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Motivation and Main Problem

With such a method, there will be even fewer people needed in
transportation

Solving the problem helps robots grab things and transport them with
more wisdom.

Machine learning will help collecting, filtering and analyzing the data
we need and is trained to help solve the problem

Why is the problem important

Handi Liu Pushing and Grasping Robot Arm 2
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Motivation and Main Problem

Both networks are trained jointly in a Q-learning framework, and are
entirely self-supervised by trial and error, where rewards are provided
from successful grasps.

In this way, our policy learns pushing motions that enable future
grasps, while learning grasps that can leverage past pushes.

Technical challenges arising from the problem
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Motivation and Main Problem

It remains unclear how to plan sequences of actions that combine
grasps and pushes, each learned in isolation.

While hard-coded heuristics for supervising push-grasping policies
have been successfully developed by exploiting domain-specific
knowledge, they limit the types of synergistic behaviors between
pushing and grasping that can be performed.

High-level idea of why prior approaches didn’t already solve
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Motivation and Main Problem

We learn joint pushing and grasping policies through self-supervised 
trial and error. Pushing actions are use-ful only if, in time, enable 
grasping. This is in contrast to prior approaches that define heuristics 
or hard-coded objectives for pushing motions.

Key insights of the proposed work 
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Motivation and Main Problem

We train our policies end-to-end with a deep network that takes in 
visual observations and outputs expected that takes in visual 
observations and outputs expected return (i.e. in the form of Q values) 
for potential pushing and grasping actions. The joint policy then 
chooses the action with the highest Q value – i.e. , the one that 
maximizes the expected success of current/future grasps. This is in 
contrast to explicitly perceiving individual objects and planning 
actions on them based on hand-designed features.

Key insights of the proposed work 
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Problem Setting

Markov decision process: 

State: st    →  new state: st+1

Action: at

Policy: π(st)

Reward: Rat(st , st+1)

Return: 𝑅𝑡 = σ𝑖=𝑡
∞ 𝛾𝑅𝛼i(𝑠𝑖 , 𝑠𝑖+1)

The best control method and off-policy Q-learning

Zican Jin 7

A greedy deterministic policy 

chooses actions by maximizing the 

Q-function --- Qπ(st, at),
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Problem Setting

A fixed target value yt :

To minimize the temporal difference value δt between Q and yt

Learning objective
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Limitations of Prior Work

Paper: Multi-view Self-supervised
Deep Learning for 6D Pose
Estimation in the Amazon Picking
Challenge

1.Chaotic. Shelves and handbags
may have multiple objects and may
be arranged to deceive visual
algorithms.
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Limitations of Prior Work

2.Self shielding. Due to the limited
location of the camera, the system
can only see a partial view of the
object.

3.Sensor noise. Commercial depth
sensors are not reliable in
capturing reflective, transparent, or
mesh surfaces.
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Proposed Method

For each state st : visual 3D data --- heightmaps

1.Capture RGB-D images from a fixed-mount camera

2.Project the data onto a 3D point cloud

3.Orthographically back-project upwards

Workspace:  0.448m2

Pixel resolution: 224*224

A. State Representations
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Proposed Method

ψ : a motion primitive behavior parametrized from action αt (can be pushing or 
grasping)

Pushing: 10cm horizontal movement

Grasping: 3cm vertical decline

B. Primitive Actions
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Proposed Method

16 directions: each 22.5°

First, the Q value prediction for each action now has an explicit notion of spatial 
locality with respect to other actions.

Second, FCNs are efficient for pixel-wise computations.

Finally, FCN models can converge with less training data.

C. Learning Fully Convolutional Action-Value Functions
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Proposed Method

Grasp successfully: Rg(st, st+1) = 1

(if antipodal distances between gripper fingers after a grasp attempt 
exceed threshold)

Pushes that make detectable changes: Rp(st, st+1) = 0.5

(if sum of differences between heightmaps exceeds threshold)

Rp does not ensure one push action enables future grasp actions!

D. rewards
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Proposed Method

Huber loss function

θi : parameters of the neural network at iteration I

θi
- : fixed

φψ : network to be trained

ϵ : =0.5~0.1

γ : future discount = 0.5

E. Training details
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Proposed Method

Greedy deterministic policy --- easy to get stuck (repeat same actions)

F. Testing details

16

No 
changes

Same 
Value

Same 
action

Network weights are reset to original state 
when:

1.All objects are grasped successfully

2.No change of environment exceed 10 times
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Experimental Set up

Environment:

UR5 robot arm with an RG2 gripper in V-REP [39]

(illustrated in Fig.3) with Bullet Physics 2.83 for dynamics

and V-REP’s internal inverse kinematics module for robot

motion planning.

Each test run in simulation was run n = 30 times. The objects

used in these simulations include 9 different 3D toy blocks

simulate a statically mounted perspective 3D camera in the

environment, from which perception data is captured. RGBD

images of resolution 640×480 are rendered with OpenGL

from the camera, without any noise models for depth or color.

Virtual Simulation
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Experimental Set up

Environment:

a UR5 robot arm with an RG2 gripper, overlooking a

tabletop scenario. Objects vary across different experiments,

including a collection of 30+ different toy blocks for training

and testing

For perception data, RGB-D images of resolution 640 ×

480 are captured from an Intel RealSense SR300, statically

mounted on a fixed tripod overlooking the tabletop setting.

Real-world
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Experimental Setup

Baselines:

Reactive Grasping-only Policy (Grasping-only) ;

Reactive Pushing and Grasping Policy (P+G Reactive)

Tested hypotheses:

Visual Pushing for Grasping (VPG)

Baselines and hypotheses
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Experimental Setup

Clear description of the metrics that will be used:

1) the average % completion rate over the n test runs, which measures the ability of the policy 

to finish the task by picking up all objects without failing consecutively for more than 10 

attempts, 

2) the average % grasp success rate per completion;

3) the % action efficiency (defined as 
# objects in test

# actions before completion
), which describes how 

succinctly the policy is capable of finishing the task.

Evaluation Metrics
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Experimental Results

Random arrangements    

Challenging arrangements

Virtual Simulation

21

30 
objects are randomly 
dropped onto a table

11 challenging test 
Cases similar to the 

right figure
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Experimental Results

Success rate with respect to training steps(in simulation)

22Pushing and Grasping Robot ArmKewei Zuo



AncoraSIR.com

Experimental Results

Real-world result
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Discussion of Results

It can be easily concluded that VPG performs better in completion rate, 
success rate and efficiency.

Moreover, it has high training efficiency for it can perform well in just 
six hours of training.
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Limitations

First Motion primitives are defined with parameters specified on a

regular grid (heightmap), which provides learning efficiency

with deep networks, but limits expressiveness.

Second The deep learning system has only been trained with blocks and

tested with a limited range of shapes (fruit, bottles, etc.).

Third The synergy just covers two examples (pushing and grasping) of the

larger family of primitive manipulation actions.

Limitations of this paper
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Future Work

First Parameterizations with more expressive motions

(parallel combinations of pushing and grasping)

Various contact surfaces

Second Training on larger varieties of shapes

further evaluate the generalization capabilities of the learned policies

Third Study strategies of many other primitive manipulation actions

(rolling, toppling, squeezing, levering, stacking, etc.)

Ideas for future work based on limitations
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Conclusion and Summary

This paper shows that the synergy between planning non-prehensile (pushing) 

and prehensile (grasping) actions can be learned by the deep reinforcement 

learning system. 

It is the first to realize performing complex sequences of pushing and grasping 

on a real robot in a short training time.

The planning of combined manipulation actions for robots is still a new field 

which has unlimited potential and needs further more research. 

Summary
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Thank You
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