of
grabbing in each single experiment, each round in the single
experiment generates 3 legos with random positions, random
poses and random size (scaled from 1 to 1.5 times) in a given
area of the scene, a total of 150 predictions and grabs, and the
task success rate and average prediction time are given after
each experiment. For GGCNN and GGCNN2, each model
performs five such experiments, i.e. each model executes for
750 grasps.

Through the whole test session illustrated in the section

Fig. 8. Method to approximate model prediction duration

above, we obtained the experimental results which are (1)
successful grasping rate (number of successful grabs / total
number of grabs), (2) average prediction duration (sum of each
prediction duration / number of predictions). We believe that
the two indicators of successful grasping rate and the average
prediction time can reflect the efficiency of the model. The
successful capture rate comprehensively reflects the quality
of the labeled dataset and the effect of model training on
the performance of the actual robot when performing tasks
in real world (here is the pybullet simulation environment).
The average prediction duration reflects the time economy of
the model in practical application, and determines how well it
can perform in real-time prediction capability the model can
achieve.

When evaluating the average prediction duration, the
method we used was to obtain start time and end time with
help of python built-in method time.time(), then express the
duration with start-end time difference. This approach may
not be very rigorous, but it provides data that allows us to
compare the performance of different models. The Python
code description of this method is shown in figure 9.

At the stage of image generation for the Lego dataset,
legos were specified to be generated randomly in the region
of x range [-0.20, 0.20], y [-0.10, 0.20], z [0.05, 0.15],
but after some simple tests we found a feature of GGCNN
that it is very sensitive to the labelled information, which
makes the GGCNN has strong prediction biases caused by two
dimensions. (1) Because of the perspective relationship in the
photos obtained from the camera, when we label a picture with
a grasping information perpendicular to the ground direction
with a perspective relationship, there is a bias in the labelled
information due to the perspective when labelling objects that
are off the center of the image. And as a result, the model
has learned this bias and performs poorly in predicting the
grasping information of objects that are off the center of the
image. On the contrary, the model has good prediction results
for objects closer to the image center. (2) When the objects
in the capture image appear in places where the objects in
the test set did not appear during training, the trained model
would not perceive the existence of any objects in the image
due to the trained CNN weights. This feature brings restriction
to the position of the object to be grasped, and the position
of the object to be grasped in the captured image should fall
in the places where the trained model has seen in the training
set.

When doing experiments on GGCNN and GGCNN2 trained



Fig. 9. Example of prediction bias on object off the center of the captured
image

Fig. 10. Customized operations we did

on our Lego dataset, we specified the test lego to be generated
in a smaller x-y region (x [-0.15, 0.15] y [-0.1, 0.1]). For the
grasp width, in order to give a certain degree of redundancy,
we increased the predicted grasp width in pixel by 10 pixels
before executing grasp task. In addition, when converting
the predicted 2d information to 3d space, the depth of the
predicted grasp point was based on the depth information
extracted from the captured depth map, which gave us some
extents of customized adjustment. In this task, we set the
transformed 3d grasp point’s z-axis position as half of the
corresponding predicted point’s z-axis coordinate obtained
directly from captured depth image. The operations in code
are shown in figure 10.

The result of experiment Part I is shown in Table I.

TABLE I
EXPERIMENT RESULTS

MODEL SUCCESSFUL RATE TIME

GGCNN2-Lego 92.6667% 122.5904 ms
94.6667% 111.8193 ms
96.6667% 108.6800 ms
92.0000% 131.9739 ms
92.3333% 109.1270 ms

Average 93.7000% 116.8380 ms
GGCNN-Lego 88.6667% 94.9162 ms

83.3333% 108.0038 ms
82.6667% 108.8400 ms
80.6667% 95.3636 ms
84.3333% 98.4625 ms

Average 83.9000% 101.1170 ms

According to the experimental results, GGCNN2 shows a
better experimental success rate than GGCNN, with a success
rate excess of about 10%. At the same time, GGCNN2 is
not as fast as GGCNN, and the average prediction duration is
about 10 to 20 milliseconds longer than GGCNN. Due to the
different hardware environment and test environment of the
experimental computer, the above experimental results did not

Fig. 11. Comparison of line charts of Part I experimental results

achieve the real-time prediction grasping of 50Hz described
in the original article, but it solidly confirms the description
of GGCNN and GGCNN2 in the original article, that is,
GGCNN2 has better prediction performance than GGCNN, as
well as GGCNN is lighter and has a faster prediction speed.

2) Part 2: Evaluation performance of GGCNN and
GGCNN2 trained on Cornell dataset:

In order to reasonably validate the real performance and
explore the model generalization of our trained GGCNN
models on the Cornell dataset, we need to more reasonably
set up the experiments and carefully select representative
experimental objects to be tested. In the experiments of Part
2, we chose the evaluation set of EGAD dataset as the object
to be tested for grasping experiments. EGAD is an evolved
grasping analysis dataset for diversity and reproducibility in
robotic manipulation. This work was accepted by IEEE RA-L,
April 2020.[8]

The EGAD evaluation set is labelled in a 7x7, one dimen-
sion represents the shape complexity and illustrated by integers
from 0 to 6, and the other dimension represents the difficulty
of grasping, illustrated by latters from A to G. As shown in
figure blown, the A0.obj is the simplest, easiest to grasp object,
through to G6.obj, the most complex, difficult to grasp object.

Firstly, when preparing the evaluation objects, since the
shape of the test set objects may not match the width of the
Panda robot gripper, we first scaled the obj formatted objects
according to the maximum width of the gripper, i.e. 8cm. The
collision model needed in the simulation was then generated
in batches. In the actual generation of the objects in pybullet,
the processed models was scaled by a factor of 0.6 to ensure
that the objects were within a reasonable size range relative



Fig. 12. EGAD evaluation set visualization

to the gripper.
In this experiment, the trained GGCNN and GGCNN2

models executed 100 predictions and graps for each object
in the evaluation set, i.e. each model performed 4900 grasps,
and the grasping success rate corresponding to each object
was obtained separately after the test was completed, after
which the results were plotted for comparison. Similar to Part
1, we did the same operations, increasing the predicted grasp
pixel width by 10 pixels and approximating the position on
z-axis of the transformed 3d grasp point as one-half of the
position on z-axis coordinate corresponding to the predicted
point location.

When visualizing the results, since each model only gots 49
data, the results are discrete in the plots, and in order to better
visualize how the model performs on the EGAD test set, we
used bicubic interpolation to give the plots a better fluency.

According to the plotted results, GGCNN and GGCNN2
have very similar performance, and GGCNN2 shows slightly
higher grasping success rate than GGCNN overall. Both
of them showed an remarkable ability to predict the grasp
information to object of low shape complexity and low grasp
difficulty.

Intuitively, the lower left corner of the plot should have
a higher success rate, and the experimental results matched
well. Similarly, the upper right corner were expected to have
the lowest success rate, but the experimental results were on
the contrary. As grasp difficulty increases, the grasping success
rate has a certain degree of improvement with the increase of
shape complexity instead.

After some analysis, the GGCNN model only predicts on
the captured 2d images and is not involved at the conversion
of 2d grasp information to the actual 3d grasp information,
i.e., the GGCNN is not involved in the prediction of depth,
which leads to the unreliability of the GGCNN model in depth

Fig. 13. Visualization for results of trained GGCNN

Fig. 14. Visualization for results of trained GGCNN2

prediction in the actual grasping task. For objects with high
grasping difficulty and low shape complexity, the grasping
depth obtained by the GGCNN and the preset depth conversion
method is often unreliable.

Take an instance, for object from D0 to D6, D0 has
medium grasp difficulty and lowest shape complexity, but is
hard to grasp for both GGCNN and GGCNN2. Object D0
is shown in below, what can be seen for D0 is that there
is a hollow area in the middle of the object, which leads to
the prediction that the grasping point is likely to fall in this
hollow area. After the prediction of GGCNN, with our preset
simple depth conversion method, the z-axis coordinate of the
converted 3d grab point is undoubtedly 0, which is on the
ground plane and obviously unreasonable. With the increase of
shape complexity, the hollow area decreases and finally would
vanish, and the successful grasp rate increases consequently.

As the shape complexity increases, the hollow regions are
decreasing, which reduces the error rate of depth prediction.
Therefore, grasping objects with hollow regions is a disaster



Fig. 15. Visualizations from object D0 to D6

for the GGCNN model. Intuitively, the most straightforward
way to compensate for this drawback is to design a more
general depth conversion method. However, this task is another
hardcore research topic.

VI. CONCLUSION

According to our experimental results, GGCNN and
GGCNN2 can basically perform fast and effective prediction
of planar grasping poses from a depth image of a pixelwise
basis. GGCNN2 has relatively better prediction performance,
while GGCNN is lighter and faster. In our experiment setting,
our trained GGCNN and GGCNN2 require around 100ms
to execute a single prediction, and both have good task
successful rate, where GGCNN achieved an average of 83.9%
and 93.7% for GGCNN2. Thus, when taking into consideration
the significant enhancement in accuracy, the supplementary
computational time and resources consumed by GGCNN2 can
be regarded as insignificant.

However, there are still flaws in GGCNN.
1) First: GGCNN has extremely high requirements for the

labeling quality of the training dataset. This point is concluded
from our process of preparing the LEGO dataset. In order to
ensure the quality of dataset annotation, the biases should be
avoided as much as possible. When labeling the image, bias
introduces by perspective relationship in the picture (the object
should be in the center of the picture as much as possible)
and the bias caused by the labelling people. In our work, a
dataset of 200 high-quality labeled image was enough to teach
the model to learn a good grasp prediction ability, which also
shows that GGCNN has a good convergence ability under the
condition of a small dataset.

2) Second: Through our experiment, we have discovered
that since the GGCNN family predicts 2d pixel grasp infor-
mation, the 3d grasp depth obtained according to the GGCNN
model is often unreliable when predicting the grasp poses of
objects with hollow structures. We hypothesize that this is due
to the inherently limited information that can be obtained from
a single perspective of an object. As a result, for 3D objects
with unconventional convex shape-alike structures (such as a
torus), the predicted grasp quality may not be optimal.

To address this issue, the original authors proposed a
solution called multi-viewpoint grasping. However, we believe

that this approach is too expensive and there may be other
solutions. Here, we propose two constructive suggestions:

(1) Integration of a target identification and localization
module like YOLO to avoid prediction bias resulting from dis-
parities in perspective and achieve real-time grasp prediction
after YOLO localization. This approach has been supported
by a 2023 study[5].

(2) Integration of a more widely applicable and generalized
depth transformation module to overcome GGCNN’s catas-
trophic predictions for objects with hollow structures, thereby
enhancing its generalizability.

Overall, GGCNN is a sufficiently fast and accurate approach
to selecting grasp points for previously unseen items. Enabling
robots to function as an active component in a closed-loop
grasping pipeline which plays a vital role in the development
of resilient and dependable robotic systems.

ACKNOWLEDGMENTS

We would like to express sincere appreciation to Professor
Song for his invaluable assistance and support throughout our
course project and writing process. We learned a lot about
methodologies of academic research and writing from him.
Without the assistance of Professor Song, this work wouldn’t
be possible. Additionally, we would like to thank Wang Dexin,
a graduate student in Shandong University, who had shared
valuable knowledge about GGCNN on the Internet.

REFERENCES

[1] Jeannette Bohg et al. “Data-Driven Grasp Synthesis -
A Survey”. In: IEEE Transactions on Robotics 30.2
(2014), pp. 269–288. DOI: 10.1109/TRO.2013.2294866.

[2] Minghui Jiang, Samuel Moseson, and Ashutosh Saxena.
“Efficient grasping from RGBD images: Learning using
a new rectangle representation”. In: The International
Journal of Robotics Research 30.2 (2011), pp. 199–212.

[3] Edward Johns, Stefan Leutenegger, and Andrew J Davi-
son. “Deep learning a grasp function for grasping under
gripper pose uncertainty”. In: 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS). IEEE. 2016, pp. 4461–4468.

[4] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep
learning for detecting robotic grasps”. In: The Inter-
national Journal of Robotics Research 34.4-5 (2015),
pp. 705–724.

[5] Xu Li et al. “A YOLO-GGCNN based grasping frame-
work for mobile robots in unknown environments”.
In: Expert Systems with Applications 225 (2023),
p. 119993. DOI: 10.1016/j.eswa.2023.119993.

[6] Jeffrey Mahler and Ken Goldberg. “Learning deep poli-
cies for robot bin picking by simulating robust grasping
sequences”. In: Proceedings of the Conference on Robot
Learning (CoRL). 2017, pp. 515–524.

[7] Jeffrey Mahler et al. “Dex-Net 2.0: Deep learning to
plan robust grasps with synthetic point clouds and
analytic grasp metrics”. In: Proceedings of Robotics:
Science and Systems (RSS). 2017.

https://doi.org/10.1109/TRO.2013.2294866
https://doi.org/10.1016/j.eswa.2023.119993


[8] Philip Morrison, Peter Corke, and Jürgen Leitner.
“EGAD! An Evolved Grasping Analysis Dataset for Di-
versity and Reproducibility in Robotic Manipulation”.
In: IEEE Robotics and Automation Letters 5.3 (2020),
pp. 4368–4375. DOI: 10.1109/LRA.2020.2992195.

[9] Philip Morrison, Peter Corke, and Jürgen Leitner.
“Learning robust, real-time, reactive robotic grasp-
ing”. In: The International Journal of Robotics Re-
search 39.2-3 (2020), pp. 183–201. DOI: 10 . 1177 /
0278364919859066.

[10] Tow Morrison et al. “Cartman: The Low-Cost Carte-
sian Manipulator that Won the Amazon Robotics
Challenge”. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2018,
pp. 7757–7764. DOI: 10.1109/ICRA.2018.8463191.

[11] Philipp Rubert et al. “On the relevance of grasp metrics
for predicting grasp success”. In: 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS). IEEE. 2017, pp. 265–272. DOI: 10.1109/IROS.
2017.8202167.

[12] Fisher Yu and Vladlen Koltun. “Multi-scale context
aggregation by dilated convolutions”. In: International
Conference on Learning Representations (ICLR). 2016.

https://doi.org/10.1109/LRA.2020.2992195
https://doi.org/10.1177/0278364919859066
https://doi.org/10.1177/0278364919859066
https://doi.org/10.1109/ICRA.2018.8463191
https://doi.org/10.1109/IROS.2017.8202167
https://doi.org/10.1109/IROS.2017.8202167

	Introduction
	Related Work
	Data
	Datasets
	Simulation Environment

	Methods
	Data Processing
	Network Architectures and Design

	Experiments
	Simulation Environment Setup
	Environment settings
	Camera settings
	Robot motion settings

	Dataset Preperation
	Cornell Dataset
	Lego Dataset

	Model Evaluation
	Part 1
	Part 2


	Conclusion
	First
	Second



