
Put-In-Box Task Generated from Multiple Discrete Tasks by
a Humanoid Robot Using Deep Learning

Kei Kase1, Kanata Suzuki2, Pin-Chu Yang3, Hiroki Mori4, and Tetsuya Ogata5

Abstract— For robots to have a wide range of applications,
they must be able to execute numerous tasks. However, recent
studies into robot manipulation using deep neural networks
(DNN) have primarily focused on single tasks. Therefore, we
investigate a robot manipulation model that uses DNNs and
can execute long sequential dynamic tasks by performing
multiple short sequential tasks at appropriate times. To gen-
erate compound tasks, we propose a model comprising two
DNNs: a convolutional autoencoder that extracts image features
and a multiple timescale recurrent neural network (MTRNN)
to generate motion. The internal state of the MTRNN is
constrained to have similar values at the initial and final motion
steps; thus, motions can be differentiated based on the initial
image input. As an example compound task, we demonstrate
that the robot can generate a “Put-In-Box” task that is divided
into three subtasks: open the box, grasp the object and put it
into the box, and close the box. The subtasks were trained as
discrete tasks, and the connections between each subtask were
not trained. With the proposed model, the robot could perform
the Put-In-Box task by switching among subtasks and could
skip or repeat subtasks depending on the situation.

I. INTRODUCTION

Robots that can combine appropriate actions in a dynamic

environment to complete a complex task that comprises

multiple subtasks are more flexible compared with those

that cannot combine actions. Nowadays, most factories are

not fully automated. Typically, in a changing work environ-

ment, e.g., small quantity production lines for customizable

products, people perform various complicated tasks because

robot manipulation using a modeling approach often requires

experts to manually extract environmental features for vari-

ous conditions and plan corresponding motion trajectories.

As the number of situations and task types increase, it

becomes extremely difficult to define the features and design

appropriate motions for each condition. Furthermore, hard-

coded robot manipulations are often unstable in uncontrolled

*This work was based on results obtained from a project commissioned
by the New Energy and Industrial Technology Development Organization
and was supported by a Grant-in-Aid for Scientific Research (A) (No.
15H01710) from the Ministry of Education, Culture, Sports, Science, and
Technology, Japan.

1Kei Kase, 2Kanata Suzuki, 4Hiroki Mori and 5Tetsuya Ogata
are with the Department of Intermedia Art and Science, Waseda
University, Tokyo, Japan. kase@idr.ias.sci.waseda.ac.jp;
suzuki@idr.ias.sci.waseda.ac.jp;
mori@idr.ias.sci.waseda.ac.jp;
ogata@waseda.jp

3Pin-Chu Yang is with the Department of Modern Me-
chanical and Engineering, Waseda University, Tokyo, Japan.
komayang@sugano.mech.waseda.ac.jp

1Kei Kase, 2Kanata Suzuki, 3Pin-Chu Yang, and 5Tetsuya Ogata are
also with the Artificial Intelligence Research Center, National Institute of
Advanced Industrial Science and Technology, Tokyo, Japan.

environments. To address these problems, robot manipulation

methods that can extract features easily, function in unknown

situations, and generate and combine various tasks to suit

changing work environments are desirable.

Deep neural networks (DNN) have improved performance

in various fields [1] [2], and their characteristics are appeal-

ing for robot manipulation. DNNs can autonomously reduce

high-dimensional data to low-dimensional data for feature

extraction [3], and they can be used to classify unknown

data from learned data [4]. These characteristics could be

applied to extend robot manipulation by autonomously ex-

tracting environmental features and increasing generalizabil-

ity. Previous studies have investigated robot manipulation

with DNNs; however, few studies have addressed switching

among multiple tasks via DNN-based robot manipulation.

Various types of DNNs, e.g., reinforcement learning (RL)

and predictive learning, are used for object manipulation

tasks. RL optimizes a motion trajectory by selecting the

best motion from numerous attempts [5] [6]. In addition, RL

may yield unforeseen optimal results for a robot or a task

relative to optimizing motion trajectories. However, RL often

requires sophisticated reward functions and robot interaction

time for optimization. Predictive learning predicts the next

sequence from previous steps. For example, recurrent neural

networks (RNN), which are DNNs that use an internal

memory to calculate the subsequent output from prior inputs,

are used for predictive learning. RNNs can process sequential

information and maintain robustness against instantaneous

noise. Therefore, RNNs are suitable for robot manipulation

and have been used for various tasks, such as drawing [7]

and using tools [8].

We propose a model that uses two DNNs to generate mul-

tiple short discrete subtasks to complete a longer target task.

To the best of our knowledge, few studies have investigated

robot manipulation with DNNs to generate multiple shorter

subtasks and switch among subtasks appropriately to gener-

ate a longer target task. In the proposed model, one DNN

reduces the dimensionality of the image data autonomously,

and the other, modified RNN model, generates motions by

concatenating the reduced image data and the joint angles of

the robot.

The proposed method utilizes a predictive learning model

to learn policies based on a robotic demonstration with a hu-

man operator using a 3D mouse controller. With our model,

the robot switches among short subtasks autonomously by

recognizing images. Then, the robot executes the target task.

By dividing a long target task into components, collecting

and learning training data becomes more efficient. Further-

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 6447

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on April 26,2023 at 06:24:19 UTC from IEEE Xplore. Restrictions apply.

more, the proposed model enables the robot to repeat and

skip individual subtasks appropriately.

II. RELATED WORK

Many DNN-based robot manipulation studies use RL or

predictive learning. Various tasks have been investigated

relative to robot manipulation using RL [5] [6] [9] [10],

[11], [12], [13], [14]. A previous study [14] focused on

training multiple controllers and performing tasks in series;

however, that study did not exploit visual inputs. Another

study [10] focused on end-to-end visual servoing using

RL. In that study, the robot demonstrated several types of

task generation; however, the tasks were trained separately,

i.e., multiple tasks were not trained simultaneously, and a

switching phase was not considered.

For robot manipulation using predictive learning, several

studies have trained multiple tasks simultaneously [15] [16].

For example, in one study [15], a robot was trained to

interact with a box in various ways; however, a processed

image was used to map the location of the box. The use

of processed images limits the range of possible tasks,

and image processing becomes more complicated as task

complexity increases. In addition, numerous tasks have been

generated using a multimodal DNN that integrates image

features with the joint angles of a robot [16]. However,

even though these frameworks deal with multiple tasks, they

use consumer-grade robots to perform simple tasks, such as

moving a box or rolling a ball, and do not consider switching

tasks or complex tasks. One study employed a low-cost

robotic arm to generate multiple tasks using LSTM [17];

however, the transitions between tasks were not considered.

In another study, an industrial humanoid robot was trained to

perform a more complicated task, i.e., folding a towel, [18]

based on a previously proposed framework of [16]. However,

generation of multiple tasks was not considered in that study.

The proposed model uses a framework that is similar to

a previously proposed framework [16] for learning through

sensory-motor integration, and we adopt an existing motion

generation framework [15]. Furthermore, to switch among

multiple tasks successively based on image data, we impose

constraints to maintain a similar internal state of the RNN

during the initial and final states of multiple tasks. The

proposed model can learn multiple tasks simultaneously;

thus, collecting training data becomes more efficient.

III. METHODS

In this section, we describe the proposed model for gen-

erating and switching among short tasks based on image

data. The proposed model uses two types of DNNs, i.e., a

convolutional autoencoder (CAE) and a modified multiple

timescale RNN (MTRNN), to extract image features and

generate the robot’s next motion based on previous images

and motions (Fig. 1). The core of the proposed model is the

modified MTRNN which ensures its internal state and the

robot return to the similar state at the beginning and end of

each subtask. This makes the transitions between multiple

subtasks easier to execute.

Fig. 1: Overview of the proposed motion generation model.

An image is captured by the robot, and the CAE extracts the

image feature. The captured joint angles are concatenated

with the extracted image feature and used by the MTRNN

to predict the next step. The predicted joint angles are then

signaled to the robot to initiate movement.

A. Convolutional Autoencoder

In the proposed model, the CAE has features of both an

AE and a convolutional NN (CNN) [19]. An AE can operate

as an identity function that generates an output identical

to the input using a bottleneck structure, which reduces

the dimensionality of the data and reconstructs the original

data from the reduced data. The most dimensionally reduced

data at the middle layer are used as the extracted feature

of the original data. Similarly, the proposed CAE is also

an identity function; however, it reduces and reconstructs

data using both convolutional and deconvolutional layers.

Fully connected feedforward layers connect the convolu-

tional and deconvolutional layers’ kernels. CNNs used for

image classification often contain pooling layers between

each convolutional layer to perform nonlinear downsampling

and obtain robustness against shifts and distortions. However,

since positional information is essential for task generation,

the pooling layer is removed in our CAE. The CAE is trained

using mean squared error with the optimizer for the Adam

(Adaptive Moment Estimation) algorithm [20].

B. Multiple Timescale RNN

As mentioned previously, RNNs have internal memory

and can predict the next step from previous steps. This

ability comes from the context layers, which have cyclic

connections and compute the next output from the previous

6448

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on April 26,2023 at 06:24:19 UTC from IEEE Xplore. Restrictions apply.

context and input. Note that an MTRNN has multiple context

layers with different time constants [15]. The proposed

MTRNN has two context layers, i.e., a fast context (Cf) layer

with a small time constant, and a slow context (Cs) layer with

a large time constant. The Cf layer obtains more information

from the current context, and the Cs layer obtains more

information from the previous context. The MTRNN is

similar to the LSTM since the Cs and Cf of the MTRNN

function as the long and short term memory of the LSTM.

We utilize the MTRNN for the sake of simpler and more

direct analysis of internal representation

The forward calculation of the MTRNN is described in

Eq. (1). The internal state of the ith neuron at time step t,
i.e., (ui(t)), is updated as follows:

ui(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ j∈ICF
wi jc j(t)+bi (i∈IO)

(1− 1
τi
)ui(t−1)+ 1

τi
(∑ j∈II wi jx j(t)

+∑ j∈ICF∪ICS
wi jc j(t−1)+bi) (i∈ICF)

(1− 1
τi
)ui(t−1)

+ 1
τi
(∑ j∈ICF∪ICS

wi jc j(t−1)+bi) (i∈ICS),
(1)

where IF , II , IO, and IS are the neuron index sets for the

Cf, input, output, and Cs layers, respectively, τi is the time

constant of the ith neuron, wi j is the weight of the connection

between the jth and ith neurons, c j(t) is the activation value

of the jth context neuron at time step t, x j(t) is the jth
external input at time step t, and bi is the bias of the ith
neuron. The respective activation values of context unit ci(t)
and output unit yi(t) are calculated using tanh.

The MTRNN is trained to predict the data at time step t+1

from the input data at t using the mean squared error and

the Adam optimizer. To switch among subtasks, the initial

and final values of the contexts have similar values for all

motions. This constraint is achieved by calculating the loss

function for each task sequence as follows:

loss =
T

∑
t=0

‖(ŷ(t)− y(t))‖2 + γ(C(T)−C(0))2, (2)

where T is the total number of steps in task, ŷ(t) and y(t)
are the training signal and predicted output, Cp(t) and Cq(t)
are the values of Cf and Cs, respectively, and γ (set to

10) is a parameter that controls the loss of contexts. The

constraint allows the network to form a point that we refer

to as the strong attracting point, which is the point at which

the internal states are likely to converge to and diverge from.

C. Training Phase and Motion Generation Method

For training, we first collect training data from a human

experimenter manipulating the robot using a 3D mouse. As

the robot is manipulated, the joint angles and image data are

sampled. Then, the CAE is trained using the collected image

data prior to training the MTRNN. To train the MTRNN, for

time step t, the image features at t are extracted from the

trained CAE and are concatenated with the joint angles at t.
The concatenated data at t become the input of the MTRNN,

which generates the output of t. The MTRNN’s weights are

optimized using loss function in Eq.(2). The output of the

joint angle data of t becomes the input of (t +1); however,

the output of the image data of (t) is discarded. Here sampled

data from the training data are used as the input of (t +1).
In motion generation (Fig.1), the robot obtains image data

from its mounted camera, and the CAE is used to extract

image feature. The extracted image feature is concatenated

with the current joint angles and used as the input to the

MTRNN. The predicted joint angles of the MTRNN are then

used to signal the robot to move. After the robot moves,

the image and joint angles are captured again and the next

MTRNN input is prepared.

IV. EXPERIMENT

We designed an experiment to evaluate whether the pro-

posed model can acquire transitions between the subtasks

and demonstrate the beneficial aspects of generating longer

sequential task from shorter sequential tasks. We used the

Nextage Open Robot from Kawada Robotics [21] to investi-

gate the effectiveness of the proposed robot manipulation

model. The Nextage is a humanoid robot with a head-

mounted camera and two arms, each of which has six degrees

of freedom (DoF) and an attached gripper. We trained the

Nextage on three subtasks (Fig. 2a): (1) opening a box

(hereafter, ”open”), (2) picking up an object and putting

it into the box (hereafter, ”pick”), and (3) closing the box

(hereafter, ”close”). By combining the three subtasks, the

robot executed a complete ”Put-In-Box” task. Each subtask

was designed such that the initial and final positions of

the robot were identical, thereby smoothing the transitions

between each subtask. In addition, since the initial and final

positions of the robot and the initial and final internal states

of the MTRNN are identical, the only factor that causes

transitions between subtasks is the differences in the image

data. Each subtask was trained discretely, with no relation

between the three subtasks.

The robot was trained to identify the box when it is placed

at a fixed position and a stamp object at nine different

positions. Each stamp position was 4 cm apart, forming a

square (Fig. 2b). The training data were taken at these dif-

ferent positions three times for each subtask. In addition, for

the pick subtask, the robot was trained with two additional

objects: a white pepper container and white juice pack. A

white steel can, salt container, yellow juice pack, and red

juice pack were also prepared to test generalizability relative

to picking up objects. The objects used in this experiment

are shown in Fig. 2c.

The robot’s training data were created directly by the

experimenter using the 3D mouse, and the motion and image

data were sampled simultaneously. The training data for

both the images and the joint angles were sampled at five

frames per second, and each subtask required approximately

78 seconds to execute. A 64x64-pixel RGB image with

12,288 dimensions was captured by the robot’s camera and

6449

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on April 26,2023 at 06:24:19 UTC from IEEE Xplore. Restrictions apply.

(a)

(b) (c)

Fig. 2: (a) Third-person view of the robot generating motions

for each subtask. The end of each subtask is the start of the

next subtask, and the robot returns to the same position after

completing a subtask.

(b) Positions where yellow stamp objects were learned. The

blue squares are the nine learned positions.

(c) Objects learned and tested in the experiment. Blue border:

objects trained for all subtasks; yellow border: objects trained

for only the pick subtask; red border: objects not learned.

processed by the CAE to reduce its dimensionality to 20.

The training data for the MTRNN were the data of the 20

original image features concatenated with 14 joint angles

(i.e., the DoF) of the robot’s arms and grippers. The training

data for all subtasks were looped three times, meaning that

the training data were prepared such that each subtask was

repeated three times to stabilize and smooth the output.

The CAE was trained over 1,500,000 iterations with a

learning rate of α = 0.0002, β1 = 0.90, β2 = 0.999, and

ε = 10−8. Here, the mini-batch size was 100. The MTRNN

was trained over 150,000 epochs with a learning rate of α
= 0.001, β1 = 0.90, β2 = 0.999, and ε = 10−8. Here, the

weight decay was 10−3. Both the CAE and the MTRNN are

optimized with the Adam. Other details about the CAE and

MTRNN used in this study are shown in Table I.

TABLE I: Neural Network Parameters

DCNN conv@3ch - conv@32ch - conv@64ch - conv@128ch
- conv@256ch - full@1000 - full@20 - full@1000
- dconv@256ch - dconv@128ch - dconv@64ch -
dconv@32ch - dconv@3ch

MTRNN Input nodes@34 - Cf nodes@100 - Cs nodes@5
Cf τ@5 , Cs τ@70

conv: convolutional layer dconv: deconvolutional layer
full: fully-connected layer

V. RESULTS AND DISCUSSION

A. Extracting Image Features

The features extracted by the CAE must be distinguishable

for each subtask for the robot to switch between subtasks.

Figure 3 shows the results for the extracted features of

the initial step of the three subtasks processed by principal

component analysis (PCA) to reduce the dimensionality of

the data linearly for visualization. The contribution ratios

of the first and second PCs were 16.84% and 11.85%,

respectively. The images from the open subtask are clearly

separated from images of the pick and close subtasks, and

the images from the pick and close subtasks are clustered.

This occurs because, compared to the box, the stamp is

relatively small in the captured image. These differences in

the extracted features are essential for transitioning between

the subtasks because the internal state of the MTRNN and

the robot joint angles have similar if not identical values for

each subtask; thus, only the image is different.

Fig. 3: PCA of features extracted by the CAE at the initial

step of the three subtasks (blue: open; yellow: pick; red:

close). The clusters for each subtask are identifiable, which

indicates that the CAE autonomously extracted image fea-

tures, thereby demonstrating its classification ability.

B. Generation of Put-In-Box Task

We tested with the robot to determine if the proposed

model can generate multiple tasks that are appropriate for

the given situation. The robot autonomously generated the

entire Put-In-Box task when the yellow stamp and closed box

were placed for the open subtask, even though each subtask

was trained separately. Figure 4 shows the PCA results for

the context layers of the MTRNN during motion generation.

6450

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on April 26,2023 at 06:24:19 UTC from IEEE Xplore. Restrictions apply.

The results show that the context layers start and end at

similar values, thereby forming the attracting point. Each

subtask starts at the strong attracting point created by the

constraint on the MTRNN and diverges from this point using

the difference of the MTRNN’s input. Since the difference

of the input at the start of each subtask is the image data, the

data are used to diverge from the attracting point, generate a

motion corresponding to the image data, and converge back

to the attracting point.

Fig. 4: PCA of context layers of the MTRNN during gen-

eration of the Put-In-Box task. Each subtask is represented

by a different color, and each subtask begins and ends its

motion at a similar value.

We also tested the MTRNN without constraints to evaluate

the effects of constraints on the MTRNN. The unconstrained

MTRNN was prepared by training using Eq.(2), where γ
was set to zero but trained with the same initial value

of the MTRNN. We evaluated the differences between the

constrained and unconstrained MTRNNs by comparing the

success rates of generating complete Put-In-Box tasks with

the yellow stamp. In five trials, the robot with the uncon-

strained MTRNN failed to generate a complete task. This

robot generated the open and pick subtasks successfully;

however, it failed to switch to the close subtask. Here, the

robot repeated the pick subtask instead. In contrast, the robot

with the constrained MTRNN generated the complete task

for all five trials.

The model of training multiple discrete motions with

constraints allows the robot to execute motions that are

difficult when trained consecutively. One benefit of this is

the realization of a reiteration ability, which allows the robot

to perform the same task repeatedly in shorter segments.

A previous study [18] has demonstrated the reiteration

ability of robot manipulation tasks after an entire sequence

is completed. The proposed model allows reiteration after

each short task and results in faster recovery from a failed

task execution. In addition, the proposed method allows the

robot to skip subtasks, thereby creating an opportunity for

easier human interaction and interruption, e.g., when the

experimenter performs pick subtask after the robot completes

the open subtask, the robot autonomously starts the close

subtask.

C. Position Generalizability

The robot was tested relative to executing the pick subtask

at the areas shown in Fig. 2b. Each area was tested five times

with the yellow stamp object. The robot could pick up the

object flawlessly at areas 1 to 4 (i.e., areas within the training

positions). The robot was also able to pick up the object at

areas 5 to 16 (i.e., areas outside the training positions), but

with failed attempts. The total success rate of picking up the

object in 16 areas was 88.75% (80 attempts).

D. Generalization of Objects

Compared to motion generation models that train tasks as

a whole, the proposed model allows subtasks to be trained

separately, which reduces the data collection. The proposed

model can control the numbers of datasets to be learned

depending on the task generation difficulty. Therefore, it

is possible to increase the number of datasets for tasks

that require high precision control (and vice versa). This

characteristic increases the efficiency of data collection when

training less demanding tasks. In our experiment, the pick

subtask required more precise control to grasp the object, and

the open and close subtasks required less precision. There-

fore, to evaluate the benefit of training subtasks separately,

we prepared a model trained using only the yellow stamp

object. The reconstructed images obtained using the CAE

with only the yellow stamp and the CAE with the object

added at the start of the pick subtask are shown in Fig. 5.

The CAE trained with only the yellow stamp could not

reconstruct the images of the additional objects clearly, and

this affected the precision of the robot’s motion generation.

To confirm the effects of the CAE, the robot’s ability to

generate pick subtasks was tested with all objects. For the

red juice pack, the robot was unable to recognize when it

was required to perform the pick subtask. Here, it generated

the close subtask instead. For the other objects, the robot

generated the pick subtask but failed to pick up the untrained

objects (it knocked over the objects with its grippers). In

contrast, the CAE trained with additional objects could

reconstruct additional untrained objects more clearly and

more vividly compared with the CAE trained with only the

yellow stamp object. With the CAE trained with additional

objects, the robot generated the pick subtask for all objects

and could pick the objects up without knocking them over.

With the CAE trained with additional objects, the robot

was tested to determine whether it could generate complete

Put-In-Box tasks with objects trained using only the pick

subtask and objects that were not learned for any task. The

robot generated complete Put-In-Box tasks successfully for

additional objects trained for just the pick subtask, even

though the robot was not trained to generate the open or close

subtasks with these objects. Furthermore, the robot could

generate complete tasks with all untrained objects except for

the red juice pack. For this object, the robot successfully

generated the open and pick subtasks but failed to switch to

the close subtask, instead repeating the pick subtask.

With the proposed model, the robot successfully increased

robustness against objects for the pick subtask by only

6451

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on April 26,2023 at 06:24:19 UTC from IEEE Xplore. Restrictions apply.

increasing the number of training datasets for the pick

subtask, which reduced the data collection and network

training burden.

Fig. 5: Image reconstruction of the CAE trained with only

the stamp object and the CAE trained with additional objects

for the pick subtask. The CAE trained with additional objects

could reconstruct the original image more precisely than the

other CAE.

VI. CONCLUSION

In this paper, we have proposed using a sensory-motor

integrated DNN model to realize a humanoid robot capable

of continuously switching among short sequential subtasks

based solely on image data in order to complete a longer

sequential task. Since the number of related studies into

robots performing multiple tasks with DNNs is limited, we

selected the Put-In-Box task as an example to demonstrate

the robot’s ability to switch among subtasks and the benefit

of training subtasks discretely. The proposed model executed

the Put-In-Box task successfully using the advantageous

characteristics of DNNs, i.e., feature extraction of high-

dimensional data and generalization.

In future, we plan to investigate the benefits of training

shorter sequences separately by adding more objects to be

picked up. We also plan to train more complex and more

extensive tasks that require reiteration ability, such as cutting

food.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 07-12, 2015, pp.
1–9.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V.
Den, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the Game of Go with Deep Neural Networks and Tree Search,” Nature,
vol. 529, no. 1, pp. 1–37, 2016.

[3] G. Hinton and R. R. Salakhutdinov, “Science,” Science, vol. 313, no.
July, pp. 504–507, 2006.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” Advances in Neural
Information Processing Systems 25, pp. 1097–1105, 2012.

[5] T. Lampe and M. Riedmiller, “Acquiring visual servoing reaching
and grasping skills using neural reinforcement learning,” in The 2013
International Joint Conference on Neural Networks (IJCNN), 2013,
pp. 1–8.

[6] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning Hand-
Eye Coordination for Robotic Grasping with Deep Learning and
Large-Scale Data Collection,” The International Journal of Robotics
Research, p. 027836491771031, 2016.

[7] K. Sasaki, H. Tjandra, K. Noda, K. Takahashi, and T. Ogata, “Neural
network based model for visual-motor integration learning of robot’s
drawing behavior: Association of a drawing motion from a drawn
image,” in IEEE International Conference on Intelligent Robots and
Systems, 2015, pp. 2736–2741.

[8] K. Takahashi, T. Ogata, and H. Tjandra, “Tool body Assimilation
Model Based on Body Babbling and Neuro-dynamical System,” In-
ternational Conference on Artificial Neural Networks, vol. 2015, pp.
115–127, 2014.

[9] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning Force
Control Policies for Compliant Robotic Manipulation,” International
Conference on Machine Learning, pp. 4639–4644, 2012.

[10] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training
of Deep Visuomotor Policies,” ArXiv:1504.00702, 2015.

[11] S. Lange, M. Riedmiller, and A. Voigtländer, “Autonomous reinforce-
ment learning on raw visual input data in a real world application,”
Proceedings of the International Joint Conference on Neural Networks,
pp. 10–15, 2012.

[12] M. Watter, J. T. Springenberg, J. Boedecker, and M. Riedmiller,
“Embed to Control: A Locally Linear Latent Dynamics Model for
Control from Raw Images,” arXiv:1506.07365, pp. 1–9, 2015.

[13] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman,
“Deep Predictive Policy Training using Reinforcement Learning,”
arXiv:1703.00727, 2017.

[14] W. Han, S. Levine, and P. Abbeel, “Learning compound multi-step
controllers under unknown dynamics,” IEEE International Conference
on Intelligent Robots and Systems, vol. 2015-December, pp. 6435–
6442, 2015.

[15] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in a
multiple timescale neural network model: A humanoid robot experi-
ment,” PLoS Computational Biology, vol. 4, no. 11, 2008.

[16] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration
learning of robot behavior using deep neural networks,” Robotics and
Autonomous Systems, vol. 62, no. 6, pp. 721–736, 2014.

[17] R. Rahmatizadeh, P. Abolghasemi, L. Boloni, and S. Levine, “Vision-
Based Multi-Task Manipulation for Inexpensive Robots Using End-
To-End Learning from Demonstration,” arXiv:1707.02920, 2017.

[18] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable Folding Task by Humanoid Robot Worker Using Deep
Learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
397–403, 2017.

[19] J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, “Stacked convo-
lutional auto-encoders for hierarchical feature extraction,” in Lecture
Notes in Computer Science, vol. 6791 LNCS, no. PART 1, 2011, pp.
52–59.

[20] D. P. Kingma and J. L. Ba, “Adam: A Method for Stocastic Optimiza-
tion,” arXiv:1412.6980v9, pp. 1–15, 2015.

[21] K. Robotics, “Next Generation Industrial Robot Nextage.” [Online].
Available: http://nextage.kawada.jp/en/

6452

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on April 26,2023 at 06:24:19 UTC from IEEE Xplore. Restrictions apply.

		2018-09-07T12:01:29-0400
	Preflight Ticket Signature

