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Regularization in General
Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
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Regularization of a mismatch
• Data generation: almost never have access to the 

true data generation process
• Measured by test error, to be reduced ultimately when 

dealing with new inputs

• Model representation: not sure if our model family 
covers the data generation or not
• Measured by training error, can be minimized by 

exploiting the data, not the purpose

• The problem can be extremely complicated
• Image, audio, text, etc.
• Reduce the test error at the expense of increasing 

the training error
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Regularization in General
Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
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Variance dominates
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measured by 
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Overfitting

Bias dominates

Underfitting

A Suitable
Representation

(a large, deep, regularized model)

Regularization of a mismatch
• Data generation: almost never have access to the 

true data generation process

• Model representation: not sure if our model family 
covers the data generation or not

• More memorization capacity naturally tends to overfit
• Limited memorization capacity won’t be able to learn 

the mapping, causing underfitting

• The best fitting model is a large model that has been 
regularized appropriately
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Training, Validation, and Test Dataset

• Make sure that your cross-validation and 
test set come from the same distribution 
as well as that they accurately reflect 
data that we expect to receive in the 
future

• dev and test sets should be simply large 
enough to give us high confidence in the 
performance of our model.

• (Common) Small dataset: 60:20:20
• (Very) Big dataset: 98:1:1

It is a good practice to divide our dataset into three parts to reproduce the real conditions as much as possible 
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Traing set: the data our mode learns from
Dev set: track our progress and draw conclusions to optimise the model
Test set: use at the end of the training process to evaluate the performance 
of our model
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Data Preprocessing

Mean subtraction
• Subtracting the mean across every individual 

feature in the data
Normalization
• Normalizing the data dimensions so that they are 

of approximately the same scale. 
• One is to divide each dimension by its standard 

deviation, once it has been zero-centered. 
• Another is to normalize each dimension so that the 

min and max along the dimension is -1 and 1
respectively. 

PCA and Whitening 
• In this process, the data is first centered as 

described above. 
• Then, we can compute the covariance matrix that 

tells us about the correlation structure in the data

How to preprocess image data?
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Batch Normalization

• Common practice of setting up the initial weights (small but not destructive)
• Small random numbers => 𝑊 = 0.01 ∗ 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑛(𝐷, 𝐻)

• Setup the neurons to be all random and unique in the beginning, so they will compute distinct updates and integrate themselves 
as diverse parts of the full network

• 𝑟𝑎𝑛𝑑𝑛 samples from a zero mean, unit standard deviation gaussian
• Any problem with backpropagation?

• How to properly initializing neural networks?
• Batch Normalization

• When used with mini-batches in stochastic gradient training, each mini-batch 
produces estimates of the mean and variance of each activation

• Fully Connected Layer => BatchNorm Layer => Non-linear Activation
• Doing preprocessing at every layer of the network, 

but integrated into the network itself in a differentiable manner.

Forcing the activations throughout a network to take on a unit gaussian distribution at the beginning of the training
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https://arxiv.org/pdf/1502.03167.pdf
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Reducing the Network’s Size

• Reduce the size of the model
• the number of learnable parameters in the model (the model’s capacity)
• (the number of layers + the number of units per layer)

• Deep learning models tend to be good at fitting to the training data, 
• but the real challenge is generalization, not fitting

The simplest way to prevent overfitting
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Overfitting occurs 
when a model with high 
capacity fts the noise in 
the data instead of the 
(assumed) underlying 
relationship

Larger Neural 
Networks can 
represent more 
complicated 
functions
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To Find an Appropriate Model Size 

• Start with relatively few layers and parameters
• Increase the size of the layers or add new layers 
• Until you see diminishing returns with regard to validation loss.

A General Workflow
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10.1038/nature14539
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A Few Regularization Methods
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Norm Penalties as Constrained Optimization

• Intuition: Occam’s razor
• The simplest solution is most likely the right one—the one that makes fewer 

assumptions

• Formulation: A simple model is always preferred
• A model where the distribution of parameter values has less entropy (or a 

model with fewer parameters)

• Method: Constrain the network complexity
• Forcing its weights to take only small values
• Adding a cost associated with having large weights to the loss function of the 

network

Weight Regularization
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Norm Penalties as Constrained Optimization

• Weight Regularization
• L1 regularization: 𝑅 𝑊 = ∑!∑" 𝑊!,"

• The cost added is proportional to the absolute value of the weight coefficients
• L2 regularization: 𝑅 𝑊 = ∑!∑"𝑊!,"

$

• The cost added is proportional to the square of the value of the weight coefficients

Weight Regularization
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Data loss
Model predictions should 

match training data

Regularization
Prevent the model from doing 
too well on training data

+ as strength of 
Regularization
(hyperparameter)

Elastic Net (L1+L2)
• 𝑅 𝑊 = ∑!∑" 𝛽𝑊!,"

$ + 𝑊!,"
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Dataset Augmentation

• We are always limited by the amount of data available for generalization
• Why Images?
• high dimensional 
• include an enormous variety of factors, many of which can be easily simulated

Create fake data and add it to the training set, particularly effective for object recognition
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https://blog.keras.io/building-
powerful-image-classification-
models-using-very-little-
data.html
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Dataset Augmentation
Create fake data and add it to the training set, particularly effective for object recognition
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Horizontal Shift

Vertical Shift Flip with H/V Shift

Random Zoom (Noise)

Brightness Shift (Noise)Rotation Shift

https://machinelearningmastery.com/how-to-configure-image-data-
augmentation-when-training-deep-learning-neural-networks/
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Multi-Task Learning

• A common situation where
• the tasks share a common input 
• but involve different target random variables

• The underlying assumption 
• there exists a common pool of factors that explain the 

variations in the input x, 
• while each task is associated with a subset of these factors

Improve generalization by pooling the examples arising out of several tasks.
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Task-specific
parameters

Generic parameters, 
shared across all the tasks

https://arxiv.org/pdf/1609.07088.pdf
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Early Stopping

• We can obtain a model with better 
validation set error (and thus, hopefully 
better test set error) 
• By returning to the parameter setting at the 

point in time with the lowest validation set 
error.

• Every time the error on the validation set 
improves, we store a copy of the model 
parameters

• As a very efficient hyperparameter 
selection algorithm
• The number of training steps is just another 

hyperparameter

Due to its simplicity and effectiveness, it is probably the most commonly used form of regularization in deep learning
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Learning curves showing how 
the negative log-likelihood loss changes over time 

(epochs: the number of training iterations over the dataset)

the training objective decreases consistently
over time, but the validation set average loss 
eventually begins to increase again
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Dropout

• The dropout rate
• The fraction of the features that are zeroed out; 
• Usually set between 0.2 and 0.5.

• Dropout improves the performance of neural 
networks on supervised learning tasks significantly

Randomly drop units (along with their connections) from the neural network during training
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http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Optimization for Deep Models
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Optimization in General

• A Design Challenge with Indirect Optimzation 

• Accuracy, precision or recall …
• How well our model solves a given problem?
• Things we really care about

• Sum of Squared Error, Maximum-Likelihood …
• Optimizing a different cost function 𝐽 𝜃 and 

hope that minimizing its value will improve 
metric we care about

• Things we are actually computing

Optimization is a process of searching for parameters that minimize or maximize our functions
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Advanced algorithms are usually needed 
to find a minimum of non-convex cost functions

Points where function takes a 
minimum value, but only in a 

given region

Plateaus where the cost 
function is almost constant 

(the gradient is almost zeroed 
in all directions making it 

impossible to escape)
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Mini-batch Gradient Descent

Vectorization: handling many training examples at once
Mini-batches: further split the dataset for iterative training

Gradient descent: takes longer to process with a smoother path
Mini-bach gradient descent: much faster but also noisy

Improve the efficiency of gradient processing

Lecture 08 Network Tuning I

Stochastic Gradient Descent is also an effective alternative (GD is K=1, Overfit if K=N)
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Stochastic Gradient Descent
In practice, it is necessary to gradually decrease the learning rate over time
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𝒘 in our case

Introduces a source of 
noise that does not 
vanish even when we 
arrive at a minimum.

In practice, it is common to decay the learning rate linearly until iteration 𝜏:

𝜖! = 1 − 𝛼 𝜖% + 𝛼𝜖& 𝛼 =
𝑘
𝜏

After iteration 𝜏 , it is common to leave 𝜖 constant.

The “art” of choosing a learning rate
• by trial and error
• monitor learning curves that plot the objective 

function as a function of time. 
• 𝜖!: it is usually best to monitor the first several 

iterations and use a learning rate that is higher 
than the best-performing learning rate at this time, 
but not so high that it causes severe instability.
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Exponentially Weighted Averages
Averaging many previous values in order to become independent of local fluctuations and focus on the overall trend
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• 𝑣! = 𝛽𝑣!"# + 1 − 𝛽 𝜃!
• 𝛽: control the range of values to be averaged

• Intuition:
• Can be considered as a weighted sum of 1/ 1 − 𝛽

samples before the current time instance
• If 𝛽 = 0.9, 𝑣" average the previous #

#$%
= 10 days

• If 𝛽 = 0.98, 𝑣" average the previous #
#$%

= 500 days

• Highly effective when applied to deep learning

• 𝑣% = 0 (initialize)
• 𝑣' = 𝛽𝑣% + 1 − 𝛽 𝜃' = 1 − 𝛽 𝜃'
• 𝑣$ = 𝛽𝑣' + 1 − 𝛽 𝜃$ = 1 − 𝛽 𝛽𝜃' + 𝜃$
• 𝑣( = 𝛽𝑣$ + 1 − 𝛽 𝜃( = 1 − 𝛽 𝛽$𝜃' + 𝛽𝜃$ + 𝜃(
• ⋯
• 𝑣) = 𝛽𝑣)*' + 1 − 𝛽 𝜃) =

'
'/ '*,

∑-.') 𝛽)*-𝜃-
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Gradient Descent 
with Momentum

Compute an Exponentially Weighted Average of 
your gradients, and then use that gradient to update 
your weights instead

One iteration 𝑡

• Compute 𝑑𝑊 and 𝑑𝑏 on the current mini-batch

• 𝑣%& = 𝛽𝑣%& + 1 − 𝛽 0 𝑑𝑊

• 𝑣%' = 𝛽𝑣%' + 1 − 𝛽 0 𝑑𝑏

• 𝑊 = 𝑊 − 𝛼𝑣%&
• 𝑏 = 𝑏 − 𝛼𝑣%'
• 𝜃 𝑎𝑠 𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑊 𝑎𝑛𝑑 𝑏

To gain momentum, so that even if the local 
gradient is zero, we still move forward relying 

on the previously calculated values

Lecture 08 Network Tuning I

Contours: the cost 
function that we 
optimize

Standard gradient descent vs. GD with momentum

Special care 
while approaching the minimum: 

when to stop where
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Classify Toy 2-D data with a Neural Network
https://cs.stanford.edu/people/karpathy/convnetjs/
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Thank you~
songcy@sustech.edu.cn

Bionic Design & Learning Lab
@ SIR Group 仿生设计与学习实验室

Room 606
7 Innovation Park
南科创园7栋606室

mailto:songcy@sustech.edu.cn

