
Multi-view self-supervised deep learning framework
for solving 6D pose estimation problem

Li Zhidong 12011506
Ren Shize 12012818

Jiang Meng 12011603
Zeng Yuqi 12011811

Zhao Xuda 12010325

Abstract—Automatic logistics is a very hot topic recently,and
picking is a significant part to implement this technology. To
study further, we searched the past project of a famous com-
petition: Amazon Picking Challenge (APC). From the projects
we chose a Multi-view self-supervised learning for our project.
We combined the methods in DenseFusion: 6D Object Pose
Estimation by Iterative Dense Fusion to complete estimating
6D poses of known objects from RGB-D images.our method
outperforms previous approaches in several datasets, and is
significantly more robust against occlusions.We also completed
A complete deep learning algorithm and used ROBOSUITE to
perform the whole process simulation of the grasping process of
the manipulator.This provides a basis for us to use this technique
in real scenarios.In the future we can create larger datasets and
use images and videos to refine our project and train different
data models.

We completed the training of the linemod dataset through 60
training sessions, with an accuracy of 0.9535. We also visualized
the 6D pose estimation and re evaluated the advantages and
disadvantages of several pose estimation methods for different
object recognition. The average of the evaluation results for
each method is as follows, PoseCNN-0.68,PoseCNN+Multiview-
0.75,PoseCNN+ICP-0.87,densefusion-0.92,which highlighting the
excellence of densefusion.

I. INTRODUCTION

In the era of globalization and information age, logistics
is becoming increasingly complex and fast, posing signifi-
cant challenges to the warehousing industry. Therefore, the
automation of warehousing systems is crucial. One way to
improve the quality of stored materials is by combining
intelligent warehouse image recognition systems with RFID
technology.[7]

Accurate acquisition of the 6D pose of an object is particu-
larly important. We draw inspiration from the Amazon Picking
Challenge (APC), where they utilize a fully convolutional
neural network to segment and label multiple views of a
scene. They fit pre-scanned 3D object models to the resulting
segmentation to determine the 6D object pose.[11] We also
refer to the method of Article DenseFusion.

DenseFusion is a heterogeneous architecture that processes
the two data sources individually and uses a novel dense
fusion network to extract pixel-wise dense feature embedding,
from which the pose is estimated.[9] In another paper, they
introduce a Normalized Object Coordinate Space (NOCS)
to directly infer the correspondence from observed pixels to

this shared object representation (NOCS) along with other
object information[5].We also refer to methods such as Deep-
6DPose[3],Pix2Pose[6], and PoseNet[10].

To overcome limitations in cluttered scenes and real-time
applications, we choose the DenseFusion method: ”6D Object
Pose Estimation by Iterative Dense Fusion.” We train the
model using deep learning and computer vision techniques
and utilize Robosuite to visualize the object grasping process.
We create a new grasping environment in Robosuite, modify
the ”sample” function to determine object positions, and
simulate real-life scenarios. Using the aforementioned learning
algorithms, we obtain a 6D coordinate for each object to be
grasped and moved. Finally, the program outputs a figure of
the robot’s trajectory.

Regarding the 6D pose estimation algorithm, the first step
involves training the model, which consists of training the
DenseFusion model and the iterative refinement model. We
visualize the results to assess the model’s performance in both
real and simulated environments. Furthermore, we compare
DenseFusion with other methods, utilizing the YCB dataset
and a toolbox to plot the 3D accuracy threshold curve.

In this paper, we propose a novel approach for estimating
6D poses of known objects from RGB-D images and we
have completed a comprehensive deep learning process. Our
method outperforms previous approaches in various datasets
and exhibits greater robustness against occlusions.

II. METHOD

1) A brief introduction to DenseFusion:
DenseFusion is a network proposed by Li Feifei et al. in

2019 for 6D pose estimation. It is an end-to-end structure that
takes RGB-D data as input and predicts the 6D pose of an
object as output. The main contribution lies in proposing a
pixel-level dense fusion approach for integrating color and
geometric features.[9]

In fact, it uses the traditional network structure for process-
ing rgb-d data, only replacing the depth map with pointnet. The
prediction results of the first network posenet did not perform
well on objects with occlusion, so a new network was trained
with the same structure, but the input was changed to the
output of the first network.

The network consists of two stages:



Fusion of color and depth information from RGB-D images,
followed by learning-based mapping to another feature space.
Pose prediction is performed using this feature vector. Iterative
pose refinement using a cyclic iterative optimization method.

Fig. 1. An end-to-end deep network model for 6D pose estimation from RGB-
D data, which performs fast and accurate predictions for real-time applications
such as robot grasping and manipulation.

Related work:
Pose from RGB images. Classical methods rely on detecting

and matching key points with known object models[2]. Newer
methods address the challenge by learning to predict the 2D
key points[1] and solve the poses by PnP[4]. Though prevail
in speed-demanding tasks, these methods become unreliable
given low-texture[8] or low-resolution inputs. Other methods
propose to directly estimate objects pose from images using
CNN-based architectures. Many such methods focus on ori-
entation estimation. Our method leverages both image and
3D data to estimate object poses in 3D in an end-to-end
architecture.

Pose from depth / point cloud. Recent studies have pro-
posed to directly tackle the 3D object detection problem in
discretized 3D voxel spaces. These methods are often pro-
hibitively expensive: takes nearly 20 seconds for each frame.
More recent 3D deep learning architectures have enabled
methods that directly performs 6D pose estimation on 3D point
cloud data.

Pose from RGB-D data. Classical approaches extract 3D
features from the input RGB-D data and perform corre-
spondence grouping and hypothesis verification. However,
these features are either hardcoded or learned by optimizing
surrogate objectives such as reconstruction instead of the
true objective of 6D pose estimation. Newer methods such
as PoseCNN directly estimates 6D poses from image data.
Further fuses the depth input as an additional channel to a
CNN-based architecture. However, these approaches rely on
expensive post-processing steps to make full use of 3D input.

Our method is most related to PointFusion, in which ge-
ometric and appearance information are fused in a heteroge-

neous architecture. We show that our novel local feature fusion
scheme significantly outperforms PointFusion’s naive fusion-
by-concatenation method. In addition, we use a novel iterative
refinement method to further improve the pose estimation.

The previously considered FCN+ICP method faced issues
during the reproduction stage due to the use of an outdated
CUDA version in the original paper.[11]

2) DenseFusion’s simple usage:
Dataset Selection:
The YCB dataset has a large file size of 265GB and was

only used for evaluating the results in the later stages of the
experiment.[10]The YCB Video dataset was created based on
the YCB dataset, and 21 objects were selected from the YCB
dataset (reason for selecting these 21 objects: high quality
3D models and good visibility in depth). Select 3-9 objects
from 21 to create a real indoor scene, and then use RGBD
cameras to take physical photos to create 92 videos. All videos
in the entire dataset contain 133827 frames. Finally, a semi-
automatic method was used for 6D pose annotation.

The Linemod dataset is a widely used object recognition
dataset, which includes 15 objects, including bottles, cups,
televisions, keyboards, etc., with multiple perspectives of RGB
D images and 3D models. These images and models can be
used to train and test object recognition algorithms

The characteristic of the Linemod dataset is that each object
has a unique color and texture, making it easy to recognize
in the image. In addition, this dataset also provides true pose
annotation of objects, that is, their position and direction in
3D space, making it suitable for research on object pose
estimation.

We trained our model using the provided Linemod dataset
(5.8GB). For creating our own dataset, we utilized the Object-
DatasetTools [12]

(https://github.com/F2Wang/ObjectDatasetTools.git)tool.
Thanks for providing us with the depth camera D435i.
The ”data” folder consists of 13 sub-folders, each corre-

sponding to a specific category. Here is the content within
each category:

1. depth(directory): Depth maps.
2. mask(directory): Masks of the target objects, representing

the segmentation results.
3. rgb(directory): RGB images.
4. gt.yml(file): Contains the rotation matrix, translation

matrix, standard bounding box of the target object, and the
class label of the object for each captured image.

5. info.yml(file): Intrinsic parameters of the camera used for
capturing each image, along with the scale factor for depth.

6. test.txt(file): Predefined test dataset split.
7. train.txt(file): Predefined training dataset split.
The ”models” folder contains PLY files, where each file

represents point cloud information. The point cloud data
in these files is based on the reference image ”linemod/-
Linemod preprocessed/data/xx/rgb/0000.png.” With this refer-
ence image’s point cloud data (including the complete point
cloud of the target object), we can calculate the corresponding



point cloud data for other captured images using their camera
parameters (rotation and translation matrices).

The ”models info.yml” file contains information about the
radius, starting values, and size ranges along the x, y, and z
axes for each target point cloud model.

During the training of the model, the most accurate data
is used to train the model. Therefore, during both training
and validation, the ”mask” folder containing the most accurate
masks (located at ”Linemod preprocessed/data/mask”) is used
as the segmentation labels.

During testing, it is desired to simulate real-world scenarios
as closely as possible. In the actual application, DenseFusion
network predicts the pose of segmented objects. Therefore,
an additional segmentation network is required in practical
applications. The ”segnet results” folder contains the im-
ages segmented by the semantic segmentation network. This
segmentation output is intended to be closer to real-world
scenarios, and it differs slightly from the standard masks used
during training and validation.

Obtain our Linemod images:
It is important to note that the resolution is 640x480, and the

coordinates need to be converted from meters to millimeters
(by timing 1000).

The training process consists of two parts:
(i) training the DenseFusion model and (ii) training the

iterative refinement model. In this code, the training of the
DenseFusion model will be conducted first. Once the average
test distance results (ADD for non-symmetric objects and
ADD-S for symmetric objects) are below a certain margin
(refine margin), the training of the iterative refinement model
will start automatically, and the DenseFusion model will be
fixed. You can modify this margin to obtain better Dense-
Fusion results without performing refinement, but it will be
inferior to the final results achieved after iterative refinement.

Before training, I conducted a validation using the provided
models from the linemod preprocessed dataset, and the suc-
cess rate was 0.9539.

We performed two training sessions for pose refinement
using their pre-trained models without refinement. The train-
ing was conducted for a total of 30 epochs, divided into
two sessions (epochs 31-61 and 61-91). The refine margin,
which determines when the training of the pose refinement
model starts (i.e., when the average distance is below the
refine margin), was set to 0.013 (default) for the first session
and 0.008 for the second session.

During the first training session, the average distance (Avg
dis) did not fall below the refine margin. As a result, the
first trained model obtained was for pose refinement, not pose
estimation.

During the second training session, both the pose estimation
model and the pose refinement model were loaded simultane-
ously. This means that the training process incorporated both
models to refine the pose estimation.

3) Environment creation in Robosuite:
The general step of create a new grasping environment is:
1. Encapsulate the environment into a class,

2. Register the environment at init .py,
3. Create a demo to instantiate the environment.
An environment includes several necessary functions:
1. def reward(self, action): This function defines the reward

for the task.
2. def staged rewards(self): Helper function to calculate

staged rewards based on current physical states.
3. def load model(self): Loads an xml model, puts it

in self.model, including customize and initialize arena and
objects.

4. def setup references(self): Sets up references to impor-
tant components.

5. def reset internal(self): Resets simulation internal con-
figurations.

Object setting:
In the environment file, we can create models by import

XML package. Also we can customize our own material by
import CustomMaterial package.

from robosuite.models.objects import BoxObject
from robosuite.utils.mjcf_utils import

CustomMaterial

For example, we can customize a material named “red-
wood” by these code:

redwood = CustomMaterial(
texture="WoodRed",
tex_name="redwood",
mat_name="redwood_mat",
tex_attrib=tex_attrib,
mat_attrib=mat_attrib,

)

And we can create a cube called “cubeA” with size = [0.02,
0.02, 0.02] using the redwood material:

self.cubeA = BoxObject(
name="cubeA",
size_min=[0.02, 0.02, 0.02],
size_max=[0.02, 0.02, 0.02],
rgba=[1, 0, 0, 1],
material=redwood,

)

For example, we created an environment with three cubes
on a table arena, between which there are a small red cube, a
large green cube and a large blue cube. We need to create an
array to represent the cubes.

cubes = [self.cubeA, self.cubeB, self.cubeC]

Register and initialize the environment:
After creating a new environment, we must register the

environment at init .py. We can add a “import” func-
tion into it. For example, if we create a new environment
called “Env1”, then we can use the function below: from
robosuite.environments.manipulation.Env1 import Env1 The
registered environment could be initiated in another python



file. By using function “env = suite.make()”, we can initiate
the environment and render it.

Generally, we can adjust the environment by these factors
below:

1. env name: Change the registered environment.
2. robots: Change the registered robot (arm).
3. render camera: Change the position of the camera that

renders the environment and display.
4) Manipulation in Robosuite:: Set the position for the 3

objects created in the environment:

positions = np.array(
[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]])

Set 2 PD controllers: PD Controller Open for the gripper
open and the PD Controller Closed for the gripper closed:

def PD_Controller_Open(target, eef_pos,
last_eff_pos):
p = 8
d = 7
action = -np.ones(4)
target = ori_pos + target
action[0:3] = (target - eef_pos) * p -

abs(eef_pos - last_eff_pos) * d
return action

def PD_Controller_Close(target, eef_pos,
last_eff_pos):
p = 8
d = 7
action = np.ones(4)
target = ori_pos + target
action[0:3] = (target - eef_pos) * p -

abs(eef_pos - last_eff_pos) * d
return action

Set 5 steps for the robot arm panda manipulation, repeat if
there is other objects:

Step1: move to target object
Step2: close gripper and grasp target object
Step3: move to the end point
Step4: open gripper
Step5: repeat the above process

##Step1
for i in range(50):

line = [x1 + 0.1, y1, -0.15]
eef_pos = obs[’robot0_eef_pos’]
action = PD_Controller_Open(line, eef_pos,

last_eff_pos)
track = np.append(track, eef_pos - ori_pos)
obs, reward, done, info = env.step(action)
last_eff_pos = eef_pos
env.render()
#env.robots.grasp = not env.robots.grasp

##Step2
for i in range(50):

line = [x1 + 0.1, y1, -0.2]
eef_pos = obs[’robot0_eef_pos’]
action = PD_Controller_Close(line,

eef_pos, last_eff_pos)
track = np.append(track, eef_pos - ori_pos)

obs, reward, done, info = env.step(action)
last_eff_pos = eef_pos
env.render()

##Step3
for i in range(50):

line = [-0.1, 0.25, 0.2]
eef_pos = obs[’robot0_eef_pos’]
action = PD_Controller_Close(line,

eef_pos, last_eff_pos)
track = np.append(track, eef_pos - ori_pos)
obs, reward, done, info = env.step(action)
last_eff_pos = eef_pos
env.render()

##Step4 Open
for i in range(50):

line = [-0.1, 0.25, 0.2]
eef_pos = obs[’robot0_eef_pos’]
action = PD_Controller_Open(line, eef_pos,

last_eff_pos)
track = np.append(track, eef_pos - ori_pos)
obs, reward, done, info = env.step(action)
last_eff_pos = eef_pos
env.render()

Output a figure of robot track:

track = track.reshape([600, 3])
plt.figure(0)
plt.scatter(track[:, 1], track[:, 2])
plt.show()

III. EXPERIMENT

1) Compare the model provided by densefusion with the one
we trained ourselves:

The validation results are as follows, and they are very close
to the success rate obtained from the validation of the model
provided by the Linemod preprocessed dataset.

Fig. 2. Evaluation results

Final training duration: 60 epochs (30 + 30), with a total
training time of 31 hours.

Fig. 3. Success rate



The first training only requires loading the dataset to be
used for training, and the previously trained pose estimation
model can be directly used for further training. Due to the
small epoch setting, the Avg dis value can be changed to be
lower than refine margin. Through 60 training sessions, the
pass rate was increased from 0.8062 to 0.9535, which is close
to the 0.9538 obtained from the original 500 training sessions.
This proves that the set epoch and other related parameters are
reasonable, and also proves that the given no refine model has
certain universality and can be used for training other item
datasets.

Visualization:
The visualization process involves outputting the predicted

results, which helps in understanding how the model per-
forms in real-world scenarios and simulation environments.
One important function in the ’draw linemod.py’ script is
’mask to bbox’. This function takes a binary mask image
’mask’ as input, representing the object’s location. It converts
the binary mask to an unsigned 8-bit integer type and uses the
’findContours’ function from OpenCV to find the contours in
the mask image. Using the obtained contours, it calculates
and returns the minimum bounding rectangle [x, y, w, h] that
encloses the object. Here, x and y are the coordinates of the
top-left corner of the rectangle, and w and h represent the
width and height of the rectangle.

Another function, ’get bbox’, takes a list of bounding boxes
’bbox’ as input, where each bounding box is represented
as [x, y, w, h]. This function adjusts the coordinates of
the bounding boxes to fit within the image’s dimensions.
Specifically, it restricts the coordinates of the top-left and
bottom-right corners of the bounding boxes to stay within
the image boundaries, preventing them from going beyond the
image borders. Finally, it returns the adjusted bounding box
coordinates [y min, y max, x min, x max].

These functions are used to extract the object’s bounding
boxes from binary mask images and adjust the bounding box
coordinates to fit within the image boundaries. Here is an
example showcasing a reasonably predicted object annotation:

Fig. 4. Results without attitude refinement in the original paper

Fig. 5. The visualization results after attitude refinement(In order to show
the pose estimation results intuitively, we use a new visualization method)

2) Compare densefusion with several other methods:
YCB-VIDEO Usage:
After completing the basic tasks, we downloaded the 265GB

YCB dataset and used the toolbox to plot the 3D accuracy
threshold curve for DenseFusion. The results are saved in
the ”plots” folder (see attachment). The toolbox also provides
the ”show pose results.m” script to visualize the pose results
specifically for the YCB dataset.

Fig. 6. Picture of toolbox position estimation

Finally, we are evaluated and analyzed densefusion and
other commonly used methods using 21 items, and the results
are as follows:(The data involved in the picture can be seen
in the attachment)

Fig. 7. Quantitative evaluation of 6D pose



Fig. 8. Evaluation results of different pose estimation methods for different
objects

The main advantage of our dense fusion method is its
robustness towards occlusions. To quantify the effect of occlu-
sion on final performance, we calculate the visible surface ratio
of each object instance (further detail available in supplemen-
tary material). Then we calculate how the accuracy changes
with extent of occlusion. As shown in Fig, the performances
of PoseCNN+Stereo and PoseCNN+ICP degrade significantly
as the occlusion increases. In contrast, none of our methods
experiences notable performance drop. In particular, the per-
formance of ours only decrease by 2% overall.

As we can see, PoseCNN+ICP and PoseCNN+Stereo fail
to estimate the correct pose of the extra-large clamp due to
heavy occlusion, whereas our method remains robust. Another
challenging case is the clamp in the middle row due to poor
segmentation. Our approach localizes the clamp from only
the visible part of the object and effectively reduces the
dependency on accurate segmentation result.

However, the overall complexity of the YCB scenario is not
sufficient, and the accuracy of item identification in chaotic
backgrounds such as construction sites and warehouses still
needs further evaluation.

3) Placing and grasping tests in Robosuite:

We can run the initiation file to display the rendered
environment. For example, I created an environment with three
cubes on a table arena. Between the cubes there are a small
red cube, a large green cube and a huge blue cube, and the
render camera is “frontview”.

Here is the image generated:

Fig. 9. Three cubes on tablearena in random with frontview

And here is the image generated by using “agentview”:

Fig. 10. Three cubes on tablearena in random with agentview

Determine the position of objects:
The position of the cubes is random, but we can change it

by rewriting the function “sample”:
To determine the position of the cubes, we have another

step to do: rewrite the “sample” function, for example, we set
the cubes at position [0, -0.08, 1], [0, 0, 1], [0, 0.08, 1]:

def sample(self, fixtures=None,
reference=None, on_top=True):
placed_objects = {}
for i, obj in

enumerate(self.mujoco_objects):
placed_objects[obj.name] =

(self.positions[i], np.array([0.5,
-0.5, 0.5, -0.5]), obj)

return placed_objects
positions = np.array(

[[0, -0.08, 1], [0, 0, 1], [0, 0.08, 1]])

The position of the cubes changes from random to a
determined place, and here they are placed at [0, -0.08, 1],
[0, 0, 1], [0, 0.08, 1]. Thus, we can simulate the situation of
the real world.

Manipulate the robot arm:
In this section, we use Robosuite to simulate the robot

arm to grasp objects. With the learning algorithms mentioned
before, we can get a 6D coordinate for every object to be



grasped and moved. Because the gripper is simple and robust,
we only need 3D coordinates to simulate the whole grab
action. In this example, we only need x and y coordinates
because every object is on the table.

Step1: move to target object
Step2: close gripper and grasp target object
Step3: move to the end point
Step4: open gripper
Step5: repeat the above process

Fig. 11. Steps of manipulation the robot arm

In one picture, these steps work like the figure below:

Fig. 12. Steps of manipulation the robot arm in one picture

After all above steps, the program will output a figure of
the robot track.

Fig. 13. The output figure of the robot track

Other: grasp irregular object

Besides, we also try some other irregular objects, including
some food and composite. If the gripper is suitable for grasp-
ing the objects, the objects can be manipulated as expected.
(like fig A) However, if the gripper cannot hold the objects,
the simulation would fail like fig B and fig E.



Fig. 14. Steps of grasping irregular object

IV. CONCLUSION

We used a novel approach to estimating 6D poses of
known objects from RGB-D images. Our approach fuses a
dense representation of features that include color and depth
information based on the confidence of their predictions. With
this dense fusion approach, our method outperforms previous
approaches in several datasets, and is significantly more robust
against occlusions.

We completed a complete deep learning process, from
dataset selection, dataset production, adversarial algorithm
selection, to environment configuration and training, and fi-
nally visualization processing. Simultaneously experiencing
the convenience of many CV tools. For project expansion,
we can create larger datasets of our own and train models for
different scenarios through images and videos. And I hope to
have the opportunity to estimate the 6D posture and apply it to
real scenarios, such as rescue robots, industrial robotic arms,
etc.

Limitations:1.The computing power of the graphics card
was insufficient. In the early stage, only a 1650 graphics
card could be used for training. Later, CUDA environment
of 30 series graphics cards was configured. Linemod and
ycb, as well as self-collected data obtained through depth
cameras using Object Dataset Tools for validation. For the
linemod dataset, the original paper (densefusion) conducted

500 training iterations, taking into account time constraints
(each training session requiring 40 minutes). 2. Without hard-
ware support, you can only use simulation environment to
capture and demonstrate. Later, it is possible to train its own
data set completely and grasp it on the real robot arm.

ACKNOWLEDGMENTS

REFERENCES

[1] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning
6d object pose estimation using 3d object coordinates.
Springer International Publishing, 2014.

[2] A. Collet, M. Martinez, and S. S. Srinivasa. The moped
framework: Object recognition and pose estimation for
manipulation. The International Journal of Robotics
Research, 30(10):1284–1306, 2011.

[3] T. T. Do, M. Cai, T. Pham, and I. Reid. Deep-6dpose:
Recovering 6d object pose from a single rgb image, 2018.

[4] M. A. Fischler and R. C. Bolles. Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[5] W. He, S. Sridhar, J. Huang, J. Valentin, and L. J. Guibas.
Normalized object coordinate space for category-level 6d
object pose and size estimation. IEEE, 2019.

[6] K. Park, T. Patten, and M. Vincze. Pix2pose: Pixel-wise
coordinate regression of objects for 6d pose estimation,
2019.

[7] S Saha, N. K Bambha, and S. S Bhattacharyya. De-
sign and implementation of embedded computer vision
systems based on particle filters. Computer Vision and
Image Understanding, 114(11):1203–1214, 2010.

[8] M. Schwarz, H. Schulz, and S. Behnke. Rgb-d object
recognition and pose estimation based on pre-trained
convolutional neural network features. In IEEE Interna-
tional Conference on Robotics Automation, pages 1329–
1335, 2015.

[9] C. Wang, D. Xu, Y. Zhu, R Martı́n-Martı́n, C. Lu,
L. Fei-Fei, and S. Savarese. Densefusion: 6d object pose
estimation by iterative dense fusion. 2019.

[10] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox.
Posecnn: A convolutional neural network for 6d object
pose estimation in cluttered scenes. 2017.

[11] A. Zeng, K. T. Yu, S. Song, D. Suo, and J. Xiao. Multi-
view self-supervised deep learning for 6d pose estimation
in the amazon picking challenge. IEEE, 2017.

[12] Tielin Zhang, Yang Yang, Yi Zeng, and Yuxuan Zhao.
Cognitive template-clustering improved linemod for effi-
cient multi-object pose estimation. Cognitive Computa-
tion, 12(4):834–843, 2020.


	Introduction
	Method
	A brief introduction to DenseFusion
	DenseFusion's simple usage
	Environment creation in Robosuite
	Manipulation in Robosuite:


	Experiment
	Compare the model provided by densefusion with the one we trained ourselves
	Compare densefusion with several other methods
	Placing and grasping tests in Robosuite


	Conclusion

