
Comparison of SLAM Mapping Algorithms and
Possible Navigational Strategies on Simulated and

Real World Conditions
Xinyi Wang 12010239, Jianxiang Ni 11812723, Baoyi Huang 12010437,

Yujie Zhang 12010142, Wanghongjie Qiu 12010310

Abstract—Simultaneous Localization and Mapping (SLAM)
problem has been an active area of research in robotics for
more than a decade, and a lot of researchers have spent a great
effort in developing new series of SLAM algorithms. In order to
compare the difference between different SLAM algorithms for
building maps under virtual and realistic conditions, we made
the gazebo world based on the real experimental space. We use
a four-wheeled cart with LIDAR to build maps with different
SLAM algorithms and compare the final results.

Index Terms—SLAM, Reinforced Learning, Point Cloud, Map-
ping, Localization, Trajectory Planning.

I. INTRODUCTION

SLAM(Simultaneous localization and mapping)is one of the
common approaches to solving the problem of localization
and map construction. With SLAM technology, robots can
explore and navigate autonomously in unknown environments,
underpinning successful robot deployment in many application
domains such as urban search and rescue, underground mining,
underwater surveillance, and planetary exploration. [2] Cur-
rently, many SLAM algorithms exist in robotics: Cartographer,
Karto, LIO-SAM, LOAM series, ORB-SLAM3, VINS-Fusion,
and so on. In this project, we try to use the different map
construction algorithms in virtual and realistic situations and
compare the differences between the maps built by both. We
built a gazebo world base on real-world experimental envi-
ronments where TIANRACER building maps with Gmapping
algorithm. In the simulation environment, we apply Gmapping,
Hector, and Cartographer algorithms. At last, we compare the
performance in the simulation environment and the real world.
We found that:

(1)In terms of robot motion speed, Gmapping has a smaller
limitation and a wider applicability range compared to Hector
and Cartographer.

(2)If the motion of the robot is not taken into consideration,
or in scenarios where high demands on the robot’s motion
speed are not required, Hector performs the best among
the three algorithms confirmed by direct observations and
quantitative error calculations.

(3)The potential of Cartographer remains to be investigated.
It generally exhibits better root mean square error performance
compared to Gmapping. However, there are also more limita-
tions on the robot’s movement speed.

(4)The map built in the real world is not as effective as the
simulation environment, the reason is that glass walls in the
environment are not well detected by laser radar.

II. RELATED WORK

The SLAM community has made astonishing progress over
the last 30 years, enabling large-scale real-world applications,
and witnessing a steady transition of this technology to
industry.[1]SLAM originated from efforts to formalize the pro-
duction of topographic maps from aerial imagery. A seminal
work in SLAM is the research of R.C. Smith and P. Cheeseman
on the representation and estimation of spatial uncertainty in
1986.[8][7] Other pioneering work in this field was conducted
by the research group of Hugh F. Durrant-Whyte in the early
1990s.[6] which showed that solutions to SLAM exist in
the infinite data limit. This finding motivates the search for
algorithms that are computationally tractable and approximate
the solution. The acronym SLAM was coined within the paper,
”Localization of Autonomous Guided Vehicles” which first
appeared in ISR in 1995.[4] Three essential properties of the
estimation theoretical solution to the SLAM problem in a
linear Gaussian setting [3] was demonstrated in 2001. In the
twenty-first century, the availability of large memory spaces
has made it possible to store all observations gathered by the
robot and adopt a nonlinear optimization framework to solve
the SLAM problem. In this scenario, an objective function
based on Maximum Likelihood (ML) is optimized [5], leading
to more robust and consistent SLAM solutions.[2]

The self-driving STANLEY and JUNIOR cars, led by
Sebastian Thrun, won the DARPA Grand Challenge, came
second in the DARPA Urban Challenge in the 2000s, and
included SLAM systems, bringing SLAM to worldwide atten-
tion. Mass-market SLAM implementations can now be found
in consumer robot vacuum cleaners and virtual reality headsets
such as the Meta Quest 2 and PICO 4 for markerless inside-out
tracking.

III. METHOD

Our work can be divided into two parts, the simulation and
the experiment in the real world. Focus on the mapping task,
we compared the performance of three different mapping algo-
rithms, Gmapping, Hector, and Cartographer in the simulation
environment. Then we deploy the Gmapping algorithm, which



has better conformance, on the manual vehicle to compare the
performance in the simulation environment and real-world.

A. Mapping in a simulation environment

ROS[6] is an open-source software platform designed for
programming and controlling robots. It provides libraries, pro-
gramming tools, graphical tools, direct control communication
with hardware, and sensor/data retrieval libraries.

By offering a common interface for operating the robot’s
hardware, ROS eliminates the need for developers to worry
about specific hardware APIs. This shift in focus makes robot
software development significantly easier, more independent,
and more adaptable.

Within the ROS ecosystem, numerous SLAM techniques
have been developed and are extensively utilized in research
and industry settings. Notable examples of these techniques
include HectorSLAM, Gmapping, Cartographer, LagoSLAM,
and CoreSLAM. Among these, HectorSLAM, Gmapping, and
Cartographer have demonstrated superior performance com-
pared to other alternatives, particularly in indoor environments.

1) GmappingSLAM: Gmapping, a widely used SLAM
package developed by Grisetti, employs the Rao-
Blackwellized particle filter SLAM approach and is
recognized as one of the most popular SLAM packages
available. It utilizes laser-based methods for mapping and
localization. To ensure accuracy, Gmapping is typically
recommended to be used in conjunction with precise
odometry data, such as wheel odometry.

Gmapping employs a Particle Filter (PF) technique for
model-based estimation. In SLAM, the goal is to simultane-
ously build a map of the environment and determine the robot’s
position and orientation within that map. The PF algorithm is
a probabilistic method that represents the robot’s pose and the
map as a set of particles. Each particle carries a hypothesis of
the robot’s pose and the environment’s structure.

2) HectorSLAM: HectorSLAM is a SLAM method that
utilizes the extended Kalman filter (EKF) [14] for mapping
and localization. It leverages the high update rate and low
noise output of a high-end LiDAR to accurately predict the
robot’s movements in real time. While odometry data may
not be necessary, the IMU can be utilized for 3-D state
estimation. However, it is important to note that HectorSLAM
may encounter challenges when used with low-end LiDARs
due to the typically noisy and slow update rate of their output.

HectorSLAM relies on a range sensor, typically a laser
scanner, to gather information about the environment. The
algorithm utilizes a probabilistic grid-based mapping approach
known as Occupancy Grid Mapping. It divides the environ-
ment into a grid of cells and assigns probabilities to each
cell representing the likelihood of occupancy. This grid-based
representation allows the algorithm to model the environment
and update the occupancy probabilities as new sensor mea-
surements are obtained.

Fig. 1. GmappingSLAM process

Fig. 2. HectorSLAM process

3) Cartographer: Cartographer, a graph-based SLAM sys-
tem introduced in 2016, employs two subsystems: global
SLAM and local SLAM. It reconstructs the environment by
utilizing laser scanner data without requiring odometry infor-
mation in the simplest 2-D mapping scenario. It is important to
note that this technique can consume significant computational
resources.

Cartographer utilizes a probabilistic approach called Graph-
Based SLAM to solve the SLAM problem. It models the
environment as a graph, where nodes represent robot poses,
and edges represent the constraints between poses. The al-
gorithm estimates the most likely trajectory of the robot and
simultaneously builds a map of the environment.



Fig. 3. CartographerSLAM process

The performance and capabilities of these SLAM libraries
can vary depending on the specific application and the charac-
teristics of the environment. Each library has its strengths and
weaknesses, and the choice of which one to use depends on
factors such as sensor configuration, computational resources,
and the desired level of map quality and accuracy.

In our work (detailed description in the following experi-
mental section), we applied these three algorithms separately
to the indoor mapping of a limo car. Under the same conditions
in a self-built Gazebo environment, we varied the car’s speed
and observed the final map results, the CPU usage during
program execution, and the root mean square error (RMSE)
by setting sampling points on the original map to quantify the
indoor mapping accuracy of the three algorithms.

Since the size of the self-built simulated map in the Gazebo
and the characteristics of each obstacle and wall are known,
wall corner points (the right angle formed by the intersection
of two walls) and fixed obstacle positions (location points
of the obstacles) were selected as sampling points. A total
of 35 sampling points were selected to compare the errors
between the maps generated by the three SLAM algorithms
and the actual map. This evaluation was conducted to assess
map quality when it is difficult to discern the mapping effect
with the naked eye. These 35 sampling points include the
four corner points of the indoor boundaries, a total of 24
corner points from six compartments (4*6=24), two corner
points near the birthplace of the Limo car obstacles, four
corner points of the fixed physical bookshelf obstacle along
the map’s central axis, and one position of the fixed physical
mailbox obstacle along the map’s central axis. Two different
types of obstacles (a movable car model and a soda can) were
not considered in the selection of sampling points since they
are not fixed and were placed on the map solely to test the
recognition effectiveness of the three algorithms for movable
objects and small objects.

Although the three algorithms differ in their mapping ap-
proaches, starting point positions, and the variations in errors
between the maps and ground truth, there is one aspect that can

be determined – the initial position (birthplace) of the Limo
car in the simulated environment. By taking the birthplace
of the car in the simulated environment as the coordinate
origin, a world coordinate system is established for map
construction. Therefore, regardless of whether it is in the
actual map or in the maps generated by the SLAM algorithms,
the positions of the 35 corner points can be determined by
specific x-axis and y-axis coordinates. The coordinates of
the 35 sampling points in the actual map are marked to
obtain a two-dimensional point set representing the actual
map. Similarly, the corresponding positions of the 35 corner
points and obstacle points generated by the three algorithms
are marked to obtain a two-dimensional point set representing
the map to be evaluated. The root means square error formula
is then used to quantitatively evaluate the mapping accuracy
of each algorithm under different environmental variables.

RMSE =

√√√√ 1

n

n∑
i=1

(di − ei)2 (1)

where n is the number of sampled points, d is the coordinate
estimated by the SLAM approach, and e is the true coordinate
known before mapping.

B. Mapping task in real world

In the process of the Mapping task, the unmanned vehicle
platform used is TIANRACER, as shown in Fig.4. The vehicle
has a Laser Radar, an RGB Camera, and a HUAWEI Atlas 500
computing platform, which uses a Hayes Hi3559A processor.
The Laser Radar is RPLIDAR A1, which has a measuring
range of 12m radius and a measuring accuracy of 1 degree at
a scanning frequency of 5.5 Hz. The length of the vehicle is
380mm and the width of the car is 210mm.

In the manual vehicle, the Gmapping algorithm was de-
ployed to perform a practical automatic mapping task. The
result can reflect the performance of the algorithm in the
real world. By comparing the result of the simulation and
the experiment in the real world, the difference between the
simulation and the real world can be figured out.

Fig. 4. Hardware introduction: (A)the Sensors and computing platforms,
including a Laser Radar, an RGB camera, and a Huawei Atlas 500 computing
platform (B)the parameter of the vehicle, the length, height, and width.



C. Path navigation under reinforcement learning
At present, dynamic programming algorithm is often used

in path planning. However, it requires high computational
power and is difficult to converge when applied in complex
environment.We try to propose possible path planning strate-
gies based on reinforcement learning for better performance.In
this section, We compare the potential of three kinds of
reinforcement learning for solving path planning problems
through a simple path planning task.

1) navigation based on Monte Carlo method: The provided
images illustrate the path planning in reinforcement learning
using Monte Carlo methods for different iteration counts:
5000, 10000, and 50000. It is clearly noticeable that as the
number of iterations increases, the robot’s planning steps grad-
ually decrease, resulting in a more streamlined and efficient
movement pattern that approximates a straight line.

Monte Carlo methods, while known for their slower con-
vergence, exhibit remarkable algorithm stability. This stability
enhances their ability to identify and adopt optimal strategies
for task completion. By iteratively refining the learned policy,
Monte Carlo methods showcase their resilience in finding
effective ways to accomplish tasks, even in complex scenarios.

These visual representations of the Monte Carlo method’s
progressive path planning highlight its ability to converge
towards efficient and goal-oriented behavior, reinforcing its
effectiveness and robustness as a reinforcement learning ap-
proach.

2) navigation based on SARSA method: The provided
figure depicts path planning in reinforcement learning using
SARSA (State-Action-Reward-State-Action) method for dif-
ferent iteration counts: 5000, 10000, and 50000. It is evident
that as the number of iterations increases, the robot’s plan-
ning steps progressively increase, showcasing its heightened
sensitivity to environmental changes and decision-making.

Under SARSA, the robot demonstrates a higher level of
adaptability, reacting promptly to variations in the environ-
ment. This increased responsiveness allows for more con-
tinuous and smoother decision-making, resulting in a more
cohesive movement pattern that approximates a straight line
toward the obstacle. The fit between the learned policy and
the environment is noticeably improved.

These visual representations highlight the effectiveness of
SARSA in path planning. With increasing iterations, SARSA
demonstrates an enhanced ability to respond to dynamic envi-
ronments while maintaining a consistent directionality toward
the obstacle. This overall improvement in convergence and
decision-making quality reinforces the proficiency of SARSA
as a reinforcement learning method for optimizing path-
planning tasks.

3) navigation based on Q-learning method: Under the Q-
learning algorithm for path navigation, as the number of
learning iterations increases, the number of decision-making
instances also increases. However, the continuity of decision-
making tends to decrease. The influence of environmental
disturbances becomes more prominent, and the final approach
often involves a turning maneuver.

Q-learning explores different state-action pairs to optimize
its Q-values, which can lead to less consistent decision-making
in terms of movement direction. The algorithm’s focus on
maximizing rewards in each state can result in more responsive
behavior to immediate rewards or environmental factors, but
it may sacrifice smoothness and continuity in the overall path.

Despite the reduced continuity, Q-learning demonstrates
its effectiveness in capturing the overall impact of the en-
vironment. It is capable of adapting to various disturbances
and finding suitable paths while considering the long-term
cumulative rewards. The final approach, which often involves
turning, suggests that Q-learning is sensitive to the layout and
configuration of the environment.

Overall, Q-learning strikes a balance between exploring dif-
ferent options and exploiting the learned knowledge, enabling
it to navigate the environment effectively while adapting to
various challenges.

Fig. 5. Results of three reinforce learning method:(A)using Monte Carlo
method for different iteration counts:(I)5000;(II)10000;(III)50000; (B)using
SARSA Method for different iteration counts: (I)5000;(II)10000;(III)50000;
(C)using Q-learning method for different iteration counts:
(I)5000;(II)10000;(III)50000;

IV. EXPERIMENT

We do our experiment task in both the simulation environ-
ment and the real world.

A. Mapping in a simulation environment

1) Experiment setup: simulation environment in Gazebo:
Gazebo is a widely used open-source robotics simulation soft-
ware that provides a robust and flexible platform for simulating
and testing robotic systems. It is designed to create realistic
and dynamic environments where robots can be virtually
operated and evaluated.

Gazebo offers a range of features that make it a powerful
tool for robotic simulation. It provides a physics engine
that accurately models the dynamics of objects, allowing
for realistic interactions between robots, environments, and
various physical entities. This enables users to simulate robot



movements, sensor readings, and even complex interactions
with objects and environments.

In this experiment, we manually constructed an indoor
environment in Gazebo to provide space for the movement of
the car. The indoor environment has a length of 7 meters and
a width of 5 meters. It consists of three horizontal and three
vertical corridors, along with five types of physical obstacles.
Among them, there are three fixed obstacle entities and two
movable obstacle entities. The fixed obstacle entities include
a bookshelf, a mailbox, and a human-shaped door, which
provide seven sampling points for evaluating the completed
map construction.

The robot car will move or turn in the Gazebo 3D environ-
ment using four different combinations of linear and angular
velocities. In each mapping experiment, the car will follow
a fixed route in the simulated environment to eliminate the
influence of different paths on SLAM mapping.

Fig. 6. The simulation environment in Gazebo and the specific route

The 35 sample points are shown below. The RED FLAG
symbolizes the birthplace of the limo car, the RED TICK
represents the sample points from the obstacles, and the
GREEN TICK represents the sample points from the walls.

Fig. 7. 35 sample points in total

2) experiment results: For each SLAM algorithm, as at
least four different car velocities were set, the number of
experiments was at least four times. A total of twelve sets
of two-dimensional maps were obtained, including successful
and unsuccessful cases.

If only observed with the naked eye, during the mapping
process using SLAM, the mapping results of the first three
velocity groups were relatively stable. However, when the
car velocity increased to 0.8mps/1.6radps, a significant drift
phenomenon appeared, which typically resulted in a significant
increase in the root mean square error.

If we only rely on visual observation, in the process of
using the Hector mapping algorithm, the mapping results for
the first three velocity sets are relatively stable, and it can
be observed that the mapping is more accurate and visually
appealing compared to Gmapping. However, when the car
velocity is increased to 0.8 m/s and 1.6 rad/s, the drift phe-
nomenon becomes much more severe compared to Gmapping,
to the extent that it becomes impossible to distinguish the
corresponding positions of the sampling points and calculate
the root mean square error, resulting in mapping failure.

If observed only with the naked eye, the mapping results
of the Cartographer algorithm appear to be on par with
Hector, and even clearer. However, the mapping performance
of Cartographer is significantly more affected by the car’s
velocity compared to Hector. Mapping failures were already
encountered when the car’s velocity was increased to 0.4 m/s
and 0.8 rad/s.

The errors quantitatively calculated using the root mean
square formula roughly correspond to the results obtained
through observation alone. Compared to Cartographer and
Hector, although Gmapping generally constructs coarser maps,
it is more suitable for scenarios that require certain constraints



on the robot’s motion speed. In our experiments, Gmapping
did not exhibit any mapping failures. On the other hand, Hec-
tor showed excellent mapping performance when the robot’s
motion speed was not very fast, achieving the smallest root
mean square error of 0.2174 in the experiment where the robot
moved at a low speed. Cartographer has stricter requirements
on the applicable scenarios and the robot’s motion speed
compared to Hector. When the robot’s motion speed remains
at a lower level, the two-dimensional maps constructed using
Cartographer fall between the results obtained with Gmapping
and Hector.

Fig. 8. GmappingSLAM, with the speed of the car (A) linear speed = 0.1
mps, angular speed = 0.2 rps, (B) linear speed = 0.2 mps, angular speed =
0.4 rps, (C) linear speed = 0.4 mps, angular speed = 0.8 rps, (D) linear speed
= 0.8 mps, angular speed = 1.6 rps

Fig. 9. HectorSLAM, with the speed of the car (A) linear speed = 0.1 mps,
angular speed = 0.2 rps, (B) linear speed = 0.2 mps, angular speed = 0.4 rps,
(C) linear speed = 0.4 mps, angular speed = 0.8 rps, (D) linear speed = 0.8
mps, angular speed = 1.6 rps

Fig. 10. Cartographer, with the speed of the car (A) linear speed = 0.1 mps,
angular speed = 0.2 rps, (B) linear speed = 0.2 mps, angular speed = 0.4 rps,
(C) linear speed = 0.4 mps, angular speed = 0.8 rps, (D) linear speed = 0.8
mps, angular speed = 1.6 rps

Fig. 11. Table: ACCURACY COMPARISON COMPLEX OFFICE

During the execution of the mapping program, the ’top’
command can be used to directly observe the real-time changes
in CPU usage in the command line window. Since the CPU
usage of the Cartographer algorithm is significantly higher
than the other two algorithms, the CPU data of the Hector
algorithm and Gmapping algorithm were projected relative
to the CPU usage of the Cartographer algorithm, obtaining
a comparison of the CPU usage among the three algorithms.

Fig. 12. CPU usage—normalized to Cartographer’s value



3) Results analyze: Firstly, in terms of robot motion speed,
Gmapping has a smaller limitation and a wider applicability
range. Although a noticeable drift phenomenon can still be
observed, compared to the mapping failures of Hector and
Cartographer, Gmapping demonstrates a significantly better
mapping performance.

Secondly, if the motion of the robot is not taken into
consideration, or in scenarios where high demands on the
robot’s motion speed are not required, Hector is the optimal
choice among these three mapping algorithms. Both direct
observations and quantitative error calculations confirm the
excellent performance of Hector in mapping when the robot
is moving at low speeds.

Finally, the potential of the Cartographer remains to be
investigated. Although it generally exhibits better root mean
square error performance than Gmapping, its applicability is
narrower than Hector’s. To fully leverage its capabilities, there
are also more limitations on the robot’s movement speed.

B. Mapping in real-world

Considering that the Vehicle has a considerable radius of a
turning circle, the experiment was launched on the second floor
of the First scientific research Building. In this experiment,
the scan matching algorithm, one of the most basic location
algorithms, is applied. And focus on the mapping task, the
Gmapping algorithm is used since it has better performance in
the simulation environment. During the experiment, As shown
in Fig.13, the equality of the mapping is not so good as in the
simulation environment. The difference in complexity between
the simulation environment and the realistic condition leads to
this kind of result. Part of the reason is that the environment’s
glass walls are not well detected by laser radar. This problem
would be solved by using multi—mode method to combine
the radar and camera. Meanwhile, unenclosed areas bring
difficulties to the mapping.

Fig. 13. experiment result of the mapping task in the real world

V. CONCLUSION

In this article, we implemented the real-time mapping and
positioning of the vehicle in simulation and the real world.

At the simulation level, we built a simulation environment
in the gazebo and captured its environmental data using Lidar
and depth camera as data input for mapping and localiza-
tion. The output point cloud data and mapping data can be

obtained through three different SLAM algorithms to realize
localization and mapping. After several experiments, we chose
the SLAM algorithm that performed best in the simulated
experiments for real-world experiments.

In the real-world section, the vehicle named TIANRACER
is equipped with a variety of sensors and lidar to acquire
information in the experimental environment. We choose the
Gmapping algorithms for mapping and localization. Although
The map-building results were not satisfactory, we speculate
that this is because a Single sensor has limitations on obstacle
recognition. We will add a depth camera to capture more
information to optimize the process.

The current reinforcement learning progress can achieve the
trajectory planning of the robot at the simulation level. In the
future, we will promote the research to realize the real-time
mapping and trajectory planning of the vehicle in the real
world.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scara-
muzza, J. Neira, I. Reid, and J.J. Leonard. Past, present,
and future of simultaneous localization and mapping:
Towards the robust-perception age. IEEE Transactions on
Robotics, 32(6):1309–1332, 2016.

[2] Gamini Dissanayake, Shoudong Huang, Zhan Wang, and
Ravindra Ranasinghe. A review of recent developments
in simultaneous localization and mapping. 2011 6th
International Conference on Industrial and Information
Systems, pages 477–482, 2011. doi: 10.1109/ICIINFS.
2011.6038117.

[3] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F.
Durrant-Whyte, and M. Csorba. A solution to the simulta-
neous localization and map building (slam) problem. IEEE
Transactions on Robotics and Automation, 17(3):229–241,
2001. doi: 10.1109/70.938381.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localiza-
tion and mapping: part i. IEEE Robotics Automation
Magazine, 13(2):99–110, 2006. doi: 10.1109/MRA.2006.
1638022.

[5] Michael Kaess, Ananth Ranganathan, and Frank Del-
laert. isam: Incremental smoothing and mapping. IEEE
Transactions on Robotics, 24(6):1365–1378, 2008. doi:
10.1109/TRO.2008.2006706.

[6] J.J. Leonard and H.F. Durrant-Whyte. Simultaneous map
building and localization for an autonomous mobile robot.
Proceedings IROS ’91:IEEE/RSJ International Workshop
on Intelligent Robots and Systems ’91, pages 1442–1447
vol.3, 1991. doi: 10.1109/IROS.1991.174711.

[7] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain
spatial relationships in robotics. Proceedings. 1987 IEEE
International Conference on Robotics and Automation, 4:
850–850, 1987. doi: 10.1109/ROBOT.1987.1087846.

[8] Randall C. Smith and Peter C. Cheeseman. On the
representation and estimation of spatial uncertainty. The
International Journal of Robotics Research, 5:56 – 68,
1986.


	Introduction
	Related Work
	method
	Mapping in a simulation environment
	GmappingSLAM
	HectorSLAM
	Cartographer

	Mapping task in real world
	Path navigation under reinforcement learning
	navigation based on Monte Carlo method
	navigation based on SARSA method
	navigation based on Q-learning method


	experiment
	Mapping in a simulation environment 
	Experiment setup: simulation environment in Gazebo
	experiment results
	Results analyze

	Mapping in real-world 

	Conclusion

