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Markovian Modeling I
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Sequential Decision Problems
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An Example of Grid World
A maze-like problem with an agent in a grid and walls blocking the agent’s paths
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• Stochastic Motion: Actions do not always go as planned
• 80% of the time, intended actions occur as planned
• 10% of the time, turning left/right to the intended action
• A collision with a wall results in no movement

• Reward Mechanism: received at each time step
• Two terminal states with (BIG) reward +1 and -1
• All other states have a (LIVING) reward of –0.04

• The Goal
• Maximize the sum of rewards
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Grid World Actions
Deterministic Motion vs. Stochastic Movement
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?

80%10% 10%100%

Planned action to go UP

Same goal as before
• If all actions occur as planned

• 0.8! = 0.32768
• If not, but still made the goal

• 0.8×0.1" = 0.00008 (one small chance)
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Define a Markov Decision Process

• A finite set of states 𝑠 ∈ 𝑆
• With a start state 𝑠+, and (maybe) a terminal state

• A finite set of actions 𝑎 ∈ 𝐴
• 𝐴, is the finite set of actions available from state 𝑠

• A transition function 𝑃 𝑠!| 𝑠, 𝑎
• Pr 𝑠-./ = 𝑠0|𝑠- = 𝑠, 𝑎- = 𝑎 is a probability 
• Action 𝑎 in state 𝑠 at time 𝑡 will lead to state 𝑠′ at time 𝑡 + 1,

• A reward function 𝑅 𝑠!| 𝑠, 𝑎
• Can be an immediate reward or an expected immediate reward
• After transitioning from state 𝑠 to state 𝑠′, due to action 𝑎

A fully observable, stochastic environment with a Markovian transition model and additive rewards
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4-tuple 𝑆, 𝐴, 𝑃! , 𝑅!

A Sequential Decision Problem
Or MDP
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Markovian Policy

• “Markov” 
• Action outcomes depend only on the current state (not history)

• Policy 𝜋 𝑠
• A a solution that specifies what the agent should do for any state 

that the agent might reach (from start to goal)

• Optimal Policy 𝜋∗
• A policy that yields the highest expected utility

• Explicit representation of the agent function
• a description of a simple reflex agent, 

computed from the information used for a utility-based agent

What does a solution to the problem look like?
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Andrey Markov 
(1856-1922)𝑃 𝑆"#$ = 𝑠%| 𝑆" = 𝑠" , 𝐴" = 𝑎" , 𝑆"&$ = 𝑠"&$, 𝐴"&$, … , 𝑆' = 𝑠'

= 𝑃 𝑆"#$ = 𝑠%| 𝑆" = 𝑠" , 𝐴" = 𝑎"

Non-Markovian examples
• Robot dynamics (hard)
• Quantum physics
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A Finite or Infinite Horizon For Decision Making

• Finite Horizon (nonstationary optimal policy)
• A fixed time N after which nothing matters, the game is over
• 𝑈+ 𝑠,, 𝑠-, … , 𝑠./0 = 𝑈+ 𝑠,, 𝑠-, … , 𝑠. , for all 𝑘 > 0
• the optimal action in a given state could change over time

(opportunities are limited)

• Infinite Horizon (stationary optimal policy)
• With no fixed time limit, why behaving differently in the 

same state at different times?
• The optimal action depends only on the current state (a 

simpler problem)

Utility Over Time, or a utility function on environment histories, 𝑈# 𝑠$, 𝑠%, … , 𝑠&
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How to Calculate the Utility of State Sequences

• Attribute: A state 𝑠! of the state sequence 𝑠", 𝑠#, s$, … ,

• Assumption on Stationary Preference
• The agent’s preferences between state sequences are stationary
• If two state sequences 𝑠,, 𝑠-, s1, … , and 𝑠,2 , 𝑠-2 , 𝑠12 , … , begin with the same state (i.e., 
𝑠, = 𝑠,2 ), then the two sequences should be preference-ordered the same way as the 
sequences 𝑠-, s1, … , and 𝑠-2 , 𝑠12 , … ,

• Additive rewards for the utility of a state sequence
• 𝑈+ 𝑠,, 𝑠-, s1, … , = 𝑅 𝑠, + 𝑅 𝑠- + 𝑅 𝑠1 +⋯
• Just like the path cost functions in heuristic search algorithms

Using multi-attribute utility theory with outcomes characterized by two or more attributes
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Discounted Rewards

• How to discount?
• Each time we descend a level, we multiply in the 

discount factor once, i.e., 𝛾 ∈ [0, 1]

• Why discount?
• Think of it as a gamma chance of ending the 

process at every step
• Also helps our algorithms converge

• Example: discount of 0.5
• 𝑈+ 1, 2, 3 = 1 + 0.5×2 + 0.51×3
• 𝑈+ 1, 2, 3 < 𝑈+ 3, 2, 1

𝑈% 𝑠", 𝑠#, s$, … , = 𝑅 𝑠" + 𝛾𝑅 𝑠# + 𝛾$𝑅 𝑠$ +⋯
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What if the Game Lasts Forever?  

• With discounted rewards, the utility of an infinite sequence is finite
• If 𝛾 < 1 and rewards are bounded by ±𝑅345, we have
• 𝑈+ 𝑠,, 𝑠-, s1, … , = ∑67,8 𝛾6𝑅 𝑠6 ≤ ∑67,8 𝛾6𝑅345 =

9!"#
-:;

• Optimal Quantities
• The value (utility) of a state 𝑠:

• 𝑉∗ 𝑠 = expected utility starting in s and acting optimally
• The value (utility) of a q-state 𝑠, 𝑎 :

• 𝑄∗ 𝑠, 𝑎 = expected utility starting out having taken action 𝑎 from state 𝑠 and acting optimally
• The optimal policy:

• 𝜋∗ 𝑠 = optimal action from state 𝑠

Do we get infinite rewards?
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How to Compare Policies

• Assumption
• The agent is in some initial state 𝑠, and a particular policy 𝜋 to be executed
• Define 𝑆6 (a random variable) to be the state the agent reaches at time 𝑡, i.e., 𝑆6 = 𝑠
• The probability distribution over state sequences 𝑆-, 𝑆1, . . . , is determined by the initial 

state 𝑠, the policy 𝜋, and the transition model for the environment.

• Define the Expected Utility

• Finding the Optimal Policy (when 𝑠 is the starting state)

By comparing the expected utilities obtained when executing them
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𝑈( 𝑠 = 𝐸 >
")'

*

𝛾"𝑅 𝑠"

𝜋+∗ = argmax(𝑈( 𝑠
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Maximum Expected Utility

• Notice the differences 
• 𝑅 𝑠 is the “short term” reward for being in 𝑠, 
• 𝑈 𝑠 is the “long term” total reward from 𝑠 onward.

• The principle of Maximum Expected Utility

Choose the action that maximizes the expected utility of the subsequent state
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Notice that the utilities are higher for 
states closer to the +1 exit, because fewer 
steps are required to reach the exit.

𝜋+∗ = argmax!∈. + >
+!
𝑃 𝑠% | 𝑠, 𝑎 𝑈 𝑠′
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Value Iteration
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The Bellman Equation for Utilities

• The utility of a state is the immediate reward for that state plus the expected 
discounted utility of the next state, assuming that the agent chooses the optimal 
action.

• Bellman equation

A direct relationship between the utility of a state and the utility of its neighbors
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𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈. +

>
+!
𝑃 𝑠%| 𝑠, 𝑎 𝑈 𝑠′

Which action is the best solution?
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Nonlinearity of the Bellman Equations

• Solving 𝑛 equations with 𝑛 unknown utilities of the states
• 𝑛 possible states
• 𝑛 Bellman equations for each state
• Non-linear “max” operation

• Iterative Approach for a solution

The Bellman equation is the basis of the value iteration algorithm for solving MDPs.
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𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈. +

>
+!
𝑃 𝑠%| 𝑠, 𝑎 𝑈 𝑠′
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The Value Iteration Algorithm
for calculating utilities of states
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Terminal Condition
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The Grid World Example
evolution of the utilities of selected states using value iteration
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Contraction

• A function of one argument that, 
• when applied to two different inputs in turn, 
• produces two output values that are “closer together,” 
• by at least some constant factor, than the original inputs

• The Bellman update is a contraction by a factor of 𝛾 on the space of utility vectors
• value iteration always converges to a unique solution of the Bellman equations whenever 𝛾 < 1

Why value iteration eventually converges to a unique set of solutions of the Bellman equations?
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10    - 4    =   6

/2

5     - 2    =   3

/2

/2

1.5

?

Approaching a fixed point in limit

an operator max norm
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The Rate of Convergence

• Property of the utilities of all states

• Then, the maximum initial error

• Suppose we run for 𝑁 iterations to 
reach an error of at most 𝜖.
• Because the error is reduced by 

at least 𝛾 each time

Convergence of Value Iteration
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What the Agent Really Cares About?

• Suppose that after 𝑖 iterations of value iteration, 
• the agent has an estimate 𝑈H of the true utility 𝑈 and 
• obtains the Maximum Expected Utility policy 𝜋H based on one-step look-ahead using 𝑈H

• Will the resulting behavior be nearly as good as the optimal behavior?
• YES

• 𝑈I$ 𝑠 is the utility obtained if 𝜋H is executed starting in 𝑠
• Policy loss 𝑈I$ − 𝑈 is the most the agent can lose 

by executing 𝜋H instead of the optimal policy 𝜋∗

How well it will do if it makes its decisions on the basis of this utility function?
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Thank you~
songcy@sustech.edu.cn
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Bionic Design & Learning Lab
@ SIR Group 仿生设计与学习实验室

Room 606
7 Innovation Park
南科创园7栋606室
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