
Lecture 13
ChatGPT for Robotics

(Paper Review)

Southern University of Science and Technology

ME336 Collaborative Robot Learning
Spring 2023

Overview
2About This Paper

• A Technical Paper published by Microsft on 230220
• [Blog] | [Paper] | [Code] | [Video]

• Core idea in one sentence:
• We extended the capabilities of ChatGPT to robotics, and

controlled multiple platforms such as robot arms, drones,
and home assistant robots intuitively with language.

https://www.microsoft.com/en-us/research/group/autonomous-systems-group-robotics/articles/chatgpt-for-robotics/
https://www.microsoft.com/en-us/research/uploads/prod/2023/02/ChatGPT___Robotics.pdf
https://github.com/microsoft/PromptCraft-Robotics
https://youtu.be/NYd0QcZcS6Q

4

https://www.microsoft.com/en-us/research/group/autonomous-systems-group-robotics/

https://www.microsoft.com/en-us/research/group/autonomous-systems-group-robotics/

5

Authors’ Info
About This Paper

https://www.microsoft.com/en-us/research/people/savempra/

https://www.microsoft.com/en-us/research/people/rbonatti/

https://arthurfenderbucker.github.io

https://www.microsoft.com/en-us/research/people/akapoor/

https://www.microsoft.com/en-us/research/people/savempra/
https://www.microsoft.com/en-us/research/people/rbonatti/
https://arthurfenderbucker.github.io/
https://www.microsoft.com/en-us/research/people/akapoor/

Abstract (TL;DR)
• This paper presents an experimental study regarding the use of OpenAI’s ChatGPT [1] for

robotics applications. We outline a strategy that combines design principles for prompt
engineering and the creation of a high-level function library which allows ChatGPT to adapt
to different robotics tasks, simulators, and form factors. We focus our evaluations on the
effectiveness of different prompt engineering techniques and dialog strategies towards the
execution of various types of robotics tasks. We explore ChatGPT’s ability to use free-form
dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific
prompting functions and closed-loop reasoning through dialogues. Our study encompasses a
range of tasks within the robotics domain, from basic logical, geometrical, and mathematical
reasoning all the way to complex domains such as aerial navigation, manipulation, and
embodied agents. We show that ChatGPT can be effective at solving several of such tasks,
while allowing users to interact with it primarily via natural language instructions. In
addition to these studies, we introduce an open-sourced research tool called PromptCraft,
which contains a platform where researchers can collaboratively upload and vote on
examples of good prompting schemes for robotics applications, as well as a sample robotics
simulator with ChatGPT integration, making it easier for users to get started with using
ChatGPT for robotics.

6About This Paper

Abstract (The Decomposed Version)
• This paper presents an experimental study regarding the use of

OpenAI’s ChatGPT [1] for robotics applications.
• We outline a strategy that combines design principles for prompt

engineering and the creation of a high-level function library which
allows ChatGPT to adapt to different robotics tasks, simulators, and
form factors.

• We focus our evaluations on the effectiveness of different prompt
engineering techniques and dialog strategies towards the execution
of various types of robotics tasks.

• We explore ChatGPT’s ability to use free-form dialog, parse XML
tags, and to synthesize code, in addition to the use of task-specific
prompting functions and closed-loop reasoning through dialogues.

• Our study encompasses a range of tasks within the robotics domain,
from basic logical, geometrical, and mathematical reasoning all the
way to complex domains such as aerial navigation, manipulation,
and embodied agents.

• We show that ChatGPT can be effective at solving several of such
tasks, while allowing users to interact with it primarily via natural
language instructions.

• In addition to these studies, we introduce an open-sourced research
tool called PromptCraft, which contains a platform where
researchers can collaboratively upload and vote on examples of
good prompting schemes for robotics applications, as well as a
sample robotics simulator with ChatGPT integration, making it
easier for users to get started with using ChatGPT for robotics.

7About This Paper

A short and brief summary

Elaboration on the proposed method
(challenge)

Aim of this paper, how it’s different?

What has been done?

Elaborate on why what’s been done

What are the outcomes of this work
(qualitative description here)

What else that is important in this work
Why they are also important?

Overview
• 1. Introduction
• 2. Robotics with ChatGPT

• 2.1. Construction and description of the robotics API library
• 2.2. Clear description of the task details in the prompt
• 2.3. Special arguments to bias the answer’s structure

• 3. ChatGPT abilities for solving robotics problems
• 3.1. Zero-shot task planning

• 3.1.1. Spatio-temporal reasoning: catching a basketball with visual servoing
• 3.1.2. Aerial robotics: real-world drone flight with intuitive human-robot interface

(Click for video)
• 3.1.3. Aerial robotics: AirSim industrial inspection (Click for video)

• 3.2. User on the loop: interactive conversations for complex tasks
• 3.2.1. Manipulation with curriculum learning (Click for video)
• 3.2.2. Aerial robotics: AirSim obstacle avoidance (Click for video)

• 3.3. Perception-action loops
• 3.3.1. Embodied agent: closed loop object navigation with API library (Click for

video)
• 3.3.2. Embodied agent: closed loop visual-language navigation using ChatGPT’s

dialogue (Click for video)
• 3.4. Reasoning and common-sense robotics tasks

• 4. PromptCraft, a collaborative tool for LLM + Robotics research
• 5. Related Work
• 6. Conclusions and Future Work

• 6.1. ChatGPT for paper writing

• References
• A. Additional examples on design principles on prompt engineering
• B. Original initial prompts for robotics tasks examples
• C. Additional experiments
• D. Other commonsense/reasoning tasks

8About This Paper

• 25 pages in total => long

• 16 pages for main content
• 34 cited references
• 6 pages for appendix => long

• Unusual paper structure with
a short Related Work before
Conclusion

• Many video demos

• Sec. 2 on Core Method
• A design guideline

• Sec. 3 on Results & Demos
• With a brief discussion

• Sec. 4 on a New Tool
• Short and brief

To investigate if and how the abilities of ChatGPT
can generalize to the domain of robotics

• Natural Language Processing (NLP) =>
Large Language Models (LLMs)
• Examples: BERT, GPT-3, and Codex
• Applications: text generation, machine

translation, and code synthesis
• Limitation: operate mostly upon a single

prompt

• A New Model: OpenAI ChatGPT
• All-in-one benfit: provides particularly

impressive interaction skills through dialog,
combining text generation with code synthesis

9Motivation and Main Problem

• Robotic systems
• Require a deep understanding of real-world

physics, envi- ronmental context, and the ability
to perform physical actions.

• A generative robotics model
• a robust commonsense knowledge
• a sophisticated world model
• the ability to interact with users to interpret

and execute commands in ways that are
physically possible and that makes sense in the
real world

• The Challenge
• These challenges fall beyond the original scope

of language models,
• as they must not only understand the meaning

of a given text,
• but also translate the intent into a logical

sequence of physical actions.

Prompting LLMs for robotics control
10Problem Setting

• With a specialized engineer in the loop, or
• With ChatPGT to enable a (potentially non-technical)

user on the loop
• To seamlessly deploy various robotic platforms and tasks?

Lower the entry barrier
of interaction

in robotics for mass
users (or workers)

Natural language and robotics
• A crucial component for human-robot interaction.

• Many applications where robots can benefit from NLP
• i.e., task instruction, navigation, and information retrieval.

• Classically, modeling human-robot interactions using language is
challenging
• Forces the user to operate within a rigid set of instructions
• Requires mathematically complex algorithms to keep track of multiple

probability distributions over actions and target objects

• More recent works explore neural networks to implicitly keep track
of the complex mapping between language and actions
• Often require vast amounts of labeled data for training

11Related Work

Large (vision and) language models for robotics
• The Transformer architecture

• Robot control and planning, object recognition, and robot navigation
• As feature extraction modules for one or more modalities simultaneously.
• These systems are often coupled with additional features from pretrained large-scale vision

and language models models

• Make use of prompting structures with pre-defined functions, behaviors, and
examples to guide the generation of the model’s answers
• SayCan: focus on grounding LLMs so that free-form text commands are used to compute a

value function to rank the best action types within a robot-specific library.
• RT-1: takes an end-to-end approach to learn the mapping between language commands low

level actions, without the use of intermediate high-level functions.

• Conceptually, the main difference is the conversational ability of LLM
• This work allows the user to interactively improve and correct the robot’s behavior (as

opposed to re-engineering the prompt from scratch and generating another zero-shot answer).
• This work aims to provide a generalizable pipeline and set of principles to be used by

researchers in different fields of robotics, as opposed to focusing on a single domain such as
table-top manipulation or task planning.

12Related Work

Prompting LLMs with APIs, and
its connections to symbolic AI

• When designing LLM prompts for robotics applications, users often
make use of high-level library of APIs to represent specific
behaviors to be used.
• We can draw a connection between this approach with classical symbolic AI,

which uses logic and rules to represent and reason about knowledge.

• While the traditional symbolic AI approach presented difficulties in new
knowledge acquisition and dealing with out-of-distribution data, we believe
that LLMs can overcome these challenges.

• Models such as ChatGPT can compose new primitive functions
based on the context and generate code for them automatically.

13Related Work

Pipeline, Platform & Sim Env.
• LLMs side: The following problems are to be addressed

• Providing a complete and accurate descriptions of the problem,
• Identifying the right set of allowable function calls and APIs, and
• Biasing the answer structure with special arguments

• Proposed Solution 1 => A 4-step working pipeline

• Robotics side: Deployment issues in robotics applications
• How to collaboratively develop prompts for robotics?
• Proposed Solution 2 => An opensource platform as a tool: PromptCraft

• How to provide a simulation environment for LLMs with Robotics?
• Proposed Solution 3 => A simulation environment as a tool: AirSim-ChatGPT

14Proposed Approach / Algorithm / Method

The Proposed Pipeline / Workflow
• 1. First, we define a high-level robot function library. This library can be specific to the form factor

or scenario of interest, and should map to actual implementations on the robot platform while being
named descriptively enough for ChatGPT to follow;

• 2. Next, we build a prompt for ChatGPT which describes the objective while also identifying the set
of allowed high-level functions from the library. The prompt can also contain information about
constraints, or how ChatGPT should structure its responses;

• 3. The user stays on the loop to evaluate code output by ChatGPT, either through direct analysis or
through simulation, and provides feedback to ChatGPT on the quality and safety of the output code;

• 4. After iterating on the ChatGPT-generated implementations, the final code can be deployed onto the
robot.

15Proposed Approach / Algorithm / Method

Construction and description of the robotics API library

16Proposed Approach / Algorithm / Method

• All API names must be descriptive of the overall function behavior
• Define high-level functions, which act as wrappers over actual implementations

from the respective libraries
• Listing such a collection of high-level functions in the prompt is key

• in allowing ChatGPT to create logical sequences of behavioral primitives, and
• in generalizing to different scenarios and platforms.

• a function named detect_object(object_name) could internally link to an OpenCV
function or a computer vision model,

• something like move_to(x, y, z) could internally invoke a motion planning and
obstacle avoidance pipeline along with the appropriate low-level motor commands
for a drone.

Construction and description of the robotics API library

17Proposed Approach / Algorithm / Method

• Explaining the function of APIs and if needed, breaking them down
into sub-components with clear inputs and outputs, similar to code
documentation
• Recommended
• The strategy presented allows ChatGPT to reason about the order and content

of tasks according to the functions the robot is actually able to execute.

18

All API names must be descriptive of the
overall function behavior. Listing such a
collection of high-level functions in the
prompt is key

Explaining the function of APIs and if
needed, breaking them down into sub-
components with clear inputs and outputs,
similar to code documentation

Construction and description of the robotics API library

19Proposed Approach / Algorithm / Method

• LLMs are capable of defining new functions and concepts
altogether when relevant to a particular problem when dealing with
robotics applications

Clear description of the task details in the prompt

20Proposed Approach / Algorithm / Method

• A good context description should contain, besides robot APIs:
• Constraints and requirements: specify constraints or requirements that are relevant to

the task. If the task involves moving objects, you might specify the weight, size, and
shape of the objects to be moved.

• Environment: describe the environment in which the robotics task is taking place. For
example, if the task is to navigate a maze, you might describe the size and shape of the
maze, as well as any obstacles or hazards that need to be avoided.

• Current state: describe the current state of the robotics system. For example, if the task
is to pick up an object, you might describe the current position and orientation of the
robot and the object.

• Goals and objectives: state the goals and objectives of the task. If the task is to
assemble a puzzle, you might specify the number of pieces that need to be assembled
and the desired completion time.

• Solution examples: demonstrate how similar tasks can be solved as a means to guide
the LLM’s solution strategy. For example, if a task involves interactions with the user,
we can describe an example of how and when the robot should be asking for the user’s
input (see Fig. 5). Note that priming can also introduce biases, so we should provide a
diverse range of examples and avoid overly prescriptive language.

Clear description of the task details in the prompt

21Proposed Approach / Algorithm / Method

Constraints and requirements

Environment

Current state

Goals and objectives

Solution examples

Special arguments to bias the answer’s structure

22Proposed Approach / Algorithm / Method

• Different prompting methodologies can be used to force the
output of the model to obey some specific pattern.
• A user might want to automatically parse ChatGPT’s output so

that it can be used in other scripts for real-time execution

Directly ask ChatGPT
to produce code in a
specific language (e.g.
Python, C++)

A more structured response can be produced by
requesting the model to use XML tags to help
us parse the output automatically

ChatGPT abilities for solving robotics problems
• Four groups of tasks for testing

• Zero-shot task planning
• Interactive conversations for complex tasks
• Perception-action loops
• Reasoning and common-sense robotics tasks

• Notes: Practical deployment safety considerations should not be overlooked,
especially in the case of physical robotics deployments.
• It is necessary to have a human on the loop to monitor and intervene in case of

unexpected behaviors generated by ChatGPT.
• The use of simulators can be particularly helpful to evaluate the model’s performance

before deployment in the real world.

• Code Repository: All initial prompts for the problems are in Appendix B.
• For the sake of brevity we only include brief excerpts from each task.
• The full conversations can be found in the following repository:

https://github.com/microsoft/PromptCraft-Robotics

23Experimental Setup

The use of ChatGPT for robotics is not a
fully automated process, but rather acts

as a tool to augment human capacity.

https://github.com/microsoft/PromptCraft-Robotics

Zero-shot task planning
• Solve several robotics tasks in a zero-shot fashion,
• with access only to the prompt and the description of a function

library, and no requirement of actual code examples.

• 3 Experiments
1. Spatio-temporal reasoning: catching a basketball with visual

servoing
2. Aerial robotics: real-world drone flight with intuitive human-

robot interface
3. Aerial robotics: AirSim industrial inspection

24Experimental Results (1)

Spatio-temporal
reasoning: catching a
basketball with visual

servoing

25Experimental Results (1)

• Imagine you are a planar robot that can move along the
XY axes, and you’re positioned in the center of a
basketball court. A person on the side of the court is
going to throw a basketball ball in the air somewhere in
the court, and your objective is to be at the exact XY
location of the ball when it lands. The robot has a
monocular RGB camera that looks up. You can assume
that the following functions are available:

• get_image(): returns an image from the robot’s camera
looking up;

• get_location(): returns 2 floats XY with the robot’s
current location in the court;

• move_to_point(x,y, vx, vy): moves the robot towards a
specific (x,y) location in the court with velocity (vx,vy).
You can assume for this exercise that the robot can
accelerate or break instantly to any velocity;

• move_by_velocity(vx, vy): moves the robot along the X
axis with velocity vx, and Y axis with velocity vy;

• Additional points to consider when giving your answer 1)
Your reponses should be informative, visual, logical and
actionable, 2) Your logics and reasoning should be
rigorous, intelligent, and defensible, 3) You can provide
additional relevant details to respond thoroughly and
comprehensively to cover multiple aspects in depth.

• Write a python script that executes a visual servoing
approach towards catching a basketball in a court. You
can use opencv functions to detect the ball as an orange
blob.

Aerial robotics:
real-world drone flight with intuitive human-robot interface

26Experimental Results (1)

• Imagine you are helping me interact with the AirSim simulator for
drones. At any given point of time, you have the following abilities,
each identified by a unique tag. You are also required to output code
for some of the requests.

• Question: You can ask me a clarification question, as long as you
specifically identify it saying "Question".

• Code: Output a code command that achieves the desired goal.

• Reason: After you output code, you should provide an explanation
why you did what you did.

• The simulator contains a drone, along with several objects. Apart from
the drone, none of the objects are movable. Within the code, we have
the following commands available to us. You are not to use any other
hypothetical functions.

• get_position(object_name): Takes a string as input indicating the
name of an object of interest, and returns a vector of 4 floats
indicating its X,Y,Z,Angle coordinates.

• self.tello.fly_to(position): Takes a vector of 4 floats as input
indicating X,Y,Z,Angle coordinates and commands the drone to fly
there and look at that angle

• self.tello.fly_path(positions): Takes a list of X,Y,Z,Angle positions
indicating waypoints along a path and flies the drone along that path

• self.tello.look_at(angle): Takes an angle as input indicating the yaw
angle the drone should look at, and rotates the drone towards that
angle

• Here is an example scenario that illustrates how you can ask
clarification questions. Let us assume a scene contains two spheres?
Me: Fly to the sphere. You: Question - there are two spheres. Which
one do you want me to fly to? Me: Sphere 1, please.

• You also have access to a Python dictionary whose keys are object
names, and values are the X,Y,Z,Angle coordinates for each object:
self.dict_of_objects = {’origin’: [0.0, 0.0, 0.0, 0], ’mirror’: [1.25, -
0.15, 1.2, 0], ’chair 1’: [0.9, 1.15, 1.1, np.pi/2], ’orchid’: [0.9, 1.65,
1.1, np.pi/2], ’lamp’: [1.6, 0.9, 1.2, np.pi/2], ’baby ducks’: [0.1, 0.8,
0.8, np.pi/2], ’sanitizer wipes’: [-0.3, 1.75, 0.9, 0], ’coconut water’: [-
0.6, 0.0, 0.8, -np.pi], ’shelf’: [0.95, -0.9, 1.2, np.pi/2], ’diet coke can’:
[1.0, -0.9, 1.55, np.pi/2], ’regular coke can’: [1.3, -0.9, 1.55, np.pi/2]}

• Are you ready?

Aerial robotics:
real-world drone flight with intuitive human-robot interface

27Experimental Results (1)

Aerial robotics:
AirSim industrial inspection

28Experimental Results (1)

• Imagine you are helping me interact with the
AirSim simulator for drones. At any given point
of time, you have the following abilities. You are
also required to output code for some of the
requests.

• Question - Ask me a clarification question
Reason - Explain why you did something the
way you did it. Code - Output a code command
that achieves the desired goal.

• The simulator contains a drone, along with
several objects. Apart from the drone, none of
the objects are movable. Within the code, we
have the following commands available to us.
You are not to use any other hypothetical
functions.

• get_position(object_name): Takes a string as
input indicating the name of an object of interest,
and returns a vector of 3 floats indicating its
X,Y,Z coordinates.

• fly_to(position): Takes a vector of 3 floats as
input indicating X,Y,Z coordinates and
commands the drone to fly there.

• fly_path(positions): Takes a list of X,Y,Z
positions indicating waypoints along a path and
flies the drone along that path.

• Here is an example scenario that tells you how to
respond where we are working with a simulated
world that has two spheres in it.

• Me: Fly the drone to the sphere. You: Question -
There are two spheres in the world, which one do
you want me to fly the drone to? Me: Let’s pick
Sphere 1.

• There are two turbines, some solar panels and a
car in the world.

• Are you ready?

Aerial robotics:
AirSim industrial inspection

29Experimental Results (1)

User on the loop
• To perform more complex tasks with a user on the loop

offering textual feedback

• 2 Experiments
1. Manipulation with curriculum learning

• The system is taught smaller-scale skills which can be combined towards
larger and more intricate tasks.

2. Aerial robotics: AirSim obstacle avoidance
• Take high-level textual feedback regarding generated code or its

performance and map it to the required low-level code changes,
• enabling potentially non-technical users to interact with it with ease

30Experimental Results (2)

Manipulation with curriculum learning

31Experimental Results (2)

• Imagine we are working with a manipulator robot.
This is a robotic arm with 6 degrees of freedom that
has a suction pump attached to its end effector. I
would like you to assist me in sending commands to
this robot given a scene and a task.

• At any point, you have access to the following
functions:

• grab(): Turn on the suction pump to grab an object

• release(): Turns off the suction pump to release an
object

• get_position(object): Given a string of an object
name, returns the coordinates and orientation of the
vacuum pump to touch the top of the object [X, Y,
Z, Yaw, Pitch, Roll]

• move_to(position): It moves the suction pump to a
given position [X, Y, Z, Yaw, Pitch, Roll].

• You are allowed to create new functions using
these, but you are not allowed to use any other
hypothetical functions. Keep the solutions simple
and clear. The positions are given in mm and the
angles in degrees.

• You can also ask clarification questions using the
tag "Question - ". Here is an example scenario that
illustrates how you can ask clarification questions.

• Let’s assume a scene contains two spheres. Me:
pick up the sphere. You: Question - there are two
spheres. Which one do you want me to pick up?

• Me: Sphere 1, please.

• Use python code to express your solution. Are you
ready?

Manipulation with curriculum learning

32Experimental Results (2)

Aerial robotics:
AirSim obstacle avoidance

33Experimental Results (2)

• Imagine you are helping me interact with the
AirSim simulator for drones. At any given point
of time, you have the following abilities. You
are also required to output code for some of the
requests.

• Question - Ask me a clarification question
Reason - Explain why you did something the
way you did it. Code - Output a code command
that achieves the desired goal.

• The simulator contains a drone, along with
several objects. Apart from the drone, none of
the objects are movable. Within the code, we
have the following commands available to us.
You are not to use any other hypothetical
functions.

• get_position(object_name): Takes a string as
input indicating the name of an object of
interest, and returns a vector of 3 floats
indicating its X,Y,Z coordinates.

• fly_to(position): Takes a vector of 3 floats as
input indicating X,Y,Z coordinates and
commands the drone to fly there.

• fly_path(positions): Takes a list of X,Y,Z
positions indicating waypoints along a path and
flies the drone along that path.

• get_yaw(): Get the current yaw angle for the
drone (in degrees)

• set_yaw(angle): Set the yaw angle for the drone
(in degrees)

• Are you ready?

Aerial robotics:
AirSim obstacle avoidance

34Experimental Results (2)

Perception-action loops
• Evaluate ChatGPT’s ability to reason about perception-action loops.

• 2 Experiments (Increasing complexity)
1. Embodied agent: closed loop object navigation with API library

• Outline the model’s ability to make use of the API library to construct perception-action
loops in its code output.

• The model correctly employs perception functions such as image acquisition and object
detection to extract the relevant information for robot navigation and controls.

2. Embodied agent: closed loop visual-language navigation using ChatGPT’s
dialogue
• try to answer the question of whether ChatGPT’s dialogue system can serve as a closed

feedback perception-action loop in itself.
• We explore the idea of continuously feeding the model with perception information via

textual dialog, where we input in observations (converted into a textual format) to
ChatGPT during a conversation.

• We find that ChatGPT is able to parse this stream of observations and output relevant
actions.

35Experimental Results (3)

Embodied agent:
closed loop object
navigation with API library

36Experimental Results (3)

• Imagine you are helping me interact with the AirSim simulator.
We are controlling an embodied agent. At any given point of
time, you have the following abilities. You are also required to
output code for some of the requests.

• Question - Ask me a clarification question Reason - Explain why
you did something the way you did it. Code - Output a code
command that achieves the desired goal.

• The scene consists of several objects. We have access to the
following functions, please use only these functions as much as
possible:

• Perception:

• get_image() : Renders an image from the front facing camera of
the agent

• detect_objects(img): Runs an object detection model on an
image img, and returns two variables - obj_list, which is a list of
the names of objects detected in the scene. obj_locs, a list of
bounding box coordinates in the image for each object.

• Action:

• forward(): Move forward by 0.1 meters.

• turn_left(): Turn left by 90 degrees.

• turn_right(): Turn right by 90 degrees.

• You are not to use any other hypothetical functions. You can use
functions from Python libraries such as math, numpy etc. Are
you ready?

Embodied agent:
closed loop object navigation with API library

37Experimental Results (3)

Embodied agent:
closed loop visual-language navigation using ChatGPT’s dialogue

38Experimental Results (3)

• Imagine I am a robot equipped with a
camera and a depth sensor. I am trying to
perform a task, and you should help me
by sending me commands.

• You are only allowed to give me the
following commands:

• turn(angle): turn the robot by a given
number of degrees

• move(distance): moves the robot straight
forward by a given distance in meters.

• On each step, I will provide you with the
objects in the scene as a list of <object
name, distance, angle in degrees>. You
should reply with only one command at
a time. The distance is in meters, and the
direction angle in degrees with respect to
the robot’s orientation. Negative angles
are to the left and positive angles are to
the right. If a command is not valid, I
will ignore it and ask you for another
command. If there is no relevant
information in the scene, use the
available commands to explore the
environment.

Embodied agent:
closed loop visual-language navigation using ChatGPT’s dialogue

39Experimental Results (3)

Reasoning & common-sense robotics tasks
• 3 Experiments

1. Computer vision problem
2. Transformation matrices
3. Balancing a ball on a plate

• Observed that ChatGPT offers a rich foundation of common-
sense and logical reasoning capabilities upon which more
advanced robotics abilities can be built.
• This logics grounding allows the user to interact with the model more

naturally, as opposed to having to prompt or define every concept from
scratch.

• Furthermore, ChatGPT’s out-of-the-box understanding of basic robotics
concepts such as control, camera geometry, and physical form factors
makes it an excellent choice to build upon for generalizable and user-
friendly robotics pipelines.

40Experimental Results (4)

Computer vision problem
41Experimental Results (4)

Transformation matrices
42Experimental Results (4)

Balancing a ball on a plate
43Experimental Results (4)

PromptCraft
• A collaborative tool for LLM + Robotics research
• Prompt engineering is particularly challenging at the

intersection of LLMs with robotics, where there is a lack of
comprehensive and accessible resources that provide examples of
positive (and negative) interactions.
• For researchers to share examples of prompting strategies and test

their algorithms in sample robotic environments

44Other Results

PromptCraft
• a Github-based platform that

• allows researchers to share examples of prompt engineering strategies within
different robotics categories, such as navigation, grasping, and manipulation.

• Users can submit their examples and rate others’ submissions, which we hope will
create a community-driven resource for researchers working with LLMs.

• Submissions of prompts and dialogues are primarely based on text, but we
encourage users to share videos and images depicting the robot’s behavior,
especially for real-world deployment scenarios.

• Offers an AirSim environment with a ChatGPT wrapper for researchers
to prototype prompts and algorithms in a controlled simulated setting.
• We welcome contributions of new test environments to expand the range of

scenarios where researchers can test their algorithms.

• AI for Science
• With Promptcraft we aim to support the empirical science of prompt engineering

and enable researchers to advance the field.

45Other Results

Summary
• Demonstrate a pipeline for applying ChatGPT to robotics tasks.

• The pipeline involves several prompting techniques such as free-form natural language dialogue, code
prompting, XML tags, and closed-loop reasoning. We also show how users can leverage a high-level
function library that allows the model to quickly parse human intent and generate code for solving the
problem

• Experimentally evaluate ChatGPT’s ability to execute a variety of robotics tasks.
• We show the model’s capabilities and limitations when solving mathematical, logical, and geometrical

operations, and then explore more complex scenarios involving embodied agents, aerial navigation, and
manipulation. We include both simulation and real-world experiments that result from ChatGPT’s plans

• Introduce a collaborative open-source platform, PromptCraft
• where researchers can work together to provide examples of positive (and negative) prompting strategies

when working with LLMs in the robotics context. Prompt engineering is a mostly empirical science, and
we want to provide a simple interface for researchers to contribute with knowledge as a community. Over
time we aim to provide different environments where users can test their prompts, and welcome new
contributions

• Release a ChatGPT-integrated simulation tool based on Microsoft AirSim.
• This AirSim-ChatGPT simulation contains a sample environment for drone navigation and aims to be a

starting point for researchers to explore how ChatGPT can enable robotics scenarios.

46Conclusions and Future Work

Limitations

• These tools should not be given full control of the robotics
pipeline, especially for safety-critical applications.

• Most of the examples presented demonstrated open
perception-action loops where ChatGPT generated code to
solve a task, with no feedback was provided to the model
afterwards

47Conclusions and Future Work

ChatGPT for paper writing

• Please note that this paper was largely written with the
assistance of ChatGPT, with prompts provided by the
authors.

• The model’s output was thoroughly revised and
adapted, we note that the use of LLMs can significantly
speed up the writing process, and we recommend their use
to the interested reader.

48Conclusions and Future Work

Just say the magic word:
using language to program robots

• LaTTe is a deep machine learning model that lets us send language commands to robots in an intuitive way with ease.
When given an input sentence by the user, the model fuses it with camera images of objects that the robot observes in
its surroundings, and outputs the desired robot behavior.
• LaTTe [in submission] and Trajectory Language Transformer [IROS 2022]
• Check out the project’s webpage | View our machine learning models on our Github repository

49Extended Reading

https://arxiv.org/abs/2208.02918
https://arxiv.org/abs/2203.13411
https://arthurfenderbucker.github.io/NL_trajectory_reshaper/
https://github.com/arthurfenderbucker/NL_trajectory_reshaper

Thank you~

Southern University of Science and Technology

ME336 Collaborative Robot Learning
Spring 2023

