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An Example of Grid World

A maze-like problem with an agent in a grid and walls blocking the agent’s paths

* Stochastic Motion: Actions do not always go as planned
* 80% of the time, intended actions occur as planned
* 10% of the time, turning left/right to the intended action
* A collision with a wall results in no movement

* Reward Mechanism: received at each time step
* Two terminal states with (BIG) reward +1 and -1
 All other states have a (LIVING) reward of —0.04

* The Goal

» Maximize the sum of rewards
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Grid World Actions

Deterministic Motion vs. Stochastic Movement

100%

80%

Planned action to go UP

Same goal as before i & 3 4
e Ifall actions occur as planned
« 0.8° =0.32768
* Ifnot, but still made the goal
« 0.8x0.1* = 0.00008 (one small chance)
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Detfine a Markov Decision Process

A fully observable, stochastic environment with a Markovian transition model and additive rewards

A finite set of states s € S 4-tuple (S, A, Py, Rqa)
* With a start state s, and (maybe) a terminal state

A finite set of actions a € A
* A is the finite set of actions available from state s

* A transition function P(s’| s,a)
* Pr(s;41 = s'|s; = s,a; = a) is a probability
« Action a in state s at time t will lead to state s’ at time t + 1,

* A reward function R(s’'| s, a)

* Can be an immediate reward or an expected immediate reward
e After transitioning from state s to state s', due to action a
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Markovian Policy

What does a solution to the problem look like?

e “Markov”

* Action outcomes depend only on the current state (not history)
Andrey Markov

P(St11=5"| St = s¢A¢ = ap, Se-1 = Se—1, A1, -+, So = So) (1856-1922)

=P(St41 =S| Se =sp, Ac = ar)

* Policy m(s)
* A a solution that specifies what the agent should do for any state Non-Markovian examples
that the agent might reach (from start to goal) * Robot dynamics (hard)

* Quantum physics

* Optimal Policy i*
* A policy that yields the highest expected utility

* Explicit representation of the agent function

* a description of a simple reflex agent, .
computed from the information used for a utility-based agent
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A Finite or Infinite Horizon For Decision Making

Utility Over Time, or a utility function on environment histories, Uy (|Sg, S1, ---» Sp])

* Finite Horizon (nonstationary optimal policy)
* A fixed time N after which nothing matters, the game is over
* Un([sg,S1, > Sy+xl) = Un(So, 51, ..., Sy]), forall k > 0

* the optimal action 1n a given state could change over time
(opportunities are limited)

* Infinite Horizon (stationary optimal policy)

* With no fixed time limit, why behaving differently in the
same state at different times?

* The optimal action depends only on the current state (a
simpler problem)
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How to Calculate the Utility of State Sequences

Using multi-attribute utility theory with outcomes characterized by two or more attributes

* Attribute: A state s; of the state sequence [sg, S, So, -, |

* Assumption on Stationary Preference
* The agent’s preferences between state sequences are stationary

e If two state sequences [Sg, S1, Sy, ..., | and [Sg, S1, S5, ..., | begin with the same state (i.e.,
So = Sp), then the two sequences should be preference-ordered the same way as the
sequences [Sq, Sy, ..., ] and [sq, S5, ..., |

* Additive rewards for the utility of a state sequence
* Uh([50181; S2) 1]) — R(SO) + R(Sl) + R(SZ) T e
* Just like the path cost functions in heuristic search algorithms
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Discounted Rewards

U, ([Sg,S1,Sp, ., ]) = R(sg) + YR(sy) + Y°R(sy) + -+

* How to discount?
* Each time we descend a level, we multiply in the N\ / o
v\ 1 -

discount factor once, i.e., y € [0, 1]

* Why discount?

» Think of it as a gamma chance of ending the
process at every step

* Also helps our algorithms converge .

%

* Example: discount of 0.5
 U,([1,2,3]) = 1+ 0.5%2 + 0.52x3

« Uy(11,2,3])) < UL(]3,2,1]) _
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What 1f the Game Lasts Forever?

Do we get infinite rewards?

* With discounted rewards, the utility of an infinite sequence is finite
* [fy < 1 and rewards are bounded by £R,;,;,, We have

o 0 Rmax
* Uh([SO; S1,S2, )]) = Zt=0 th(St) = Zt=othmax - 1=y

* Optimal Quantities
* The value (utility) of a state s:
* V*(s) = expected utility starting in s and acting optimally
 The value (utility) of a g-state (s, a):
* Q*(s,a) = expected utility starting out having taken action a from state s and acting optimally
* The optimal policy:

» m*(s) = optimal action from state s
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How to Compare Policies

By comparing the expected utilities obtained when executing them

* Assumption

* The agent is in some initial state s, and a particular policy m to be executed
* Define S; (a random variable) to be the state the agent reaches at time ¢, 1.e., Sy = s

* The probability distribution over state sequences Sq, So, ..., 1s determined by the initial
state s, the policy m, and the transition model for the environment.

* Define the Expected Utility

U™(s) =E

> VR
t=0

* Finding the Optimal Policy (when s 1s the starting state)

my = argmax, U™ (s)
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Maximum Expected Utility

Choose the action that maximizes the expected utility of the subsequent state

* Notice the differences

* R(s) is the “short term” reward for being in s, 3 | 0812 | 0868 | 0918 | | +]1
* U(s) is the “long term” total reward from s onward.

2 0.762 0.660 —1

* The principle of Maximum Expected Utility 1 | o705 | 0655 | 0611 | o0.388

s = argmaXgea(s) z P(s"|s,a)U(s") 1 2 3 4
SI

Notice that the utilities are higher for
states closer to the +1 exit, because fewer [
steps are required to reach the exit.
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Value Iteration
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The Bellman Equation for Utilities

A direct relationship between the utility of a state and the utility of its neighbors

* The utility of a state 1s the immediate reward for that state plus the expected
discounted utility of the next state, assuming that the agent chooses the optimal
action.

0.812 0.868 0.918 + 1

 Bellman equation U(s)=R(s)+vy arélAa()g) Z P(s'| s,a) U(s") ]

U(1,1) = —0.04 + v max| 0.8U(1,2) +0.1U(2,1) + 0.1U(1, 1) (up) 2 | 0762 0.660 -1
0.9U(1,1) +0.1U(1,2), (Left)
0.9U(1,1) +0.1U(2,1), (Down)
0.8U(2,1) +0.1U(1,2) + 0.1U(1,1)].  (Right)

1 0.705 0.655 0.611 0.388

Which action is the best solution?
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Nonlinearity of the Bellman Equations

The Bellman equation is the basis of the value iteration algorithm for solving MDPs.

* Solving n equations with n unknown utilities of the states

* 1 possible states U(s) = R(s) +y max ZP(S’I 5,a) U(s)
* n Bellman equations for each state WA &

* Non-linear “max” operation

3 0.812 0.868 0.918 + 1

* [terative Approach for a solution
2 0.762 0.660 -1
Uii1(s) < R(s) +~ max P(s"|s,a)U;(s") .

acA(s) =

1 0.705 0.655 0.611 0.388
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The Value Iteration Algorithm

for calculating utilities of states

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’| s, a),
rewards R(s), discount ~y
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
0, the maximum change in the utility of any state in an iteration

repeat
U—U";6—0
for each state sin S do

U'ls]— R(s) + ~ mizc) N P(s'|s,a) Uls]
ac S ,

i |U/[s] — Uls]| > 6theno—|U'[s] — Uls|
I until 6 < €(1 — ) /v |<— Terminal Condition
return U
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The Grid World Example

evolution of the utilities of selected states using value iteration

Utility estimates
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Contraction

Why value iteration eventually converges to a unique set of solutions of the Bellman equations?

* A function of one argument that, 10— 4 =6
* when applied to two different inputs in turn, 2
* produces two output values that are “closer together,” > -2 =3
* by at least some constant factor, than the original inputs ” 15
an OPQI’CIIOF max norm N o
Uit1 < BU; U] = max |U(s) |

Approaching a fixed point in limit
|BU; = BUj|| < v ||U; = U]

* The Bellman update is a contraction by a factor of y on the space of utility vectors
* value iteration always converges to a unique solution of the Bellman equations whenever y < 1
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The Rate of Convergence

Convergence of Value Iteration

* Property of the utilities of all states le+07 00001
Uh([307 51,52, .- ]) - Z /YtR(St) < Z 'YtRmax = max/(1 - ’7) le+06 ¢=0.001 -------1
=0 t=0 ¢c=0.01 ---------
e Then, the maximum initial error 100000 ¢ =01 e

||UO - UH < 2R1nax/(1 _ 7) 10000

1000

* Suppose we run for N iterations to

[terations required

reach an error of at most €. 100 A
* Because the error 1s reduced by ‘ o
at least y each time 1 ] -
YN 2R /(1 =) < e 0.50.550.60.650.70.750.8 0.850.90.95 1
L N = [tog( /el 1 — 1))/ los(1/7)] Discount factor y

wwwwwwwwwwwwwwwwwww
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What the Agent Really Cares About?

How well it will do if it makes its decisions on the basis of this utility function?

* Suppose that after i iterations of value 1teration,
* the agent has an estimate U; of the true utility U and
* obtains the Maximum Expected Utility policy m; based on one-step look-ahead using U;

* Will the resulting behavior be nearly as good as the optimal behavior?
* YES

. Ui = U]
Max error
2 0.8 Policy loss --------
« U™i(s) is the utility obtained if 7; is executed starting in s < U — U]
. : . 2 0.6
* Policy loss ||[U™ — U|| is the most the agent can lose g
by executing m; instead of the optimal policy * 5 041
§ 0.2
0 v v = v v
0 2 4 6 8 10 12 14
AncoraSIR.com Number of iterations
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Thank you~
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