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Manipulation Learning Problems
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Five Categories of Manipulation Learning

• Learning to define the state space 
• The robot must discover the state features and degrees of freedom attached to each object in its environment

• Learning a transition model of the environment 
• The robot must learn a model of how its actions affect the task state, and the resulting background cost, for use in 

planning

• Learning motor skills
• The robot attempts to learn a motor control policy that directly achieves some goal, typically via reinforcement 

learning

• Learn to characterize that motor skill
• Given the motor skills, the robot learns a description of the circumstances under which it can be successfully executed, 

and a model of the resulting state change

• Learning compositional and hierarchical structure 
• Aims to learn hierarchical knowledge that enables the robot to become more effective at solving new tasks in the 

family

A framework to be covered in the next half of the class
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Learning to Define the State Space

• Object Representations
• Types of object representation

• object pose, object shape, material properties, 
interactions or relative properties

• Object representation hierarchy
• Point-level, Part-level, Object-level 

representations

• Passive and Interactive Perception

• Learning About Objects and Their 
Properties
• Discovering objects
• Discovering degrees of freedom
• Estimating object properties

• Feature Learning and Selection
• Unsupervised vs. supervised approaches

The robot must discover the state features and degrees of freedom attached to each object in its environment
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Learning a Transition Model of the Environment

• Representing and Learning Transition 
Models
• Continuous Models
• Discrete Models
• Hybrid Models

• Stochasticity and Uncertainty in 
Transition Models
• Stochasticity
• Model Uncertainty

• Self-supervision and Exploration for 
Learning Transitions

• Transferring and Reusing Transition 
Models

The robot must learn a model of how its actions affect the task state, and the resulting background cost, for use in planning
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Learning Motor Skills

• The Spectrum of Policy Structure
• Nonparametric Policies
• Generic Fixed-size Parametric Policies
• Restricted Parametric Policies
• Goal-based Policies

• Reinforcement Learning
• Model-Based RL vs Model-Free RL
• Value Function Methods vs Policy Search Methods
• On-Policy vs Off-Policy Learning
• Exploration Strategies

• Imitation Learning
• Behavioral Cloning
• Reward Inference
• Learning from Observation 
• Corrective Interactions 

• Skill Transfer
• Direct Skill Re-use 
• Parameterized Skills 
• Metalearning
• Domain Adaptation 
• Sequential Transfer and Curriculum Learning 

• Safety and Performance Guarantees
• Performance Metrics 
• Classes of Guarantees and Bounding Methods 

The robot attempts to learn a motor control policy that directly achieves some goal, typically via reinforcement learning
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Learn to Characterize that Motor Skill

• Pre- and Postconditions as Propositions and 
Predicates
• Classifier Representation 
• Distribution Representation 
• Modularity and Transfer

• Learning Pre- and Postcondition Groundings

• Skill Monitoring and Outcome Detection
• Learning Goal and Error Classifiers 
• Detecting Deviations from Nominal Sensory 

Values 
• Verifying Predicates 

• Predicates and Skill Synthesis
• Representing and Synthesizing Skill Parameters 
• Preconditions and Affordances 

The robot learns a description of the circumstances under which it can be successfully executed, and a model of the resulting state change
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Learning Compositional and Hierarchical Structure

• The Form of a Motor Skill

• Segmenting Trajectories into Component 
Skills
• Segmentation Based on Skill Similarity
• Segmentation Based on Specific Events 

• Discovering Skills While Solving Tasks

• Learning Decision-Making Abstractions
• Learning Abstract Policy Representations 
• Learning Abstract State Spaces 

Aims to learn hierarchical knowledge that enables the robot to become more effective at solving new tasks in the family
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Learning a Transition Model
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Learning a Transition Model of the Environment
The robot must learn a model of how its actions affect the task state, and the resulting background cost, for use in planning
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Transition Models of the Environment

Stochasticity Uncertainty

Learning a New Model Reuse an Existing Model

Continuous, Discrete and Hybrid Models

Self-supervision and Exploration Transferring and Reusing

Probabilistic Models
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Continuous Transition Models
Regression methods can be used to learn low-level transition models 

for predicting the next state as a set of continuous values, even when the set of actions is discrete
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https://arxiv.org/pdf/1709.02833.pdf

Scoop & Dump Task

ℎ!: a given initial state of the environment
ℎ": a given goal state of the environment
𝑎!,…,%: a series of robot actions
𝑁𝑜𝑟𝑚 &: L1 norm to be minimized as distance to the goal state
ℱ ℎ!, 𝑎!,…,% = ℎ%'&: applies actions sequentiall to reach ℎ%'&

Robot action (a 9D vector)
• Scoop action

• the start location (2D)
• the start angle (1D)
• the end location (2D)
• the end angle (1D)
• the roll angle (1D)

• Dump action
• the dump location (2D)

the scoop & 
dump–net

the value–net

scoop

dump

https://arxiv.org/pdf/1709.02833.pdf
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Discrete Transition Models
Learn transitions for tasks with discrete state and action spaces, typically capturing high-level tasks
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https://ipvs.informatik.uni-stuttgart.de/mlr/papers/12-lang-JMLR.pdf
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Stochasticity
A stochastic process exhibits a randomness in its state transitions
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https://sci-hub.tw/10.1007/s10514-016-9571-3 https://arxiv.org/pdf/1710.11252.pdf

https://sci-hub.tw/10.1007/s10514-016-9571-3
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Model Uncertainty
The outcome of an action may be uncertain due to the robot’s limited knowledge of the process
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A model for pushing

A framework of sensorimotor learning, 
adopting a modular approach for 

interactive classification and functional 
categorization of objects.

http://kth.diva-portal.org/smash/get/diva2:922036/FULLTEXT02.pdf

http://kth.diva-portal.org/smash/get/diva2:922036/FULLTEXT02.pdf
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Self-supervision & Exploration
Transition models are usually learned in a self-supervised manner and the robot may adopt different exploration strategies for acquiring samples
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Transferring and Reusing Transition Models
Transition models are not inherently linked to a specific task and 

can therefore often be transferred and reused between different manipulation tasks and even task families. 
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Evaluation of Transfer
1. Asymptotic Performance: Measure the performance after convergence in the target 

task.
2. Initial Performance: Measure the initial performance in the target task.
3. Total Reward: Measure the total accumulated reward during training in the target 

task.
4. Area Ratio: Measure the area between the transfer and non-transfer learning curves.
5. Time-to-Threshold: Measure the time needed to reach a performance threshold in 

the target task.

https://www.cs.utexas.edu/~pstone/Papers
/bib2html-links/JMLR07-taylor.pdf

https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/JMLR07-taylor.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/JMLR07-taylor.pdf
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Learning to Touch
Example set 1 with the DeepClaw Toolkit
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A General Framework for Vision-based Touch Learning
The DeepClaw toolkit you’ve been using for the course project
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Touch Sensory Integration with Optical Fibers
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Sim2Real Learning with FEM
• After (i) collecting FEM simulation data of the soft network

under external compressions at various angles and
magnitudes,

• (ii) we train a Sim2Real multi-layer perceptron (MLP) to
reproduce spatial movement of 26 key points on the soft
network.

• (iii) When deployed to the actual soft network, the MLP
predictions show a good alignment with observations in
scenarios of free standing, pushing, and twisting.
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Learning Friction with Material’s Viscoelasticity

ME336 Collaborative Robot Learning Lecture 12 Manipulation Learning 25



AncoraSIR.com

Tactile Reconstruction
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Learning Skill Policies
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The Final Learning Goal for a Robot
To acquire a behavior, or skill controller, that will perform a desired manipulation task
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Skill 
Controller

Task 
(Goal)

Specific A Class

Experience
(Examples)

From the world 
(or a model of it)

Reinforcement 
Learning Skill 

Transfer
Uncertainty

(Safety)From demonstration 
trajectory

Imitation 
Learning

Performance Guarantees
(Metrics) Working?
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The Spectrum of Policy Structure
The choice of policy representation is a critical design decision for any robot learning algorithm
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Non-
Parametric

Policies

Generic Fixed-
size Parametric 

Policies

Restricted 
Parametric 

Policies

Goal-based 
Policies

https://arxiv.org/pdf/1910.02646.pdf
K-Nearest Neighbour

Gaussian Processes for 
Machine Learning

https://arxiv.org/pdf/1606.07419.pdfhttps://arxiv.org/pdf/1504.00702.pdf

https://arxiv.org/pdf/15
09.06841.pdf

https://harryzhesu.github.io/pdf/su2016learning.pdf

https://arxiv.org/pdf/1910.02646.pdf
https://arxiv.org/pdf/1606.07419.pdf
https://arxiv.org/pdf/1504.00702.pdf
https://arxiv.org/pdf/1509.06841.pdf
https://arxiv.org/pdf/1509.06841.pdf
https://harryzhesu.github.io/pdf/su2016learning.pdf
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Reinforcement Learning
For any given policy representation, RL can be used to learn policy parameters for skill controllers.
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Reinforcement 
Learning

Model-Based 
or 

Model-Free

Value 
Function

or 
Policy Search

On-Policy 
vs 

Off-Policy

doi:10.1038/nature14236

https://www.nature.com/articles/518486a.pdf

https://www.nature.com/articles/518486a.pdf
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Imitation Learning

• Leverage the existing task expertise of (potentially non-expert) humans to
• Bypass time-consuming exploration that would be required in an RL setting, 
• Communicate user preferences for how a task ought to be done, and 
• Describe concepts that may be difficult to specify formally or programmatically.

The user simply shows the robot what to do instead of writing code to describe the desired behavior
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Skill Transfer

• Direct Skill Re-use
• Directly re-use a learned skill in a new task related to the one it was learned on

• Parameterized Skills
• In certain task families, only some aspects of the task context change, while all other task 

semantics remain the same or are irrelevant
• Metalearning

• “learn to learn”—in other words, learn something about a distribution of tasks that allows for 
more efficient learning on any particular task from that distribution in the future.

• Domain Adaptation
• some task families retain all of their high-level semantics across instances, differing only in 

lower-level details
• Sequential Transfer and Curriculum Learning

• It is sometimes advantageous to view multiple instances transfer as a sequential learning problem

Skills learned in one task are often transferred to other tasks via a variety of mechanisms
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Safety and Performance Guarantees

• Future applications will require behaviors that are safe and correct with high confidence
• Robots that operate alongside humans in homes and workplaces must not cause injuries, destroy property, 

or damage themselves; 
• Safety-critical tasks such as surgery and nuclear waste disposal must be completed with a high degree of 

reliability; 
• Robots that work with populations that rely on them, such as the disabled or elderly, must be dependable

• Performance Metrics
• Cumulative reward under some reward function

• Whether the expected return of a policy is being bounded,
• Whether a risk-aware function of return is used
• When a policy must obey performance bounds

• Classes of Guarantees and Bounding Methods
• Safe learning is even more difficult, with limited real-world data collection abilities
• A research gap to provide strong performance guarantees in low-data and poor-model robotics settings

How well will the policy perform across the distribution of situations that it will face?
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Learning to Touch
Example set 2 with the DeepClaw Toolkit
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Magnetized Tactile Skin with Super-resolution
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Bio-inspired Design for 
Grasp Learning Underwater
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Learning to Touch Underwater
Using Generative Models
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Variational Autoencoder
Supervised Learning
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Latent Variables
For learning-based explanability
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Thank you~
songcy@sustech.edu.cn
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Bionic Design & Learning Lab
@ SIR Group 仿生设计与学习实验室

Room 606
7 Innovation Park
南科创园7栋606室

mailto:songcy@sustech.edu.cn

