
Reproduction of Pushing And Grasping Robot Arm
Zican Jin 12011610, Kewei Zuo 11912128, Zihao Wang 11910907, Handi Liu 12011205, Yizhou Lu 12012209

Abstract—Skilled manipulation refers to the high-level skills
and dexterity that robots possess when manipulating objects.
Research in this field aims to enable robots to perform com-
plex object manipulation tasks, such as grasping, moving, and
pushing, similar to humans. Reinforcement learning is a common
method used to achieve Skilled manipulation. In reinforcement
learning, robots learn how to take actions to maximize rewards
through interaction with the environment. In Skilled manipu-
lation, robots need to learn how to perform complex object
manipulation tasks, such as grasping and moving objects. These
tasks require the robots to have high-level skills and dexterity, so
reinforcement learning can train robots through trial and error to
gradually master these skills. Therefore, reinforcement learning
is an important method to achieve Skilled manipulation.

Based on this understanding, we decided to reproduce the
work of a robot arm that is able of pushing and grasping. In
this report, we will explain how we reproduce the work — some
previous related work and background introduction, reasons we
chose to reproduce this work, difficulties we encountered during
the process and how we fixed them, our expected results of the
experiments and the actual final results.

I. BACKGROUND

A. Skill Manipulation
Skilled manipulation in robotics benefits from the intricate

synergies between non-prehensile actions, such as pushing,
and prehensile actions, such as grasping, see in Figure 1[12].
Pushing can aid in rearranging cluttered objects to create
space for robotic arms and fingers, while grasping can assist
in displacing objects to facilitate precise and collision-free
pushing movements. The authors argue that skilled robotic ma-
nipulation requires complex synergies between non-prehensile
(e.g., pushing) and prehensile (e.g., grasping) actions. They
explain that pushing can help rearrange cluttered objects to
make space for arms and fingers, while grasping can help
displace objects to make pushing movements more precise and
collision-free.

The limitations of previous approaches to robotic manipu-
lation, as discussed in this paper, are that they have focused
on either prehensile or non-prehensile manipulation, but not
both together. This has resulted in limited robotic manipulation
skills. For example, grasping can be limited by cluttered
environments where objects are difficult to reach or grasp,
while pushing can be limited by the inability to displace
objects accurately and collision-free. By combining these two
types of actions in a mutually supportive way, the authors
argue that robots can greatly improve their manipulation skills.

B. Related Works
The related work discussed in this report is at the inter-

section of robotic manipulation, grasping, and pushing with
grasping. We will briefly review the related work in these
domains.

Fig. 1. Example configuration of tightly packed blocks reflecting the kind
of clutter that commonly appears in real-world scenarios (e.g. with stacks of
books, boxes, etc.), which remains challenging for grasp-only manipulation
policies. The model-free system is able to plan pushing motions that can
isolate these objects from each other, making them easier to grasp. By doing
this, it improves the overall stability and efficiency of picking.

1) Robotic Manipulation: Previous works have focused
on either prehensile or non-prehensile manipulation, but not
both together. Some works have used grasping to manipulate
objects, while others have used pushing to rearrange objects.
However, there has been limited research on combining these
two types of actions in a mutually supportive way. The
literature on this topic is extensive, with classical solutions
based on explicit modeling of pushing dynamics with fric-
tional forces dating back several decades [5, 4]. However,
many of these methods rely on modeling assumptions that
do not hold up in practice [1, 11]. For instance, non-uniform
friction distributions across object surfaces and variations in
friction can lead to inaccurate predictions of friction-modeling
pushing solutions in real-world settings. While some recent
methods have explored data-driven algorithms for learning
the dynamics of pushing [6, 14], many of these studies have
focused mainly on executing stable pushes for one object at
a time. Modeling the larger-scale consequences of pushing
in settings with severe clutter and friction variation remains a
complex problem. Moreover, effectively utilizing these models
to discover optimal policies in real-world settings is even more
challenging.

2) Grasping: Grasping has also been extensively studied in
the domain of model-based reasoning, with approaches rang-
ing from modeling contact forces to characterizing grasps by
their ability to constrain object mobility[10]. However, these
methods typically assume knowledge of object shapes, poses,
dynamics, and contact points, which is rarely available for
novel objects in unstructured environments. Recent data-driven
methods have explored the possibility of training model-
agnostic deep grasping policies that detect grasps by exploiting



learned visual features[8, 13], without relying on object-
specific information. These methods have shown promising
results, including improved performance through pre-training
on auxiliary tasks and the use of fully convolutional networks
to model grasping policies with affordances. Obviously, many
of these methods involves approaches in computer vision.

3) Pushing with grasping: The combination of non-
prehensile and prehensile manipulation policies is an interest-
ing area of research that has been less explored. Previous work
has presented robust planning frameworks for push-grasping
to reduce grasp uncertainty and to move around obstacles in
clutter. However, these policies have largely been handcrafted.
In contrast, the proposed method is data-driven and learned
online through self-supervision. Other methods have explored
the model-free planning of pushing motions to move objects
to target positions that are more favorable for pre-designed
grasping algorithms[7, 3]. However, defining similar goals
for data-driven, model-agnostic grasping policies become less
clear, as these policies are constantly changing and adapting
behaviors over time with more data. More closely related
to the proposed method is the work of Boularias et al.[2],
which explores the use of reinforcement learning for training
control policies to select among push and grasp proposals
represented by hand-crafted features. However, their method
models perception and control policies separately, relies on
model-based simulation, and is tuned to work mainly for
convex objects.

C. Using of VPG

1) Contributions: The main contribution of this paper is
a new perspective to bridging data-driven prehensile and
non-prehensile manipulation. The authors demonstrate that
it is possible to train end-to-end deep networks to capture
complementary pushing and grasping policies that benefit from
each other through experience. In VPG, the authors compare
their proposed method to two baseline methods: ”Pushing +
Grasping Reactive” (P+G reactive) and ”Grasping Only” (G
only). The main differences between VPG and these baseline
methods are:

• VPG combines both pushing and grasping actions in a
mutually supportive way, while P+G reactive only uses
reactive grasping actions and G only only uses grasping
actions.

• VPG uses deep reinforcement learning to learn pushing
and grasping policies from experience, while P+G reac-
tive uses a rule-based approach that reacts to the current
state of the environment, and G only uses a grasp planner
that selects grasps based on object geometry.

• VPG uses affordance-based manipulation to estimate the
likelihood of successful pushing or grasping actions based
on visual input, while P+G reactive and G only do not
use visual input for action selection.

• In experiments with 30 objects randomly dropped onto a
table, VPG outperforms both baseline methods across all
metrics, including completion rates and action efficiency.

2) Methods: The authors formulate the task of pushing-
for-grasping as a Markov decision process, where the robot
chooses and executes an action based on a policy that max-
imizes the expected sum of future rewards. The goal is to
find an optimal policy that maximizes the expected future
reward, given by a discounted sum over an infinite-horizon
of future returns. Overall, VPG combines deep reinforcement
learning with affordance-based manipulation to learn pushing
and grasping policies in a mutually supportive way from
experience. By estimating affordances from visual input, VPG
can learn to perform complex interactions with objects beyond
what is possible with rule-based or geometry-based approaches

II. QUESTIONS ABOUT OUR CHOICE ON REPRODUCTION
OF THIS WORK

A. Why do we choose to reproduce this work?

We found this article on Github, and one of the most
interesting things about it is that compared to normal robot
arms, the one described in this paper has the ability to push
objects. As undergraduate students, things that we can have
access to are relatively few. This robot arm is a novel thing to
us because, by pushing objects, it is able to change the outer
shape of a set of things. By pushing irrelevant things away,
it becomes easier for the robot arm to grab the main object,
which is really useful in grasping things. So we decided to
reproduce this work and figure out how it is able to push and
grasp.

B. What will be reproduced?

The author of the paper provided not only experiments on
computers, but also a platform for the robot arm to operative in
real. However, due to some conditions, we cannot build a robot
arm like that, and the limited time also prevents us from doing
that, so we just decided to reproduce this paper in simulation
environment, not in reality. We planned to reproduce the work
in the following three aspects: single VPG, without push
rewards, and short-sighted VPG.

C. What we need to do?

Thanks to the author, details have already been listed on
Github, so it is easy for us to follow the instructions. We
just mainly focused on the experiment part. The goals of the
experiments are listed:

• To investigate whether the addition of pushing as a
motion primitive can enlarge the set of scenarios in which
objects can successfully be grasped (i.e. does pushing
help grasping).

• To test whether it is feasible to train pushing policies with
supervision mainly from the future expected success of
another grasping policy trained simultaneously.

• To demonstrate that their formulation is capable of train-
ing effective, non-trivial pushing-for-grasping policies
directly from visual observations on a real system.



D. The problems we encountered and how we overcame them

1) Version Problems: The files on Github were uploaded in
2018, five years ago. Therefore, some of the software version
are incompatible. Copperlia Simulation, is called ’V-REP’ at
first, but later the version after 3.6.1 was updated and renamed
Copperlia simulation. The project was launched in 2018, when
v-rep3.1.9 was used. Our first trial was to go to the official
website to check some of the old versions. Unfortunately, the
version required by the paper is so old that the official website
does not provide now. Also, the scene in the previous project
will report an error missing the PID controller. However, the
higher version can be compatible with the lower version and
will run despite the error. Despite that, the phenomenon of
skew of clamping jaws would occur during operation, so we
are not sure whether it is a version problem or not. Anyway,
we chose Copperlia Simulation to run V4.4 our codes finally,
and it turned out to be fine.

2) Not Enough Memory: We first used our own laptops
to run the training code. However, the memory was far from
enough. After several times of testing, a graphics card with
more than 8 GB of memory is required to run through training.
Although CPU can be used for training, the final training time
and training results are not as good as GPU. The training
graphics card we used is NIVIDIA RTX 1080Ti, 12GB, but it
still had trouble in the ’Reactive’ type training learning. ’Non-
reactive’ learning consumes 7 to 8GB of video memory in
training, and the time needed for training a relatively complete
model would take about 5 to 7 hours. If a better performance
graphics card was used, that time will be greatly reduced. We
recommend that others who want to reproduce this work in
the future to use at least NIVIDIA 3070, more than 16GB
graphics card. In that case, compared to 1080ti, the training
time can be reduced by more than half.

3) Incompatible Versions: Cuda and Pytorch. These two
softwares need to be compatible for their versions, The final
version adopted was CUDA 10.0 and pytorch 1.2.

III. SOFTWARE INSTALLATION

We just install all the softwares.
As mentioned, we just reproduced the simulation part, not

real part. The authors test VPG by executing a series of tests in
which the system must pick and remove objects from a table
with novel arrangements of objects, as we can see in Figure
2. Policies are trained in scenarios with random arrangements
of 10 objects (left in Figure 2), then evaluated in scenarios
with varying degrees of clutter (10 objects, 30 objects, or
challenging object arrangements).

A. Settings

Their are some of our experiments settings:
• Reference code: https://github.com/andyzeng/visual-

pushing-grasping.
• Hardware: Intel(R) Xeon(R) CPU E5-2640 v4@

2.40GHz, GeForce RTX 3090, CUDA11.1, Ubuntu 20.04
LTS.

Fig. 2. Simulation environment

• Version of key packages: python3.8, pytorch 1.8.1, V-
REP 4.3.0[9].

• Settings of robot: UR5 robot arm, RG2 gripper in V-REP,
Bullet Physics 2.83.

We execute n runs where n ∈ [10, 30] and then evaluate the
performance with 3 metrics:

• The average completion rate over the n test runs, which
measures the ability of the policy to finish the task by
picking up all objects without failing consecutively for
more than 10 attempts.

• The average grasp success rate per completion.
• The action efficiency( #objectsintest

#actionsbeforecompletion ), which
describes how succinctly the policy is capable of finishing
the task.

For all of these metrics, higher is better.

B. Build Development Environment

a) Installation of PyTorch and CUDA: First, we install
the PyTorch by the instructions on https://pytorch.org/get-
started/locally/, see in Figure 3.

Fig. 3. Install PyTorch

We also install CUDA follow the instructions in
https://docs.nvidia.com/cuda/cuda-installation-guide-
linux/index.html. Then we verify that PyTorch and CUDA
are installed correctly, see in Figure 4.

b) Installation of V-REP: V-REP is based on a dis-
tributed control architecture: each object/model can be in-
dividually controlled via an embedded script, a plugin,

https://github.com/andyzeng/visual-pushing-grasping
https://github.com/andyzeng/visual-pushing-grasping
https://pytorch.org/
https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/
https://pybullet.org/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html


Fig. 4. Verify Installation of PyTorch and CUDA

a ROS node, a remote API client, or a custom solu-
tion. Controllers can be written in C/C++, Python, Java,
Lua, Matlab or Octave. We download the install package
from https://www.coppeliarobotics.com/previousVersions, see
in Figure 5.

Fig. 5. The Download page of V-REP

After installed, open the software, we can see the UI of V-
REP in Figure 6. We can see that there are some important
parts in V-REP’s UI: the views helps you adjust the view of
the scene, you can choose a 3D model into the scene on the
right, and you can choose all objects in the scene, finally you
can control the action of objects in the scene.

Fig. 6. The User Interface of V-REP

In V-REP, object’s action is programmed by scripts,
let’s see the script of the added model, see in Figure
7, the default script language is Lua, and we can follow
https://www.coppeliarobotics.com/helpFiles/index.html to use
python to control objects.

Fig. 7. The Action Script of model in V-REP

c) Installation of Bullet Physics: Bullet Physics is a
professional open source collision detection, rigid body and
soft body dynamics library. Bullet Physics targets real-time
and interactive use in games, visual effects in movies and
robotics. We can use it by installing PyBullet. After in-
stallation, let’s try an example of PyBullet by python -m
pybullet robots.panda.loadpanda, see in Figure 8.

Fig. 8. An Example of Bullet

When V-REP and Bullet Physics are prepared, we can carry
out the experiment.

IV. REPRODUCTION

A. Expected Results

We planned to reproduce the project in the context of
simulation based on this paper. We attempted to reproduce all
of the simulation configurations in challenging arrangements,
and compare our testing results with the original results in
paper, to see how well we have done with our reproduction
work.

Because of limited computer memory, we cannot reproduce
the ’Reactive’ training part. So we just mainly focus on
the following three configurations: Original VPG training,

https://www.coppeliarobotics.com/previousVersions
https://www.coppeliarobotics.com/helpFiles/index.html
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3


(a) heightmap (b) image

(c) visualization

Fig. 9. Operation interface

VPG training without pushing rewards, and short-sighted VPG
training.

For our reproduction work, we hope to have the same results
as theirs. And, if possible, we hope that in some cases we can
do better (Making some of the rates higher).

B. Actual results

Here we just briefly show the results. We will discuss about
them in detail in the next part.

Fig. 10. Results in one chart

There are three columns in the chart. ’Completion Rate’
means the ability of the policy to finish the task by successfully
grasping all the objects. (Failures often happen during the
grasping process, and are inevitable. So if the number of
grasping failure times is less than 10, we still consider it
as completed). ’Success Rate’ means total grasp success rate
per completion(As previously discussed, one completion does
not ensure every grasp to be successful). ’Efficiency’ means
objects in test divided by actions before completion, which

describes how succinctly the policy is capable of finishing the
task. For all three rates, the higher means the better.

Fig. 11. Results of three configurations in one image

Legends are listed in the image. Totally we have 2500
training steps for each configuration. At every step, we obtain
the success rate, then plot it on the image. The solid lines
indicate grasp-only operations, the dash lines indicate push-
then-grasp operations.

C. Results Analysis

1) Single VPG: Firstly we compare the results of single
VPG configuration. We find that all of our three rates are
higher than the original ones. We are happy with that because
in the first configuration we manage to surpass the original
paper.

Fig. 12. Comparison of single VPG results

We think one of the reasons may be this — In the original
paper, the author provides totally 11 test cases, but due to
time limitation, we can only finish one of them. This can be
reasonable according to the original paper, the author has a
100 completion rate for 5 of the 11 test cases. However, there
may be some differences of the difficulty, so what we have
chosen may be an easier one for the simulation to go around.
In this case, a regular push is succinct and is helpful to the
further process grasping. That may explain why our rates are
much higher.

2) No pushing rewards: Secondly we compare the results of
no pushing rewards. This is the configuration that the method
has been modified to make sure that it learns synergistic
pushing and grasping actions without any intrinsic rewards
for pushing. In this more difficult setting, the pushing policy



learns to effect change only through the reward provided by
future grasps.

In the original paper, the author uses an image instead of
chart data to present the result. Therefore, we choose the same
way of drawing images.

(a) original results

(b) our results

Fig. 13. Comparison of no pushing rewards results

Since there is no virtual way to measure the quality of
the pushing motions for how well they benefit a model-
free grasping policy, this secondary metric serves as a good
approximation.

Compared to the original results, the final results are similar,
but our VPG without pushing rewards has higher grasping
performance at first, and is even higher than single VPG. We
consider that can be the same reason — a much easier test
case.

Rewards can be regarded as a kind of feedback. This
feedback, in the long run, can make the grasping process more
accurate. However, for short times, more operations add in the
time for training, resulting short increase at first of the success

rate. But as long as the number of the steps is big enough
(About 1000 times), the difference becomes smaller.

This goes the same for differences between grasp-only and
push-then-grasp configurations. The dash lines indicate push-
then-grasp operations. For grasp-only configuration, even if
one grasp fails, it is still very likely to change the position of
the block. Then, the second grasp may be successful. However,
because the case is easier, pushing may be a negative action. It
adds more computation, making the number of the steps more
to reach same grasping performance.

3) Short-sighted VPG: Thirdly we compare the results of
short-sighted VPG configuration. In the paper, the author pro-
posed a ’long term strategy’, that is, chaining multiple pushes
to enable grasping, grasping to enable pushing, grasping to
enable other grasps, etc. This method ensures that each step
will have an effect on further steps. To test the value of this
strategy, another short-sighted version of VPG is trained. The
discount factor on future rewards is smaller at r = 0.2. In
the right case, the VPG method should have higher rates than
shorted-sighted VPG method.

Fig. 14. Comparison of short-sighted VPG results

This is what the author got in his paper, ’Interestingly, we
see that VPG-myopic improves its grasping performance at a
faster pace early in training (presumably optimizing for short-
term grasping rewards), but ultimately achieves lower average
performance (i.e. grasp success, action efficiency) across most
hard test cases.’ However, we seem to have opposite results.
Compared with original results, ours seem to have an increase
in the completion rate. But still, the reason has been discussed
before. For other two rates, the results are not so good,
especially for efficiency, the rate decreased towards 38.5. This
is reasonable because we have few test cases, which means that
the whole training process is somehow missing some parts.

And, compared with other two configurations, it is still the
worst. This suggests that the ability to plan long-term strategies
for sequential manipulation could benefit the overall stability
and efficiency of pushing and grasping.

V. CONCLUSION

In this report, we reproduce the Visual Pushing for Grasping
(VPG) proposed in [12], which combines pushing and grasping
actions in a mutually supportive way using deep reinforcement
learning and affordance-based manipulation. We reproduce for
three situations including original VPG, VPG without pushing
rewards and short-sighted VPG.

The original paper just discussed pushing and grasping
motions for robot arms. But for further studies, we may focus
on different motions (like rolling, toppling and squeezing) to
make deeper reinforcement learning of robot arm. We may also
adjust the shape and numbers of the objects to be grasped.



Currently they are just geometric blocks, but in real cases,
their shape may be irregular, and that will be more difficult
for robot arms to grasp them. In the cases we discussed,
we use randomly arranged 10 blocks for testing. But in the
original paper, the author finally has the testing over 30 blocks.
Increase in the number of the blocks largely makes it more
difficult for the robot arm to grasp them.

The installation of software costs us much time. Some of the
version is out of date that even on official website we cannot
find the version we want. And we have to look for other ways.
If we were about to do this again, we may change another
simulation environment(like Robosim or RobotStudio). If pos-
sible, we may use larger memory so that we can reproduce
more different situations, including the ’Reactive’ part.
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