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Abstract—Pursuit-evasion is the problem of capturing mobile
targets with one or more pursuers. We use deep reinforcement
learning for pursuing an omnidirectional target with multiple,
homogeneous agents that are subject to unicycle kinematic con-
straints. We use shared experience to train a policy for a given num-
ber of pursuers, executed independently by each agent at run-time.
The training uses curriculum learning, a sweeping-angle ordering
to locally represent neighboring agents, and a reward structure
that encourages a good formation and combines individual and
group rewards. Simulated experiments with a reactive evader and
up to eight pursuers show that our learning-based approach out-
performs recent reinforcement learning techniques as well as non-
holonomic adaptations of classical algorithms. The learned policy
is successfully transferred to the real-world in a proof-of-concept
demonstration with three motion-constrained pursuer drones.

Index Terms—Multi-robot systems, reinforcement learning,
cooperating robots.

I. INTRODUCTION

PURSUIT-EVASION is the problem of capturing targets
with one or more pursuers, with applications in robotics

such as catching of a rogue drone or a ground target. With
multiple-pursuers, decentralized systems are beneficial to avoid
single points of failure. Classical algorithms for decentralized
multi-agent pursuit [1]–[3] often assume omnidirectional pur-
suers, derive the local interaction rules from simple geometry
and do not learn or adapt to evader behavior. For multi-agent
teams consisting of wheeled robots or fixed-wing airplanes,
the non-holonomic kinematic constraints on the motion also
need to be considered. To our knowledge, decentralized multi-
agent pursuit subject to non-holonomic constraints has not been
studied extensively by classical approaches in the literature.
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Deep Reinforcement Learning (DRL) has also been successfully
applied to multi-agent pursuit-evasion [4]–[7], however, most
approaches to date did not consider real-world limitations such
as local measurements and non-holonomic motion constraints
and did not offer a thorough analysis of the system on operational
metrics.

We propose a DRL approach to multi-agent pursuit. We
consider a decentralized scenario in which non-communicating
agents independently decide on their own actions based on local
information. While our approach applies to any such system, in
this letter, we focus on the specific scenario of capturing a finite
speed but faster evader with multiple, non-holonomic pursuers in
a bounded arena without obstacles. We treat pursuers as homo-
geneous agents and use shared experience to train a single policy
executed independently by each agent at run-time. We use Twin
Delayed Deep Deterministic Policy Gradient (TD3) [8], a state-
of-the-art DRL algorithm that was successfully applied to other
domains [9], [10], with a state representation that encapsulates
relative positional information of neighboring agents as well as
the target and use a group reward structure that encourages good
formations. During training, curriculum learning is applied to
start with an easier version of the problem and gradually learn
the task with increasing difficulty. In simulation experiments,
we compare our approach to three state-of-the-art approaches,
two classical methods and a DRL method. They are evaluated in
terms of the capture rate and average timesteps to capture. We
conduct further analysis on the effect of the number of agents,
arena size, as well as using variable linear speed, curriculum
learning, and formation score as part of the reward function. The
trained policy is demonstrated in a proof-of-concept physical
system with three pursuer drones subject to non-holonomic
motion constraints.

The organization of this letter is as follows. After reviewing
the relevant literature in Section II, we define the problem of
interest in Section III. Our multi-agent DRL method is presented
in Section IV. We detail the experimental procedure in Section V
and present simulation results in Section VI. Finally, we describe
the real-world drone implementation in Section VII before con-
cluding with a brief discussion in Section VIII.

II. RELATED WORK

A. Multi-Agent Pursuit

Solutions to the pursuit-evasion problem either assume the
‘worst-case’ adversary with infinite speed and complete aware-
ness of the pursuers, or average-case behaviors [11]. Although
single-agent pursuit-evasion is studied extensively in the litera-
ture [11], [12], its extension to multi-agent systems still remains
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an open problem [13], of interest in biology [13], physics [1],
[3], and engineering [2], [14].

Non-learning pursuit methods can be organized into deter-
ministic and heuristic solutions. Deterministic methods attempt
to solve the problem with traditional mathematics tools, such
as pursuit curves analysis [12] and differential games [2], [14].
Pursuit curve analysis formulates the trajectory of the pursuer
analytically using differential equations. The system can then be
solved to find the conditions of capture. Although the problem
can be stated simply, closed-form analytical solutions are hard
to obtain even using simplistic assumptions such as constant
velocities and linear trajectories. Differential games formulate
pursuit as a game, where the players must optimize an objective
function, often the episode duration. However, it is challeng-
ing to define an appropriate objective function with increasing
problem complexity, such as with a larger number of agents or
motion constraints.

Heuristic solutions [1], [3], [15] inspired by behavior-based
decentralized approaches [16], use computational simulations
that aim to find emergent group behavior based on local ob-
servation [16], [17]. Angelani [3] proposed modeling up to
a hundred autonomous pursuers as particles based on [16].
Muro [15] proposed small-scale hunter strategies with up to 5
agents, arguing that the behavior observed in wolf-pack hunts
can be simulated with simple rules. Janosov [1] re-examined the
concepts of the Vicsek particle model [3] in a more realistic
scenario considering delays, accelerations, prediction and a
faster target. However, these works assume access to information
about the evader’s position and velocity, which is not directly
available from onboard sensors.

The real-world applicability of many of the above approaches
is limited due to their assumptions in observation and actuation.
[3] and [1] both consider an omnidirectional particle model,
which is not directly transferable to many robotic platforms. In
contrast, our observation model is expressed relative to each
agent, which can be found directly using onboard sensors,
such as LiDARs or depth cameras [18]. We also consider a
non-holonomic kinematic model, suitable for car-like mobile
robots or fixed-wing airplanes.

B. RL In Pursuit

The pursuit-evasion game is a highly studied task in multi-
agent RL [19]–[21]. However, most approaches apply only to
omnidirectional agents, which cannot be easily transferred to
real robotic applications without a loss in performance. Lowe [4]
presented an approach for multi-agent RL using an adapted
version of an actor-critic algorithm extended to multi-agents.
Their approach on the pursuit-evasion game with omnidirec-
tional agents outperformed Deep Deterministic Policy Gradient
(DDPG) [22]. Xu [7] considered pursuit-evader games with
non-holonomic agents, where new agents can join the game.
They adapted Bi-directional Recurrent Neural Networks [23]
and DDPG. However, they only consider a situation with 3
and 5 agents. Furthermore, the observation also assumes global
information about other agents, limiting the applicability to
real-world situations. A few pursuit-evasion works consider
non-holonomic constraints [6], [24]. Hüttenrauch [6] studied
multi-agent pursuit-evasion systems by considering the agents
as interchangeable and the exact number irrelevant. They cre-
ate a new state representation based on mean embedding of

distributions. Their work focuses on scalability and shows that
their system can operate with up to fifty agents.

[25]–[27] learn a policy directly from images in a pursuit-
evasion scenario with one chaser and one evader. These policies
are then successfully transferred to a real-world scenario and
show good performance.

C. Curriculum Learning

Curriculum learning [28] is a learning paradigm to help
improve speed of convergence and reduce local minima by
gradually increasing the complexity of training data. This learn-
ing paradigm has been been widely used for RL[29], [30] and
deep learning [31], and shown to solve problems which were
previously considered intractable [5].

Our work, while borrowing ideas from both classical and
learning-based methods, focuses on using DRL to improve the
pursuit performance and consider operational metrics such as
capture success rate and the average time to capture. Further-
more, we propose a method that is suitable for sim-to-real policy
transfer with realistic observation models and non-holonomic
constraints. To our knowledge, we are the first to demonstrate
a real-world pursuit-evasion implementation with multiple pur-
suers using a DRL policy.

III. THE PURSUIT-EVASION SCENARIO

Our pursuit-evasion problem consists of multiple homoge-
neous, slower pursuers chasing a single, faster target. The goal
for pursuers is to move as a group so that the freedom of the
target is constrained to the point where one of the pursuers
‘captures’ the target in the shortest time possible. We consider
a trial successful if, at any point during the trial, the distance
between the evader and at least one of the pursuers is less than a
given collision radius (di,T < dcap). If the target is not captured
within a fixed time period Ttimeout, then a timeout occurs, and
the trial is considered unsuccessful. Collisions between pursuers
do not result in a failure, however, it is discouraged within
the reward function (Section IV-C), an important feature for
collision avoidance in real-world implementation (Section VII).
The pursuer motions are subject to non-holonomic kinematic
constraints, while the evader is omnidirectional and thus not
subject to such constraints. We adopt a unicycle model for each
pursuer i:

ẋi = v cosψi (1a)

ẏi = v sinψi (1b)

ψ̇i = ω (1c)

where (x, y) is the position,ψ is the heading angle, v is the linear
velocity and ω is the angular velocity. We will first assume that
all agents have a constant v and the only controllable variable is
ωwith limitsωmin ≤ ω ≤ ωmax, following the classical formu-
lation approach [1]. Later we will relax this assumption to allow
the pursuers to vary both their angular and linear velocities. We
approximate the equations as a discrete model. The environment
is a circular arena with a radius of Rarena and without any
obstacles in it. Neither the pursuers nor the target can get out
of the arena: if they take an action that would end up outside
Rarena, their position is updated to be on the nearest arena
border.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 30,2021 at 03:47:29 UTC from IEEE Xplore.  Restrictions apply. 



4554 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 3, JULY 2021

We assume that the pursuers can differentiate the agents from
the target. We further assume that each pursuer is equipped with
a sensor that provides the relative position of the target as well
as every other pursuer. All sensors provide ground truth data
without noise, unaffected by occlusions. The state representation
of each agent is detailed in Section IV-B.

IV. DEEP REINFORCEMENT LEARNING FOR PURSUIT

We formulate the task for a single pursuer to be a Markov
Decision Process (MDP) defined by tuple{S,A, R,P, γ}where
st ∈ S , at ∈ A, rt ∈ R are state, action and reward observed
at time t, P is an unknown transition probability from st to
st+1 taking at, and γ is a discount factor. The DRL goal is to
maximise the sum of future rewards R =

∑T
t=0 γ

trt, where rt
is provided by the environment at time t. Actions are sampled
from a deep neural network policy at ∼ πθ(st), where at is the
angular velocity ω of an individual pursuer, which is saturated
to be in the interval [ωmin, ωmax].

A. Multi-Agent Deep Reinforcement Learning

As the Deep RL algorithm, we use Twin Delayed Deep
Deterministic Policy Gradient approach (TD3) [8], which is an
improvement over DDPG [22], designed to reduce the over-
estimation of the value function. We consider all agents to be
homogeneous which allows us to use shared experience to train
all agents. This allows the agents to train faster, as well as gath-
ering more information from every step in the environment. All
agents are governed with the same policy, however, at each time
step the agents use their local observations to individually take
actions, resulting in a decentralized system. For each number
of agents we train a different policy, which results in a total of
nmax policies, where nmax is the maximum number of pursuers
we analyze in this letter. This was because the length of the state
representation changes based on the number of pursuers in the
game.

B. State Representation

The state of a pursuer i, assuming a total of n pursuers, is
given by si = [ψi, ψ̇i, si,T , si,1, si,2, .., si,n−1], where ψ is the
heading with respect to a fixed world frame, si,T is the state of
the target relative to pursuer i and si,j is the state of pursuer j
relative to pursuer i. (Time indices are dropped for the sake of
clarity). The relative state of the target with respect to pursuer i
is si,T = [di,j , ḋi,T , αi,T , α̇i,T ] and the relative state of pursuer
j with respect to pursuer i (i �= j) is si,j = [di,j , αi,j ], where
di,j is the Euclidean distance between pursuers i and j and αi,j

is the heading error defined as the angle between the heading of
pursuer i, and the vector between i and j, as shown in in Fig 1.
The state representation consists of a total of 2n+ 4 variables,
which scales linearly with the number of pursuers n.

An important consideration is how the si,j are ordered in
the state representation si. A straightforward way would be to
assign a unique identifier to each pursuer and always represent
them in the same order. However, this leads to inefficiencies
in learning as neural networks typically are not permutation-
invariant when operating on sets [32]. To illustrate this, consider
swapping the poses of two pursuers with everything else being
the same. With unique identification ordering, the resulting state

Fig. 1. The state space for each agent i. T denotes the target and j denotes
another agent.

would be different than the original, whereas since we have
homogeneous agents, the state should not change. To tackle this
problem we assign j values for each observation by sorting each
other pursuer with respect to their relative angle α.

The observation of the pursuers was designed to be easily
applicable on real platforms and is used commonly in con-
ventional single-agent pursuit [12]. The agent observations do
not require localization with respect to a global frame, as local
observationsd andα are not referenced in global coordinates and
can be extracted using onboard sensors such as laser scanners
or cameras. Recent work [18] demonstrates the feasibility of
acquiring measurements such as range and the relative angle
between the pursuers, using only embedded sensors in drones.
For the heading ψ, a directional sensor would be needed, such
as a magnetometer.

C. Reward Structure

At each time step, each agent individually receives a reward
designed to incentivize the capture of the evader and encourage
a good formation of pursuers. The reward function is:

ri =

⎧⎪⎨
⎪⎩
rcaptor, if di,T ≤ dcap
rhelper, if dj,T ≤ dcap,∃j �= i

−wq q − wd di,target, otherwise

At each step that the target is not captured, each and every agent
receives a negative reward that is a weighted linear combination
of an individual reward (its distance to the target di,target) and a
group reward (q-score [13], which we call the formation score in
our work). The formation score is a scalar number in the range
[0,2], which provides a metric for evaluating the fitness of a
formation of the pursuers (lower is better). The formation score
(q) is defined as:

q =
1

n

n∑
i=1

(d̂0T · d̂iT + 1) (2)

where d̂iT denotes a unit vector pointing in the direction from
agent i and the target, and n is the number of agents. In this
equation, the closest agent to the target is defined as agent 0.
The formation score encourages agents to spread around the
target (i.e., approach the target from different directions) and
penalizes the angular proximity between agents. We introduce
the formation score when there are at least two agents, as the
formation score for one agent is not defined. Early experiments
with the formation score showed that when the formation is the
only component of the reward, pursuers would only form a good
formation but would not make an attempt to capture the evader.
To avoid this situation, we penalize the distance to the target,
which helps encourage the agents to get close to the evader
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while being in a good formation. The weights wq and wd were
chosen such that when the agents are close to the target, the
reward is dominated by the formation score, encouraging good
formation. However, when the agents are far from the target, the
reward is dominated by the distance to the target, encouraging
the agents to move closer to the evader. We analyze the effect of
the formation score on pursuit performance in Section VI-G.

If the target is captured at a time step, then the pursuer
who captures the evader receives the reward rcaptor, while the
rest of the agents receive rhelper, such that rcaptor > rhelper.
This encourages each pursuer to go for the final capture while
encouraging collaboration.

D. Curriculum Learning

We apply a curriculum for learning by starting from an easier
version of the task and gradually increasing the difficulty until
the actual difficulty is achieved. There are two main factors in
determining the difficulty of a pursuit-evasion game: the relative
speed of the target with respect to the pursuers and the capture
radius dcap. We vary the capture radius by starting from a large
radius (so it is easier to capture the target), then gradually making
it smaller. This encourages agents to not adopt a straightforward
chasing tactic at the beginning of learning but to form more
sophisticated behaviors, which could be transferred to smaller
capture radii. We also experimented with reducing the pursuer
speed to reduce the difficulty of the task, however, we found that
pursuers mostly learned to follow the evader directly, and it was
harder to explore more sophisticated behaviors afterward.

Curriculum learning helps exploration, especially during the
early stages of learning, because early, on it helps the pursuers
to capture the target, which would take a longer time in the
actual, and more difficult scenario. This helps alleviate the sparse
reward problem, which is a well-known challenge in DRL [33].
We analyze the effect of curriculum learning on the pursuit
performance in Section VI-F.

V. SIMULATION EXPERIMENTS

We use the following simulation parameters: Ttimeout = 500
iterations, rewards rcaptor, rhelper; the weights wq and wd were
set to 10, 100, 0.1, 0.002 respectively. The capture radius Rcap

was set to 30 pixels for testing, although this value was varied
as part of curriculum learning. For fixed linear velocity cases,
the speed of the pursuers vp was 10 pixels per timestep, while
the target’s speed vT varied from 0 to 20 pixels per timestep. The
maximum angular rate ωmax was fixed at π/10 per timestep.
The number of pursuers n varied between 1 and 8, initialized
at random positions within a circular area with a radius of 100
pixels, while the evader was initialized at a random position
between the arena boundary and an inner circle with a radius
of 300 pixels. Arena radiusRarena = 430 pixels, except for the
results in Section VI-C. We assume each pursuer can observe
all other pursuers, except for in Section VI-E.

A. Evader Behaviors

We implemented two behavior modes for the evader: Fixed
Paths and Repulsive. For both, we vary the relative speed of the
evader from 0.8 to 2 times the pursuer speed, with a step size of
0.2. We conduct 100 trials for every speed level.

Fig. 2. Paths used by the evader for the fixed paths benchmark.

Fixed Paths: We propose a benchmark where the evader
follows three predefined paths, as shown in Fig. 2.

Repulsive: We use a potential field method with repulsive
forces only to find a motion vector. Each pursuer exerts a
repulsive force in the direction of the vector between the pursuer
and the evader. The arena boundary also exerts a force so that the
evader can avoid the wall. These forces decrease proportionally
to the distance squared. The resultant vector is calculated by:

�v =
∑
j

(
�aj − �e

d2j

)
+

γ̂Rarena − �e

d2w
(3)

where �e is the current position of the evader, �aj is the position
of agent j and dj is the distance to aj . γ is the direction of the
agent to the closest point on the wall, γ̂ is the unit vector rotated
by an angle of γ and dw represents the distance of the agent to
the wall.

B. Baseline Methods

We implemented three baseline methods: Two classical
(Janosov [1] and Angelani [3]) and a DRL (Hüttenrauch [6])
method. The approach by Hüttenrauch [6] was trained on our
simulation environment using their communication set. This
observation vector included relative angle, the distance towards
the target, and the heading of each of the pursuers. It should
be noted that this observation set included more information
than our model. Furthermore, this information (orientation of
neighbors) would likely require explicit communication in a
real-world application since it can not be easily estimated from
current embedded sensors. We trained the policy for 4 million
timesteps (same as our approach, around 4 times as long as
their original letter) without curriculum learning (no curriculum
learning was used in their original work) and presented the best
simulation results.

We adapted the classical methods to use a non-holonomic
model. As these methods are designed for omnidirectional
agents, they are not directly comparable to our solution. There-
fore, we convert the outputs of these models into the unicycle
model using the following equations:

ψdesired = arctan
dy

dx
(4)

ω = K ∗ (ψ − ψdesired) (5)

The omnidirectional models have two outputs, dx and dy, which
are the velocity in the x and y direction respectively. From
this, we find the desired heading ψdesired of the omnidirectional
controller. We use a P controller on the error between the desired
heading ψdesired and current heading ψ. We tune gain K such
that the number of captures is maximized in simulation trials.
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Fig. 3. Success rate and the average timesteps using the fixed paths benchmark,
for different number of agents.

Fig. 4. Success rate and the average timesteps taken for the repulsive evader,
for different number of agents.

VI. SIMULATION RESULTS

In this section we evaluate our approach against baseline algo-
rithms presented in Section V-B. In Section VI-A we analyze the
performance on a fixed paths benchmark, followed by analysis
with a repulsive evader model. We conduct the following anal-
yses on the capture performance: effect of number of pursuers
(Section VI-B), arena size (Section VI-C), relative evader speed
(Section VI-D), scaling number of agents without retraining
(Section VI-E), use of curriculum learning (Section VI-F), and
use of formation score (Section VI-G). Finally, we qualitatively
describe the emergent behaviour of the multi-agent system in
Section VI-H.

A. Fixed Paths

In these experiments, the evader followed fixed paths, as
explained in Section V-A. The pursuers were trained on the
repulsive evader only but were tested on the fixed paths bench-
mark. The capture rate and the average number of steps with
respect to the number of pursuers are shown in Fig. 3. While
Janosov [1] get above 95% on the fixed paths benchmark for
N > 2, Angelani [3] does not perform well on this bench-
mark. Both our approach and Hüttenrauch [6] complete the
task successfully for n ≥ 3. The average timesteps to capture
for both DRL approaches is significantly lower than the other
approaches for the fixed paths benchmark, likely because the
classical algorithms attempt to corral the target. In contrast,
the DRL based approaches tended to be more aggressive and
intercept the evader quickly along the fixed paths.

B. Effect of the Number of Pursuers

The success rate and average timesteps to capture the repulsive
evader with respect to the number of pursuers are shown in Fig. 4.
Our approach outperforms the competing approaches in cases
with a lower number of agents in terms of the success rate.
Hüttenrauch [6] performs well with a larger number of agents,
however, struggles with fewer agents. Janosov [1] completes
the task with a success rate above 94% for n ≥ 4. However, it

Fig. 5. Success rate and average timesteps to capture with respect to the
multiplicative radius factor over Rarena. Experiments are conducted with 8
pursuers and the repulsive evader model.

Fig. 6. Success rate and the average number of timesteps to capture is shown
with respect to the ratio of evader speed to pursuers’ speed. Experiments are run
with three agents. Our approach achieves 100% accuracy for all cases in this
analysis.

does not perform well with fewer than four agents. Angelani [3]
does not perform well in this benchmark. Furthermore, with one
or two agents, all methods showed poor performance, as it is
difficult to chase a faster evader with few agents. Our approach
takes more time on average to complete the capture compared
to [1].

C. Effect of Arena Size

As we showed in Section VI.B, with an increasing number of
agents, the task decreases in difficulty for a fixed arena size.
Therefore, with a larger number of agents, most approaches
can perform the task successfully. The pursuit-evasion game
is played in an obstacle-free arena, but the agents can use the
arena boundaries to constrain the evader movements. In this
section, we investigate the effect of larger arena sizes using
n = 3 agents. We do not retrain our agents on the new arena size
but use the model trained on the original radius size rarea. As
shown in Fig. 5, our approach comfortably outperforms the other
approaches in terms of success rate as the arena size increases.
This shows that the learned policy can generalize to larger
arenas. However, the average number of timesteps to capture
for our approach is consistently higher than other approaches.
We attribute this result to using only the successful captures
to obtain the average number of timesteps: our approach can
likely find solutions to more difficult problems at the expense of
increased average duration to secure the capture.

D. Effect of Relative Evader Speed

In this section, we examine at the effect of relative evader
speed on capture success, forn = 3 pursuers. As shown in Fig. 6,
while our approach had 100% success rate at all speed levels,
all other methods had a drop-off at faster evader speeds. As
expected, our approach was the fastest in capturing the target
(only considering successful episodes).
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Fig. 7. The success rate and average timesteps on the repulsive evader bench-
mark, comparing our full approach (trained on the appropriate amount of agents),
the approach by Hüttenrauch [6] which was trained on four agents and our
approach which was limited to only see the closest four agents during execution.

Fig. 8. Comparison of capture success rate with and without curriculum
learning, with respect to the number of training steps. With curriculum learning,
the benchmark scores are much higher and more consistent.

E. Scaling Number of Agents Without Retraining

In this section, we examine the scalability of our approach to
an environment with more agents than the network was trained
on. For the 4 agent policy in Fig. 7, the agents are trained in the
4 agent setting. At test time, the number of agents increases (as
indicated on the horizontal axis), but each agent can only observe
their 4 closest neighbors. In contrast, both the N agent policy
and Hüttenrauch [6] were given information about all pursuers.
The success of our approach decreases with a larger number of
agents, by around 5% when there are more agents, as the agents
cannot coordinate fully. The other approaches reach 100% for a
larger number of agents. The four agent policy requires a larger
average number of timesteps to capture the target compared
to a more specialized policy, and this performance penalty
increases as more agents appear in the environment compared
to the number of agents during training. However, the 4-agent
policy tends to perform similarly to [6], which was designed for
scalability.

F. Effect of Curriculum Learning

Fig. 8 compares the effect of using our curriculum learning
strategy described in Sec IV-D, for n = 3 agents. The network
was trained 3 times. At regular intervals, we stop training and
evaluate the policy on the repulsive evader benchmark. The
results show that curriculum learning is beneficial for capture
performance: it converges to about 100% success rate after 1.5
million training steps, whereas without curriculum learning, the
average success rate was below 80% even at 4 million training
steps. Furthermore, the performance with curriculum learning
was much more consistent, as evidenced by the low variance
among the three runs.

Fig. 9. Using a formation score as a dense reward results in more captures, in
less number of timesteps on average.

Fig. 10. “Split Up” strategy learned by three pursuers. Timestep (T) and
formation scores (Q) are shown at three snapshots. The target is shown as the
black circle. The agents start in a random direction (Left), push the agent towards
the wall splitting into two groups (Middle) before going for the capture (Right).

Fig. 11. “Ambush” strategy learned by 8 pursuers. Timestep (T) and formation
scores (Q) are shown at three snapshots. The target is shown as the black circle.
The agents start in random directions (Left), move as a circle (Middle) ambush
the target and capturing it (Right).

G. Effect of Formation Score in Reward Function

As described in Section IV-C, we provide a partial reward
at every timestep in order to encourage good formations. We
analyze the effect of supplying this dense reward component to
each agent. Fig. 9 compares the evolution of the capture per-
formance with and without the formation score with respect to
the number of training steps. These experiments were conducted
with n = 3 agents. As shown in the Fig. 9, benchmark scores
were slightly higher when the formation score is used as part of
the reward. Furthermore, when the formation score is used, the
average capture time for successful episodes is decreased.

H. Qualitative Analysis of Emergent Behavior

We observe two interesting learned emergent behaviors that
often lead to successful captures: ambushing and splitting up.

Fig. 10 shows the splitting up behavior with n = 3 agents.
This behavior was more common with a smaller number of
agents. The agents tend to split up into two groups, trying to push
the evader into a wall before attempting to block the two opposite
directions. This tactic works well as the evader is backed against
the wall and has limited room to escape.

Fig. 11 shows the ambushing behavior withn = 8 agents. This
behavior was more common with a larger number of agents. The
agents tend to form a circle, attempting to move such that they
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Fig. 12. “Stalking” strategy learned by three pursuers with velocity. Timestep
(T) and formation scores (Q) are shown at three snapshots. The target is shown
as the black circle. The agents start in random directions (Left), slow down and
angle themselves such that they can surround the target (Middle) and capture it
(Right).

can surround the evader and then approach from all directions.
This seems to be a distinct behavior from the ‘Split Up’ behavior,
as the agents do not use the walls as much, preferring to surround
the evader as a pack, similar to pack behaviors observed in
Muro’s work [15]. When the agents execute this strategy to trap
the evader, it is often very difficult for the evader to escape.

I. Variable Linear Velocity

Previous sections considered constant linear speed and vari-
able angular speed for pursuers, primarily because this is an
assumption for classical algorithms. We now consider the more
general case, where agents can also vary their linear velocity
between 0 and vp. Therefore, we train the network with two
outputs: linear and angular velocity. We consider the 3 agent
scenario, in which the agents achieve 100% capture rate with
and without velocity control, in both the fixed and reactive
benchmarks.

The agents often displayed a “Stalking” strategy as illustrated
in Fig. 12. With this strategy, the agents move towards the target
before slowing down and waiting until the opportunity presents
itself to capture the evader. This behavior may have analogs
in nature, where pursuers will stalk their prey and position
themselves such to maximize the likelihood of attack [34].

VII. DEMONSTRATION ON DRONES

We demonstrate our approach on three autonomous quad-
copter drones pursuing a human-controlled target drone. Drones
are typically modeled as holonomic vehicles; however, un-
der certain conditions can act as non-holonomic vehicles (e.g.
high-velocity maneuvering such as in [35]). The use of drones,
classically a holonomic vehicle, will also allow us to compare
classical holonomic works (such as [1] and [3]) to our work on
the same platform in future work. Furthermore, by constraining
the motion, there is an interesting property while considering
a frontal camera as a sensor: the drone will move only in the
direction of the field of vision, tightly coupling the perception
to the movement.

We use direct sim-to-real transfer, where the policies used
to control the drone behaviors are trained in the simulation
environment described in Section III. The input to the actor
network was the normalized relative positions of the target and
neighbors. The policy output for each agent is a single number,
the angular velocity. We artificially constrain the motions of
the pursuer drones to emulate a system with 2D agents with
the unicycle kinematic model: 1) Each drone is constrained to a
fixed height. The pursuer drones are at the same height, however,
the evader is constrained to a different altitude, which allows the

Fig. 13. Snapshots from real-world demonstration with 3 motion-constrained
drones. We can see the emergence of the “Split Up” behavior: The pursuers are
initially close to each other, then spread toward the target, and finally, regroup
by cornering the target.

pursuers to get closer to the evader than if they were at the same
altitude. 2) Angular input velocities generated by our approach
are converted to input signals for low-level attitude control.

A low-level, non-linear controller runs onboard each drone for
tracking velocity reference signals: it takes the requested linear
and angular velocities as input and calculates the torque and
thrust for the quadcopter. Details for the low-level controller
implementation can be found in [36]. The controller is also
responsible for stabilizing the quadcopter’s altitude and main-
taining safety. It implements collision avoidance, constrains the
drones to a circular arena of 3m radius, and limits the maximum
speed to 1.2 m/s.

The experiments took place in an indoor flight arena equipped
with a motion capture system, which was used to track the pose
of all agents. A centralized motion capture system was used in
this implementation due to the ease of prototyping; however,
all information needed by our algorithm can be captured using
onboard sensors, similar to [18]. Parrot AR Drone 2 was used
for all drones. The behavior of each pursuer was calculated on a
local computer and transmitted wirelessly to the drone at 20 Hz.
Details for the hardware implementation can be found in [37].
This setup between drones and a local computer is reminiscent of
a centralized system; however, our methodology is also suitable
for a decentralized system if onboard processors on each drone
can be used for neural network inference. For a decentralized
system, each drone would also need to be equipped with a
directional sensor such as a magnetometer.

Snapshots from a successful demonstration can be seen in
Fig. 13. During the training of the networks, we do not consider
the non-linear dynamics of the quadcopter. Direct sim-to-real
transfer is possible because DRL policy provides high-level
navigation decisions, while a lower-level controller manages the
attitude of the drone and assures safe navigation.

VIII. CONCLUSION

We proposed a DRL approach to multi-agent pursuit with
non-holonomic pursuers and an omnidirectional target. We
consider a decentralized system where each agent individually
decides on its own actions using local observations only.
Simulation experiments show that our approach, applied
to non-holonomic agents, outperforms the state-of-the-art
in heuristic multi-agent pursuit methods and a recent DRL
based approach. Our results show that multi-agent pursuit
benefits from curriculum learning and a reward based on
agent formation, which we borrowed from the group-pursuit
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literature. In a demonstration with drones constrained to a fixed
height and governed by the unicycle kinematics model, we
demonstrate that direct sim-to-real transfer is possible.

A limitation of the current work is the need to train a network
for each number of observable agents. This can be partially
mitigated by using the same network and fixing the number
of observable pursuers, as demonstrated in Section VI-E. Fur-
thermore, it could be interesting to learn fixed-size state repre-
sentation for neighboring agents by using deep sets [32], mean
embeddings (similar to [6]) or making use of Graph Neural Net-
works [38]. Other interesting directions of future work include
exploring scenarios with numerous evaders, integrating smarter
evader strategies by using the idea of safe-reachability [39], [40],
or implementing the evader as an RL agent and training both the
evader and pursuer simultaneously similar to [41].

To enable more realistic applications, we also aim to extend
the method from planar to 3D motion in the future. This will
require careful consideration of the angular representation to
avoid representational singularities. Furthermore, we aim to
consider more realistic kinematic and perception models and in-
clude other constraints such as more unstructured environments
with obstacles and varying arena sizes, a limited field of view,
explore sim-to-real transfer further, and real-world applications
to non-holonomic robots such as wheeled robots.
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