
Based on CNN convolutional neural network
algorithm garbage sorting manipulator

Shen Qirong (12010311), Zhou Mingyu (12012725), Wang Zimeng (12011711)
Wen Junzhe (11910703), Liu Qian(11912312)

Abstract—This project aims to develop a new type of garbage
sorting robot that can recognize the location of garbage through
a camera and make corresponding posture changes so that it
can reach the posture of picking up garbage. At the same time,
it also needs to train a machine learning model to recognize
different types of garbage and sort them to the correct location.
This project will combine machine vision, deep learning systems,
robotic arms, and the basic principles of robotic arms to achieve.
By training a robotic arm to sort garbage, the efficiency and
accuracy of garbage classification can be greatly improved.

I. INTRODUCTION

Garbage classification is an important environmental issue,
and machine learning technology can help us better solve
this problem. By training a robotic arm to sort garbage, the
efficiency and accuracy of garbage classification can be greatly
improved. The background of this project is that we hope
to develop a new type of garbage sorting robot that can
recognize the location of garbage through a camera and make
corresponding posture changes so that it can reach the posture
of picking up garbage. At the same time, it also needs to
train a machine learning model to recognize different types
of garbage and sort them to the correct location. This project
will combine machine vision, deep learning systems, robotic
arms, and the basic principles of robotic arms to achieve.

We plan to complete this project through the following
steps:

Collecting garbage image datasets: We need to collect
garbage image datasets of different types to train the machine
learning model.

Data preprocessing: For the collected image data, you need
to do some preprocessing, such as image enhancement and
image cropping.

Training the model: Train a machine learning model using
a deep learning framework (such as TensorFlow or PyTorch)
to recognize different types of garbage.

Deploying the model: Deploy the trained model to the
robotic arm and write control programs so that it can sort
garbage according to the recognition results.

II. PROBLEM STATEMENT

In this course project, we want to develop a robot who can
distinguish between different kinds of garbage and finish the
garbage sorting work by order. We divide our problem into
two parts precisely: First, we need to train the robot into
distinguish different kinds of garbage. Second, we need to
implement the task of bin picking in simulation environment

on the computer. The dataset we choose to train our robot is
Dexterity Network (Dex-Net) and the simulation environment
we choose is Robosuite. The result we expect is when given
a heap of garbage, our robot can recognize different kinds of
these garbage and successfully sort them out by grabbing the
garbage and place it into the corresponding area in the simu-
lation environment. The performance metric will be: accuracy
of distinguishing, success rate in sorting task, efficiency of
distinguishing, efficiency of sorting task.

III. LITERATURE REVIEW

In recent years, robotic grasping and manipulation have
become important research areas in robotics. Dex-Net2.0 is
a state-of-the-art deep learning-based method that aims to
provide high-accuracy grasping of objects. In this paper, we
will discuss the relationship between Dex-Net2.0 and our
project, which involves visual-based garbage classification
and sorting using a robotic arm in the Robosuite simulation
environment.

Dex-Net2.0 is a deep learning-based method that uses a
3D point cloud of an object obtained from an RGB-D sensor
to predict the grasp quality and pose of the object. The
method uses a two-step process to estimate the object’s pose:
First, a set of 6-DoF pose hypotheses are generated using
a convolutional neural network (CNN) that takes the point
cloud as input. Then, these pose hypotheses are refined using
a second neural network that predicts the probability of success
for each pose.

Dex-Net2.0 has several unique features that make it well-
suited for robotic grasping tasks. First, it can handle highly
cluttered scenes with multiple objects, which is a common
scenario in our garbage sorting project. Second, it can estimate
grasp stability, which is critical for ensuring that the robotic
arm can securely grasp the object. Third, it can predict grasps
for novel objects that were not present in the training dataset.

In our project, we plan to use Dex-Net2.0 to estimate the
pose and grasp quality of garbage items using an RGB-D
camera. This will enable our robotic arm to securely and
accurately pick up the garbage and place it in the correct bin.
Dex-Net2.0’s ability to handle cluttered scenes and estimate
grasp stability will be particularly useful in our project as the
garbage items may be randomly scattered and have different
shapes and sizes. Furthermore, Dex-Net2.0’s ability to predict
grasps for novel objects will allow us to easily add new types
of garbage items to the system as needed.



IV. TECHNICAL APPROACH

For out project, the main two technical problems are how
to classify different garbage and how to plan the trajectory.
For garbage identification task, we are going to use convolu-
tion neural network. In class, we learned about multi-layer
perceptron and some of deep learning. But the traditional
neural network can not deal with as simple as a image with
1000*1000 pixels which have 1000000 dimensions. Training
it directly with traditional neural network would easily cause
overfitting and huge computation resources is acquired. To
solve this problem, we are going to use Convolution Neural
Network(CNN) for our computer vision part. Indeed, this is a
optimization problem.

w, b = argminw,bL(w, b)

There are many encapsulated function in tensorflow to help
you begin a garbage classification machine learning progress.
We now have run a training progress in kaggle which have an
accuracy up to 95 percent or more. For trajectory planning,
we are going to use the library provided by the simulation
environment since the DH matrix is tedious to solve by
ourselves. The main problem is the Jacob matrix in velocity
kinematics.

q̇ = J(q)−1Ẋ

Fig. 1: Accuracy by ResNet

V. INTERMEDIATE/PRELIMINARY RESULT

A. Try and study the simulation environment–roboSuite

Fig. 2: Code Structure

1) Code structure: Define environment and robot than
choose the controller. There are many pre-defined environ-
ments and robots that we can use in our project but we still
need to rewrite the environment file to adjust to our application
environment like add some different shapes of items as rubbish
to pick up. So, study the simulation code is pretty important
for our project.

Fig. 3: Offscreen render

2) Controller: The simulation environment have different
controllers. Some of them are used to control the gripper and
the others are used to control the joints. More details as fellow:

OSC POSE: Gripper moves sequentially and linearly in x,
y, z direction, then sequentially rotates in x-axis, y-axis, z-axis,
relative to the global coordinate frame

OSC POSITION: Gripper moves sequentially and linearly
in x, y, z direction, relative to the global coordinate frame

IK POSE: Gripper moves sequentially and linearly in x, y,
z direction, then sequentially rotates in x-axis, y-axis, z-axis,
relative to the local robot end effector frame

JOINT POSITION: Robot Joints move sequentially in a
controlled fashion



JOINT VELOCITY: Robot Joints move sequentially in a
controlled fashion

JOINT TORQUE: Unlike other controllers, joint torque
controller is expected to act rather lethargic, as the “controller”
is really just a wrapper for direct torque control of the mujoco
actuators. Therefore, a “neutral” value of 0 torque will not
guarantee a stable robot when it has non-zero velocity!

By using the demo control.py code we can directly feel the
differences between various controller.

Fig. 4: Demo control

B. Future Work
1) Build our own simulation world: Although there are

so many pre-designed environments in the roboSuite, we also
need to study how to build a new world for our project. This
work related to study the model file of roboSuite.

2) Combine our code with the simulation code: It is
obviously that we must ensure our controlling code can be
combined with the simulation code perfectly because as we
have seen that the simulation code also include controllers.
So we intend to write our code in python and early apply it
in the simulation environment to test the possibility.


