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present situation
• So far, reinforcement learning research for legged robots is mainly limited 

to simulation, and only few and comparably simple examples have been 
deployed on real systems.

what we do？

• In the present work, we report a new method for train_x0002_ing a neural 
network policy in simulation and transfer_x0002_ring it to a state-of-the-art 
legged system, thereby weleverage fast, automated, and cost-effective data 
gener_x0002_ation schemes.
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 Legged systems have the potential to perform any physical activity humans and 
animals are capable of.

Big dog by Boston Dynamics Cheetah by MIT SpotMini by Boston Dynamics
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Big dog by Boston 
Dynamics
 large scale，generate smoke 
and noise
limiting  indoor environment

Cheetah by MIT
has not been thoroughly 
evaluated with respect to battery 
life, turn_x0002_ing capability, 
mechanical robustness, and 
outdoor applicability

SpotMini by Boston Dynamics
the complicated actuator design
 increases cost and compromises
the power output of the robot.
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Designing control algorithms for these hardware platforms
remains exceptionally challenging.
1. high-dimensional and non-smooth systems  cause uncertainties in the dynamics 
2 lengthy design process and arduous parameter tuning.

Popular approach
controlling physical legged systems is modular controller design

Example
Robust Quadrupedal Locomotion on Sloped Terrains:
A Linear Policy Approach
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Trajectory optimization approaches have been
proposed to mitigate the aforementioned problems.

planning :uses rigid-body dynamics and numerical optimization to 
compute an optimal path thatthe robot should follow to reach the 
desired goal.

tracking:follow the path
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Data-driven methods
By learning effective controllers directly from experience. Direct application
of learning methods to physical legged systems is therefore complicated and
has only been demonstrated on relatively simple and stable platforms or in a
limited context
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Reason:
The discrepancy between simulation and the real system
in terms of dynamics and perception

Solution：
 There are two general approaches to bridging the reality gap
improve simulation fidelity or  accept the imperfections of simulation
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ANY-mal robot
ANYmal has a much larger leg length relative to footprint,  therefore more 
difficult tocontrol
Solution:
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1. Modeling rigid-body dynamics

2. Modeling the actuation

3. Reinforcement learning

4. Application
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Method

① Intermittent contacts?

② Inertial properties of links?
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1. Modeling rigid-body dynamics

• Build a sumulation platform

using rigid body contact solver

robustifying the policy by training with 30 different 
ANYmal models with stochastically sampled 
inertial properties
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Method

① Hard to model?

② States of actuators is not easily observable?
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2.    Modeling the actuation 

×SEA
√ supervised learning

• One Assumption
• Simple parameterized controller
• MLP    

Actuator 
networkbuffer

Estimated 
torque

Internal states
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Trust Region Policy Optimization(TRPO)
• The agent selects actions according to a stochastic policy

• Find a policy that maximizes the discounted sum of rewards over an infinite 
horizon

Reinforcement Learning
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where γ ∈ (0, 1) is the discount factor, τ(π) is the trajectory distribution under policy π, 
rt is the scalar reward,  
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Trust Region Policy Optimization(TRPO)
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Surrogate function
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Proposed Approach / Algorithm / Method

1-5 slides

Describe algorithm or framework (pseudocode and flowcharts can help)
• What is the optimization objective?
• What are the core technical innovations of the algorithm/framework?

Implementation details should be left out here, but may be discussed later if its 
relevant for limitations / experiments

Further explaination of the title with supporting evidence
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iteration algorithm
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natural policy gradien

Presenter Name & Date of Presentation Title of Your Presentation 18



AncoraSIR.com

Method

Observation and action
• The joint state history was essential in training a locomotion policy
Policy training details
• MLP with two hidden layers, with 256 and 128 units each and tanh 

nonlinearity
• Bounded activation functions, such as tanh, yield less aggres_x0002_sive 

trajectories
Deployment on the physical system

Application
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• We first qualitatively evaluate this learned locomotion policy by giving 
random commands using a joystick. Additionally, the robot is disturbed during 
the experiment by multiple external pushes to the main body.

• The result show experiment without a single failure, which manifests the 
robustness of the learned policy.
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Next, we quantitatively evaluate this learned locomotion
policy by driving the robot with randomly-sampled commands
The base velocity plot is shown in fig. S1. The average linear velocity error 
was 0.143 m/s and the average yaw rate error was 0.174 rad/s.
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• We now compare the learned controller to the best performing 
existing locomotion controller available for ANYmal
Movie S3 illustrates the experiments for both the
learned policy and the model-based policy.

• The control performance was also evaluated and compared in
forward running. To this end, we sent a step input of four different
speed commands (0.25, 0.5, 0.75, and 1.0 m/s) for 4.5 s each.
The results, including a comparison to the prior method , are shown in Fig. 2.

https://youtu.be/aqVPyIgZ15M

https://youtu.be/aqVPyIgZ15M
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 Figure 2B shows the velocity tracking accuracy of the policy both in 
simulation and on the real robot. Note that the oscillation of the
observed velocity around the commanded one is a well-known
phenomenon in legged systems, including humans [43]. In terms
of average velocity, the learned policy has an error of 2.2 % on
the real robot, 1.1 % higher than in a simulation.
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Figure 2C, 2D, and 2E compare the performance of the learned controller 
to the approach of Bellicoso et al. in terms of accuracy and efficiency



AncoraSIR.com

Experiment 4

Presenter Name & Date of Presentation Title of Your Presentation 25

Next, we compare our method to ablated alternatives: training with an 
ideal actuator model and training with an analytical actuator model.
We observed violent shaking of the limbs, probably due to not
accounting for various delays properly. Even though the analytical model 
contains multiple delay sources that are tuned using real data, accurately 
modeling all delay sources is complicated when the actuator has limited 
bandwidth
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High-speed locomotion

The current speed record on ANYmal is 1.2 m/s and has been set using the flying trot
gait . Although this may not seem high, it is 50 % faster thanthe previous speed record
 on the platform . Such velocities are challenging to reach via conventional controller 
design while respecting all limits of the hardware.
We have used the presented methodology to train a high speed locomotion controller. 
This controller was tested on the physical system by slowly increasing the commanded
 velocity to 1.6 m/s and lowering it to zero after 10 meters. The forward speed and joint 
velocities/torques are shown in Fig. 3.
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Fig. 3. Evaluation of the 
trained policy for high-
speed loco_x0002_motion. 
(A) Forward velocity of 
ANYmal. (B) Joint 
velocities.(C) Joint 
torques. (D) Gait pattern. 
The abbreviations stand 
for
Left Front (LF) leg, 
Right Front (RF) leg, 
Left Hind (LH) leg,and 
Right Hind (RH) leg, 
respectively
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Even state-of-the-art methods cannot limit the actuation during planning due to limitations
 of their planning module. Modules in their controllers are not aware of the constraints in 
the later stages and, consequently,their outputs may not be realizable on the physical system
in Fig. 3D is distinct from the one exhibited by the command-conditioned locomotion 
controller. It is close to a flying trot but with significantly longer flight phase and asymmetric
 flight phase duration.. This is not a commonly observed gait pattern in nature and we suspect
 that it is among multiple near-optimal solution modes for this task.
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Recovery from a fall

Using the presented methodology, we trained a recovery policy and tested
 it on the real robot.
In all tests, ANYmal successfully flipped itself upright. An example motion 
is shown in Fig. 4. These agile and dynamic behaviors demonstrate that our 
approach is able to learn performant controllers for tasks that are difficult or
impossible to address with prior methods.
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Recovery from a fall



AncoraSIR.com

Discussion 

Outstanding: 

• A more economical and convenient way to control.
• The simulation and learning framework used can be applied to any rigid body 

system, making it more versatile.

In summary, such a framework can be applied to the development of complex 
functions for rigid-body robots in more complex and challenging 
environments
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Limitations and future work 

• Model accuracy: Despite efforts to accurately model the physical components and drive 
systems of the robot, discrepancies may still exist between the model and the actual system. 
This can lead to poor performance and safety issues if not properly addressed.

• Time and resource intensive: Modeling the physical components and drive systems of a 
robot can be a time-consuming and resource-intensive process, especially for complex robots 
like ANYmal. This can lead to longer and more costly development times.

• Difficulty in modeling certain components: Certain physical components, such as deformed 
objects or assemblies with complex geometry, may be difficult to model accurately using 
CAD software. This can lead to errors in the model and affect performance.
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Limitations and future work 

• Complexity of drive systems: Certain types of drive systems, such as hydraulic drives 
with coupled dynamics, may be difficult to model accurately using drive networks. This 
can lead to performance degradation and safety issues.

• Limited adaptability: Models are often based on assumptions and may not be able to 
adapt to changes in robot design or environment. This may limit the flexibility of the 
robot and require further modeling work in the future.

• A single neural network trained in a single training session exhibits a single aspect of 
behavior that cannot be generalized across multiple tasks. Introducing hierarchical 
structures in policy networks can remedy this and is a promising avenue for future work.
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Summary

• Main convern: How to construct a more general and easy-tuning controller of a 
robot.

• Limits: Complicate models result in time consuming and lots of constrains
• State of art: The most novelty of this method is the use of a four-step approach 

that integrates physical parameter identification, actuator modeling, and policy 
training to create a control policy for a physical system. 

• This method enables the creation of control policies that can operate directly on 
the physical system, improving the accuracy and effectiveness of the control 
while reducing the need for calibration or fine-tuning of the control policy.
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