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Abstract—In this work, we demonstrate that it is possible to 

discover and learn these synergies from scratch through model-

free deep reinforcement learning. Our method involves training 

two fully convolutional networks that map from visual 

observations to actions: one infers the utility of pushes for a dense 

pixel-wise sampling of end effector orientations and locations, 

while the other does the same for grasping. Both networks are 

trained jointly in a Q-learning framework and are entirely self-

supervised by trial and error, where rewards are provided from 

successful grasps. In this way, our policy learns pushing motions 

that enable future grasps, while learning grasps that can leverage 

past pushes. Qualitative results (videos), code, pre-trained models, 

and simulation environments reference. 

I. INTRODUCTION 

Skilled manipulation benefits from the synergies between non-

prehensile (e.g., pushing) and prehensile (e.g., grasping) actions: 

pushing can help rearrange cluttered objects to make space for arms 

and fingers (see figure); likewise, grasping can help displace objects 

to make pushing movements more precise and collision-free.  

Although considerable research has been devoted to both push and 

grasp planning, they have been predominantly studied in isolation. 

Combining pushing and grasping policies for sequential manipulation 

is a relatively unexplored problem. Pushing is traditionally studied for 

the task of precisely controlling the pose of an object. However, in 

many of the synergies between pushing and grasping, pushing plays a 

loosely defined role, e.g., separating two objects, making space in a 

particular area, or breaking up a cluster of objects. These goals are 

difficult to define or reward for model-based or data-driven 

approaches. 

Many recent successful approaches to learning grasping policies, 

maximize affordance metrics learned from experience or induced by 

grasp stability metrics. 

 

In this work, we propose to discover and learn synergies between 

pushing and grasping from experience through model-free deep 

reinforcement learning (in particular, Q-learning). The key aspects of 

our system are: 

•  We learn joint pushing and grasping policies through self-

supervised trial and error. Pushing actions are useful only if, in time, 

enable grasping. This contrasts with prior approaches that define 

heuristics or hard-coded objectives for pushing motions. 

• We train our policies end-to-end with a deep network that takes 

in visual observations and outputs expected return (i.e. in the form of 

Q values) for potential pushing and grasping actions. The joint policy 

then chooses the action with the highest Q value – i.e., the one that 

maximizes the expected success of current/future grasps. This is in 

contrast to explicitly perceiving individual objects and planning 

actions on them based on hand-designed features. 

This formulation enables our system to execute complex sequential 

manipulations (with pushing and grasping) of objects in unstructured 

picking scenarios and generalizes to novel objects (unseen in training). 

II. PROBLEMR STATEMENT 

Our problem is to formulate the pushing-for-grasping task as a 

Markov decision process. At any given state at a certain time, the robot 

chooses and executes an action according to a specific policy, then 

transitions to a new state and receives an immediate corresponding 

reward. 

The goal of our robotic reinforcement learning problem is to 

optimize the policy that maximizes the expected sum of future rewards, 

from the given certain time to the infinite future. 



We will investigate the use of off-policy Q-learning to train a greedy 

deterministic policy that chooses actions by maximizing the action-

value function (i.e., Q-function), which measures the expected reward 

of acting at the certain time. Formally, our learning objective is to 

iteratively minimize the temporal difference error to a fixed target 

value. 

 

III. LITERATURE REVIEW 

In the paper ‘Multi-view Self-supervised Deep Learning for 6D 

Pose Estimation in the Amazon Picking Challenge’ 

 

Task:  

1. Select an instance of a given product ID from the filled shelf and 

place it in a handbag. 

2. Place a handbag filled with products on a filled shelf. 

 

Difficulty: 

1. The environment is chaotic. Shelves and handbags may have 

multiple objects and may be arranged to deceive visual algorithms. 

2. Self shielding. Due to the limited location of the camera, the system 

can only see a partial view of the object. 

3. Sensor noise. Commercial depth sensors are not reliable in capturing 

reflective, transparent, or mesh surfaces. 

4. There are many objects. 

 

Algorithm description: 

The algorithm first feed’s multiple view images into a fully 

convolutional neural network, and then segments and labels multiple 

views. Then, the 3D model is fitted to a segmented point cloud to 

restore the 6D pose of the object. 

 

Algorithm implementation: 

Object segmentation 

1) Multi-view target segmentation. 

2) Remove point cloud noise. 

3) Handle object duplicates. 

Model fitting 

1) Uneven density. 

2) Initial posture. 

3) From coarse to fine ICP. 

Self-monitoring training 

1) Place a single known object into a shelf or storage box in any 

posture, control the robot to move the camera, and obtain RGB D 

images from different perspectives. 

2) To obtain a pixel level target segmentation label, create an object 

mask to separate the foreground from the background. 

Automatically label object masks based on the results of two channels 

 

Algorithm evaluation 

Evaluate variations of methods in different scenarios on a benchmark 

dataset to understand two issues:  

① How does segmentation perform under different input modes and 

training dataset sizes?  

② How does the entire visual system perform? 

 

1. Benchmark dataset. 

2. Segmentation of the evaluation object. 

 

Help for our research articles： 

This article, as the predecessor of our article, has a good reference 

value. The methods used in this article can open our minds. This allows 

us to better understand the article we are studying. 

IV. TECHNICAL APPROACH 

 We divide the whole project into six procedures: 

1. Statement Representations 

This is the first step that we start. By taking photos, the heightmap 

was built in the computer, and is rotated for 22.5°for the next 

photo (Altogether 16 photos, 360°). The edges of the heightmaps 

are predefined with respect to the boundaries of the agent’s 

workspace for picking. 

2. Primitive Actions 

Since the robot arm is about pushing and grasping, the authors 

only focused on these two motions. The author parametrized 

actions: 

 

Ψ is the behavior, p is a pixel, and q means different ways of 

movement. For pushing, q is a horizontally 10cm push. For 

grasping, q is a vertically 3cm height-decrease. In both primitives, 

robot arm motion planning is automatically executed with stable, 

collision-free IK solves 

3. Learning Fully-Convolutional Action-Value Functions 

Deep Q-networks are separated into two fully convolutional 

networks, for grasping and pushing. Both FCNs share the same 

network architecture. Pixel-wise parameterization of both state 

and action spaces enables the use of FCNs as Q-function 



approximators. The action that maximizes the Q-function is the 

primitive and pixel with the highest Q value across all 32 pixel-

wise maps. 

4. Rewards 

Rewards are divided into two parts: one is for successful grasping 

Rg=1, and the other is for detectable pushing Rp=0.5. But the 

author mentions that a detectable pushing may not be able for 

further grasping, so in the experiment part, they make some 

differences. 

5. Training Details 

This is how the Q-FCN functions will be trained, done by 

adapting the Huber Loss Function to the data. 

Besides this, the author also states the chosen value of some 

variables. 

6. Testing Details 

The training policy is based on data, with the change of data it 

can iteratively become better. However, if there is no change of 

the outer environment, (like nothing is grasped or pushing), then 

it may fall into a drop-dead halt that repetitively does the same 

action. To avoid this, the author writes a small learning rate to the 

policy after each executed action, and at the time after training 

and before testing, network weights are set original. Furthermore, 

the author also counts actions’ numbers so that the similar action 

will not exceed 10 times. 

V. INTERMEDIATE / PRELIMINARY RESULTS 

We have tried to run the demo of simulation the author provided on 

GitHub. During the process, we encountered lots of obstacles: 

1. We found that CoppeliaSim no longer support the previous 

versions of V-REP 3.6.1, which the author used to do the 

simulation, so we have to install another system of Ubuntu 16.04 

in order to support V-REP 3.5.0 (which is the oldest version of V-

REP that we can find while the author used V-REP 3.0.4).) 

2. There’s problem in Pytorch and we have to change python 

version from 3.7.0 to 3.7.2 to support pytorch. 

3. Still, the simulation cannot run for high version of pytorch, so we 

change to pytorch 0.3.1 and python 3.6 in order to support the 

version of pytorch. (The version of torchvision will also affect the 

version of pytorch, for torchvision later thatn 0.2.0, it will 

automatically set pytorch vision up to 1.1.0). 

4. Finally we found that the author made a mistake on the demo, 

they might have wrote the demo in gramma of both pytorch 0.3.1 

and in 0.4.0, while the two versions cannot fit each other, which 

made it impossible for the demo to be successfully run without 

any bugs. (Small mistake of the author made it a huge difficulty 

to us for we spent about a week on a demo of mistake!!!) 

 

Fig1 the result of demo simulation (The robot arm cannot move 

because of bug). 

This problem might not affect the rest of the part since they used 

pytorch 1.0+ for the training except the demo part. Nevertheless, it 

cannot be guaranteed there are not other mistakes in the rest of the part. 
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