
Learning Synergies between Pushing and

Grasping with Self-supervised Deep

Reinforcement Learning
Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, Thomas

Funkhouser

Abstract—In this work, we demonstrate that it is possible to

discover and learn these synergies from scratch through model-

free deep reinforcement learning. Our method involves training

two fully convolutional networks that map from visual

observations to actions: one infers the utility of pushes for a dense

pixel-wise sampling of end effector orientations and locations,

while the other does the same for grasping. Both networks are

trained jointly in a Q-learning framework and are entirely self-

supervised by trial and error, where rewards are provided from

successful grasps. In this way, our policy learns pushing motions

that enable future grasps, while learning grasps that can leverage

past pushes. Qualitative results (videos), code, pre-trained models,

and simulation environments reference.

I. INTRODUCTION

Skilled manipulation benefits from the synergies between non-

prehensile (e.g., pushing) and prehensile (e.g., grasping) actions:

pushing can help rearrange cluttered objects to make space for arms

and fingers (see figure); likewise, grasping can help displace objects

to make pushing movements more precise and collision-free.

Although considerable research has been devoted to both push and

grasp planning, they have been predominantly studied in isolation.

Combining pushing and grasping policies for sequential manipulation

is a relatively unexplored problem. Pushing is traditionally studied for

the task of precisely controlling the pose of an object. However, in

many of the synergies between pushing and grasping, pushing plays a

loosely defined role, e.g., separating two objects, making space in a

particular area, or breaking up a cluster of objects. These goals are

difficult to define or reward for model-based or data-driven

approaches.

Many recent successful approaches to learning grasping policies,

maximize affordance metrics learned from experience or induced by

grasp stability metrics.

In this work, we propose to discover and learn synergies between

pushing and grasping from experience through model-free deep

reinforcement learning (in particular, Q-learning). The key aspects of

our system are:

• We learn joint pushing and grasping policies through self-

supervised trial and error. Pushing actions are useful only if, in time,

enable grasping. This contrasts with prior approaches that define

heuristics or hard-coded objectives for pushing motions.

• We train our policies end-to-end with a deep network that takes

in visual observations and outputs expected return (i.e. in the form of

Q values) for potential pushing and grasping actions. The joint policy

then chooses the action with the highest Q value – i.e., the one that

maximizes the expected success of current/future grasps. This is in

contrast to explicitly perceiving individual objects and planning

actions on them based on hand-designed features.

This formulation enables our system to execute complex sequential

manipulations (with pushing and grasping) of objects in unstructured

picking scenarios and generalizes to novel objects (unseen in training).

II. PROBLEMR STATEMENT

Our problem is to formulate the pushing-for-grasping task as a

Markov decision process. At any given state at a certain time, the robot

chooses and executes an action according to a specific policy, then

transitions to a new state and receives an immediate corresponding

reward.

The goal of our robotic reinforcement learning problem is to

optimize the policy that maximizes the expected sum of future rewards,

from the given certain time to the infinite future.

We will investigate the use of off-policy Q-learning to train a greedy

deterministic policy that chooses actions by maximizing the action-

value function (i.e., Q-function), which measures the expected reward

of acting at the certain time. Formally, our learning objective is to

iteratively minimize the temporal difference error to a fixed target

value.

III. LITERATURE REVIEW

In the paper ‘Multi-view Self-supervised Deep Learning for 6D

Pose Estimation in the Amazon Picking Challenge’

Task:

1. Select an instance of a given product ID from the filled shelf and

place it in a handbag.

2. Place a handbag filled with products on a filled shelf.

Difficulty:

1. The environment is chaotic. Shelves and handbags may have

multiple objects and may be arranged to deceive visual algorithms.

2. Self shielding. Due to the limited location of the camera, the system

can only see a partial view of the object.

3. Sensor noise. Commercial depth sensors are not reliable in capturing

reflective, transparent, or mesh surfaces.

4. There are many objects.

Algorithm description:

The algorithm first feed’s multiple view images into a fully

convolutional neural network, and then segments and labels multiple

views. Then, the 3D model is fitted to a segmented point cloud to

restore the 6D pose of the object.

Algorithm implementation:

Object segmentation

1) Multi-view target segmentation.

2) Remove point cloud noise.

3) Handle object duplicates.

Model fitting

1) Uneven density.

2) Initial posture.

3) From coarse to fine ICP.

Self-monitoring training

1) Place a single known object into a shelf or storage box in any

posture, control the robot to move the camera, and obtain RGB D

images from different perspectives.

2) To obtain a pixel level target segmentation label, create an object

mask to separate the foreground from the background.

Automatically label object masks based on the results of two channels

Algorithm evaluation

Evaluate variations of methods in different scenarios on a benchmark

dataset to understand two issues:

① How does segmentation perform under different input modes and

training dataset sizes?

② How does the entire visual system perform?

1. Benchmark dataset.

2. Segmentation of the evaluation object.

Help for our research articles：

This article, as the predecessor of our article, has a good reference

value. The methods used in this article can open our minds. This allows

us to better understand the article we are studying.

IV. TECHNICAL APPROACH

 We divide the whole project into six procedures:

1. Statement Representations

This is the first step that we start. By taking photos, the heightmap

was built in the computer, and is rotated for 22.5°for the next

photo (Altogether 16 photos, 360°). The edges of the heightmaps

are predefined with respect to the boundaries of the agent’s

workspace for picking.

2. Primitive Actions

Since the robot arm is about pushing and grasping, the authors

only focused on these two motions. The author parametrized

actions:

Ψ is the behavior, p is a pixel, and q means different ways of

movement. For pushing, q is a horizontally 10cm push. For

grasping, q is a vertically 3cm height-decrease. In both primitives,

robot arm motion planning is automatically executed with stable,

collision-free IK solves

3. Learning Fully-Convolutional Action-Value Functions

Deep Q-networks are separated into two fully convolutional

networks, for grasping and pushing. Both FCNs share the same

network architecture. Pixel-wise parameterization of both state

and action spaces enables the use of FCNs as Q-function

approximators. The action that maximizes the Q-function is the

primitive and pixel with the highest Q value across all 32 pixel-

wise maps.

4. Rewards

Rewards are divided into two parts: one is for successful grasping

Rg=1, and the other is for detectable pushing Rp=0.5. But the

author mentions that a detectable pushing may not be able for

further grasping, so in the experiment part, they make some

differences.

5. Training Details

This is how the Q-FCN functions will be trained, done by

adapting the Huber Loss Function to the data.

Besides this, the author also states the chosen value of some

variables.

6. Testing Details

The training policy is based on data, with the change of data it

can iteratively become better. However, if there is no change of

the outer environment, (like nothing is grasped or pushing), then

it may fall into a drop-dead halt that repetitively does the same

action. To avoid this, the author writes a small learning rate to the

policy after each executed action, and at the time after training

and before testing, network weights are set original. Furthermore,

the author also counts actions’ numbers so that the similar action

will not exceed 10 times.

V. INTERMEDIATE / PRELIMINARY RESULTS

We have tried to run the demo of simulation the author provided on

GitHub. During the process, we encountered lots of obstacles:

1. We found that CoppeliaSim no longer support the previous

versions of V-REP 3.6.1, which the author used to do the

simulation, so we have to install another system of Ubuntu 16.04

in order to support V-REP 3.5.0 (which is the oldest version of V-

REP that we can find while the author used V-REP 3.0.4).)

2. There’s problem in Pytorch and we have to change python

version from 3.7.0 to 3.7.2 to support pytorch.

3. Still, the simulation cannot run for high version of pytorch, so we

change to pytorch 0.3.1 and python 3.6 in order to support the

version of pytorch. (The version of torchvision will also affect the

version of pytorch, for torchvision later thatn 0.2.0, it will

automatically set pytorch vision up to 1.1.0).

4. Finally we found that the author made a mistake on the demo,

they might have wrote the demo in gramma of both pytorch 0.3.1

and in 0.4.0, while the two versions cannot fit each other, which

made it impossible for the demo to be successfully run without

any bugs. (Small mistake of the author made it a huge difficulty

to us for we spent about a week on a demo of mistake!!!)

Fig1 the result of demo simulation (The robot arm cannot move

because of bug).

This problem might not affect the rest of the part since they used

pytorch 1.0+ for the training except the demo part. Nevertheless, it

cannot be guaranteed there are not other mistakes in the rest of the part.

REFERENCES

[1] Official website of amazon picking challenge. [Online]. Available:

http://amazonpickingchallenge.org

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional

networks for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[3] Website for code and data. [Online]. Available:

http://apc.cs.princeton.edu/

[4] R. Jonschkowski, C. Eppner, S. Hofer, R. Mart ¨ ´ın-Mart´ın, and

O. Brock, “Probabilistic multi-class segmentation for the amazon

pick_x0002_ing challenge,” http://dx.doi.org/10.14279/depositonce-

5051, 2016.

[5] C. Eppner, S. Hofer, R. Jonschkowski, R. Martın-Martın, A.

Sieverling, ¨

V. Wall, and O. Brock, “Lessons from the amazon picking challenge:

Four aspects of building robotic systems,” in RSS, 2016.

