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Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot
be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning,
which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far,
reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably
simple examples have been deployed on real systems. The primary reason is that training with real robots,
particularly with dynamically balancing systems, is complicated and expensive. In the present work, we intro-
duce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged
system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is ap-
plied to the ANYmal robot, a sophisticated medium-dog–sized quadrupedal system. Using policies trained in
simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with
prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity
commands, running faster than before, and recovering from falling even in complex configurations.

INTRODUCTION
Legged robotic systems are attractive alternatives to tracked/wheeled
robots for applications with rough terrain and complex cluttered
environments. The freedom to choose contact points with the envi-
ronment enables them to overcome obstacles comparable to their leg
length.With such capabilities, legged robots may one day rescue people
in forests and mountains, climb stairs to carry payloads in construction
sites, inspect unstructured underground tunnels, and explore other
planets. Legged systems have the potential to perform any physical
activity humans and animals are capable of.

A variety of legged systems are beingdeveloped in the effort to take us
closer to this vision of the future. BostonDynamics introduced a series of
robots equipped with hydraulic actuators (1, 2). These have advantages
in operation because they are powered by conventional fuel with high
energy density. However, systems of this type cannot be scaled down
(usually >40 kg) and generate smoke andnoise, limiting them to outdoor
environments. Another family of legged systems is equippedwith electric
actuators,which are better suited to indoor environments.Massachusetts
Institute ofTechnology’s (MIT)Cheetah (3) is one of themost promising
legged systems of this kind. It is a fast, efficient, and powerful quadru-
pedal robot designed with advanced actuation technology. However, it
is a research platform optimized mainly for speed and has not been
thoroughly evaluated with respect to battery life, turning capability,
mechanical robustness, and outdoor applicability. Boston Dynamics’
newly introduced robot, SpotMini, is also driven by electric actuators
and is designed for both indoor and outdoor applications. Although de-
tails have not been disclosed, public demonstrations andmedia releases
(4) are convincing evidence of its applicability to real-world operation.
The platform used in this work, ANYmal (5), is another promising
quadrupedal robot powered by electric actuators. Its bioinspired actua-
tor designmakes it robust against impactwhile allowing accurate torque
measurement at the joints. However, the complicated actuator design
increases cost and compromises the power output of the robot.

Designing control algorithms for these hardware platforms re-
mains exceptionally challenging. From the control perspective, these
robots are high-dimensional and nonsmooth systems with many
physical constraints. The contact points change over the course of
time and depending on the maneuver being executed and, therefore,
cannot be prespecified. Analytical models of the robots are often in-
accurate and cause uncertainties in the dynamics. A complex sensor
suite and multiple layers of software bring noise and delays to infor-
mation transfer. Conventional control theories are often insufficient
to deal with these problems effectively. Specialized control methods
developed to tackle this complex problem typically require a lengthy
design process and arduous parameter tuning.

The most popular approach to controlling physical legged systems
is modular controller design. This method breaks the control problem
down into smaller submodules that are largely decoupled and there-
fore easier to manage. Eachmodule is based on template dynamics (6)
or heuristics and generates reference values for the next module. For
example, some popular approaches (7–10) use a template-dynamics-
based control module that approximates the robot as a point mass
with a massless limb to compute the next foothold position. Given
the foothold positions, the next module computes a parameterized
trajectory for the foot to follow. The last module tracks the trajec-
tory with a simple proportional-integral-derivative (PID) controller.
Because the outputs of these modules are physical quantities, such as
body height or foot trajectory, each module can be individually
hand-tuned. Approaches of this type have achieved impressive results.
Kalakrishnan et al. (11) demonstrated robust locomotion over chal-
lenging terrainwith a quadrupedal robot: To date, this remains the state
of the art for rough-terrain locomotion. Recently, Bellicoso et al. (12)
demonstrated dynamic gaits, smooth transitions between them, and
agile outdoor locomotion with a similar controller design. Yet, despite
their attractive properties, modular designs have limitations. First,
limited detail in the modeling constrains the model’s accuracy. This
inherent drawback is typically mitigated by limiting the operational
state domain of each module to a small region where the approxima-
tions are valid. In practice, such constraints lead to substantial compro-
mises in performance, such as slow acceleration, fixed upright pose of
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the body, and limited velocity of the limbs. Second, the design of
modular controllers is extremely laborious. Highly trained engineers
spend months to develop a controller and to arduously hand-tune
the control parameters per module for every new robot or even for
every newmaneuver. For example, running and climbing controllers
of this kind can have markedly different architectures and are de-
signed and tuned separately.

More recently, trajectory optimization approaches have been pro-
posed to mitigate the aforementioned problems. In these methods,
the controller is separated into two modules: planning and tracking.
The planning module uses rigid-body dynamics and numerical op-
timization to compute an optimal path that the robot should follow
to reach the desired goal. The tracking module is then used to follow
the path. In general, trajectory optimization for a complex rigid-
body model with many unspecified contact points is beyond the capa-
bilities of current optimization techniques. Therefore, in practice, a
series of approximations are used to reduce complexity. Somemethods
approximate the contact dynamics to be smooth (13, 14), making the
dynamics differentiable. Notably, Neunert et al. (13) demonstrated
that suchmethods can be used to control a physical quadrupedal robot.
Other methods (15) prespecify the contact timings and solve for
sections of trajectories where the dynamics remain smooth. A few
methods aim to solve this problem with little to no approximation
(16, 17). These methods can discover a gait pattern (i.e., contact
sequence) with hard contact models and have demonstrated auto-
matic motion generation for two-dimensional (2D) robotic systems,
but, like any other trajectory optimization approach, the possible con-
tact points are specified a priori. Although more automated than
modular designs, the existing optimization methods perform worse
than state-of-the-art modular controllers. The primary issue is that
numerical trajectory optimization remains challenging, requires
tuning, and inmany cases, can produce suboptimal solutions. Besides,
optimization has to be performed at execution time on the robot,
making these methods computationally expensive. This problem is
often solved by reducing precision or running the optimization on a
powerful external machine, but both solutions introduce their own
limitations. Furthermore, the system still consists of two independent
modules that do not adapt to each other’s performance characteristics.
This necessitates hand-tuning of the tracker; yet, accurately tracking
fast motion by an underactuated system with many unexpected
contacts is nearly impossible.

Data-driven methods, such as reinforcement learning (RL), prom-
ise to overcome the limitations of prior model-based approaches by
learning effective controllers directly from experience. The idea of
RL is to collect data by trial and error and automatically tune the con-
troller to optimize the given cost (or reward) function representing the
task. This process is fully automated and can optimize the controller
end to end, from sensor readings to low-level control signals, thereby
allowing for highly agile and efficient controllers. On the down side,
RL typically requires prohibitively long interaction with the system to
learn complex skills—typically weeks or months of real-time execu-
tion (18). Moreover, over the course of training, the controller may
exhibit sudden and chaotic behavior, leading to logistical complica-
tions and safety concerns. Direct application of learning methods to
physical legged systems is therefore complicated and has only been
demonstrated on relatively simple and stable platforms (19) or in a
limited context (20).

Because of the difficulties of training on physical systems, most
advanced applications of RL to legged locomotion are restricted to

simulation. Recent innovations in RL make it possible to train loco-
motion policies for complex legged models. Levine and Koltun (21)
combined learning and trajectory optimization to train a locomotion
controller for a simulated 2D walker. Schulman et al. (22) trained a
locomotion policy for a similar 2Dwalker with an actor-criticmethod.
More recent work obtained full 3D locomotion policies (23–26). In
these papers, animated characters achieve remarkable motor skills
in simulation.

Given the achievements of RL in simulated environments, a natural
question is whether these learned policies can be deployed on physical
systems.Unfortunately, such simulation-to-reality transfer is hindered
by the reality gap—the discrepancy between simulation and the real
system in terms of dynamics and perception. There are two general
approaches to bridging the reality gap. The first is to improve simu-
lation fidelity either analytically or in a data-driven way; the latter is
also known as system identification (27–32). The second approach is
to accept the imperfections of simulation and aim to make the con-
troller robust to variations in system properties, thereby allowing
for better transfer. This robustness can be achieved by randomizing
various aspects of the simulation: using a stochastic policy (33), ran-
domizing the dynamics (34–37), adding noise to the observations
(38), and perturbing the system with random disturbances. Both
approaches lead to improved transfer; however, the former is cum-
bersome and often impossible, and the latter can compromise the
performance of the policy. Therefore, in practice, both are typically
used in conjunction. For instance, the recent work of Tan et al. (35)
demonstrated successful sim-to-real transfer of locomotion policies
on a quadrupedal system called Minitaur via the use of an accurate
analytical actuator model and dynamic randomization. Although it
achieved impressive results, the method of Tan et al. (35) crucially
depended on accurate analytical modeling of the actuators, which is
possible for direct-drive actuators (as used in Minitaur) but not for
more complex actuators, such as servomotors, series elastic actuators
(SEAs), and hydraulic cylinders, which are commonly used in larger
legged systems.

In this work, we developed a practical methodology for autono-
mously learning and transferring agile and dynamic motor skills for
complex and large legged systems, such as the ANYmal robot (5).
Compared with the robots used in (35), ANYmal has a much larger
leg length relative to footprint, making it more dynamic, less statically
stable, and therefore more difficult to control. In addition, it features
12 SEAs, which are difficult to control and for which sufficiently ac-
curate analytical models do not exist. Gehring et al. (39) have at-
tempted analytical modeling of an SEA, but, as we will show, their
model is insufficiently accurate for training a high-performance loco-
motion controller.

Our approach is summarized in Fig. 1. Our key insight on the
simulation side is that efficiency and realism can be achieved by
combining classical models representing well-known articulated sys-
tem and contact dynamics with learning methods that can handle
complex actuation (Fig. 1, steps 1 and 2). The rigid links of ANYmal,
connected through high-quality ball bearings, closely resemble an
idealized multibody system that can be modeled with well-known
physical principles (40). However, this analytical model does not in-
clude the set of mechanisms that map the actuator commands to the
generalized forces acting on the rigid-body system: the actuator dynam-
ics, the delays in control signals introduced by multiple hardware and
software layers, the low-level controller dynamics, and compliance/
damping at the joints. Because these mechanisms are nearly impossible
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to model accurately, we learned the corresponding mapping in an end-
to-end manner—from commanded actions to the resulting torques—
with a deep network. We learned this “actuator net” on the physical
system via self-supervised learning and used it in the simulation loop
to model each of the 12 joints of ANYmal. Crucially, the full hybrid
simulator, including a rigid-body simulation and the actuator nets,
runs at nearly 500,000 time steps per second, which allows the simu-
lation to run roughly a thousand times faster than real time. About
half of the run time was used to evaluate the actuator nets, and the
remaining computations were efficiently performed via our in-house
simulator, which exploits the fast contact solver of Hwangbo et al.
(41), efficient recursive algorithms for computing dynamic proper-
ties of articulated systems (composite rigid-body algorithm and re-
cursive Newton-Euler algorithm) (40), and a fast collision-detection
library (42). Thanks to efficient software implementations, we did
not need any special computing hardware, such as powerful servers
with multiple central processing units (CPUs) and graphics process-
ing units (GPUs), for training. All training sessions presented in this
paper were done on a personal computer with one CPU and one
GPU, and none lasted more than 11 hours.

We used the hybrid simulator for training controllers via RL (Fig. 1,
step 3). The controller is represented by a multilayer perceptron (MLP)
that took as input the history of the robot’s states and produced as
output the joint position target. Specifying different reward functions
for RL yielded controllers for different tasks of interest.

The trained controller was then directly deployed on the physical
system (Fig. 1, step 4). Unlike the existing model-based control
approaches, our proposed method is computationally efficient at
run time. Inference of the simple network used in this work took
25 ms on a single CPU thread, which corresponds to about 0.1% of
the available onboard computational resources on the robot used in
the experiments. This is in contrast tomodel-based control approaches
that often require an external computer to operate at sufficient fre-
quency (13, 15). Also, by simply swapping the network parameter
set, the learned controller manifested vastly different behaviors. Al-
though these behaviors were trained separately, they share the same
code base: Only the high-level task description changed depending
on the behavior. In contrast, most of the existing controllers are
task-specific and have to be developed nearly from scratch for every
new maneuver.

We applied the presented methodology to learning several complex
motor skills that were deployed on the physical quadruped. First, the
controller enabled theANYmal robot to follow base velocity commands
more accurately and energy-efficiently than the best previously exist-
ing controller running on the same hardware. Second, the controller
made the robot run faster, breaking the previous speed record of
ANYmal by 25%. The controller could operate at the limits of the
hardware and push performance to the maximum. Third, we learned
a controller for dynamic recovery from a fall. This maneuver is excep-
tionally challenging for existing methods because it involves multiple

Fig. 1. Creating a control policy. In the first step, we identify the physical parameters of the robot and estimate uncertainties in the identification. In the second step,
we train an actuator net that models complex actuator/software dynamics. In the third step, we train a control policy using the models produced in the first two steps.
In the fourth step, we deploy the trained policy directly on the physical system.
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unspecified internal and external contacts. It requires fine coordina-
tion of actions across all limbs and must use momentum to dynami-
cally flip the robot. To the best of our knowledge, such recovery skill
has not been achieved on a quadruped of comparable complexity.

RESULTS
Movie 1 summarizes the results and the method of this work. In the
following subsections, we describe the results in detail.

Command-conditioned locomotion
In most practical scenarios, the motion of a robot is guided by high-
level navigation commands, such as the desired direction and the
speed of motion. These commands can be provided, for instance,
by an upper-level planning algorithm or by a user via teleoperation.
Using our method, we trained a locomotion policy that could follow
such commands at runtime, adapting the gait as needed, with no prior
knowledge of command sequence and timing. A command consists of
three components: forward velocity, lateral velocity, and yaw rate.

We first qualitatively evaluated this learned locomotion policy by
giving random commands using a joystick. In addition, the robot was
disturbed during the experiment by multiple external pushes to the
main body. The resulting behavior is shown in movie S1. The video
shows about 40 s of robust command following. We also tested the
policy for 5 min without a single failure, which manifests the robust-
ness of the learned policy.

The trained policy performed stably within the command distribu-
tion that it was trained on, with any random combination of the
command velocities. Although the forward command velocity was
sampled fromU(−1, 1)m/s during training, the trained policy reached
1.2 m/s of measured forward velocity reliably when the forward
command velocity was set slightly higher (1.23 m/s), and the other
command velocities were set to zero.

Next, we quantitatively evaluated this learned locomotion policy by
driving the robot with randomly sampled commands. The commands
were sampled as described in section S2. The robot received a new
command every 2 s, and the command was held constant in between.
The test was performed for 30 s, and a total of 15 random transitions
were performed, including the initial transition from zero velocity.
The base velocity plot is shown in fig. S1. The average linear velocity
error was 0.143 m/s, and the average yaw rate error was 0.174 rad/s.

We next compared the learned controller with the best-performing
existing locomotion controller available for ANYmal (12). For this
experiment, we used a flying trot gait pattern (trot with full flight
phase) because this is the only gait that stably reached 1.0m/s forward
velocity. We used the same velocity command profile, which resulted
in the base velocity shown in fig. S2. The average linear velocity error

was 0.231 m/s, and the average yaw rate error was 0.278 rad/s. Given
the same command profile, the tracking error of the model-based
controller is about 95% higher than our learned controller with re-
spect to linear velocity and about 60% higher with respect to yaw rate.
In addition, our learned controller used less torque (8.23 N·m versus
11.7 N·m) and less mechanical power (78.1 W versus 97.3 W) on av-
erage.Movie S2 illustrates the experiments for both the learned policy
and the model-based policy.

The control performance was also evaluated and compared in
forward running. To this end, we sent a step input of four different
speed commands (0.25, 0.5, 0.75, and 1.0 m/s) for 4.5 s each. The
results, including a comparison to the prior method (12), are shown
in Fig. 2. Figure 2A shows the flying trot pattern discovered by the
learned controller. Note that this flight phase disappeared for low-
velocity commands, andANYmal displayed walking trot as shown in
movie S1. Even without specifying the gait pattern, the learned policy
manifested trot, a gait pattern that is commonly observed in quad-
rupedal animals. Figure 2B shows the velocity tracking accuracy of
the policy both in simulation and on the real robot. Note that the
oscillation of the observed velocity around the commanded one is
a well-known phenomenon in legged systems, including humans
(43). In terms of average velocity, the learned policy has an error
of 2.2% on the real robot, 1.1% higher than in a simulation.

Figure 2 (C to E) compares the performance of the learned con-
troller with the approach of Bellicoso et al. (12) in terms of accuracy
and efficiency. We used two gaits from (12) for the comparison:
flying trot, the only gait that can achieve 1 m/s, and dynamic lateral
walk, the most efficient gait. First, we compared the velocity error at
various commanded velocities in Fig. 2C. The learned controller is
more accurate than the prior controller for all commanded velocities:
by a factor of 1.5 to 2.5 compared with the dynamic lateral walk and
by a factor of 5 to 7 compared with the flying trot, depending on the
speed. Figure 2D shows themechanical power output as a function of
the measured velocity. The learned controller performed similarly to
the dynamic lateral walk andmore efficiently than the flying trot by a
factor of 1.2 to 2.5, depending on the speed. Last, Fig. 2E plots the
average measured torque magnitude against the measured velocity.
The learned controller is more efficient in this respect than both prior
gaits, using 23 to 36% less torque depending on the velocity. This large
improvement in efficiency is possible because the learned controller
walks with a nominal knee posture that is 10° to 15° straighter than
prior gaits. The nominal posture cannot be adjusted to this level in
the approach of Bellicoso et al. because this would markedly increase
the rate of failure (falling).

Next, we compared our method with ablated alternatives: training
with an ideal actuator model and training with an analytical actuator
model. The ideal actuator model assumes that all controllers and
hardware inside the actuator have infinite bandwidth and zero latency.
The analytical model uses the actual controller code running on the
actuator in conjunction with identified dynamic parameters from ex-
periments and computer-aided design (CAD) tools. Some parameters,
such as latency, damping, and friction, were hand-tuned to increase
the accuracy of predicted torque in relation to data obtained from
experiments. The policy training procedure for eachmethodwas iden-
tical to ours.

Neither alternative method could make a single step without falling.
The resulting motions are shown in movies S3 and S4. We observed
violent shaking of the limbs, probably due to not accounting for various
delays properly. Although the analyticalmodel containedmultiple delay

Movie 1. Summary of the results and the method.
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sources that were tuned using real data, accurately modeling all delay
sources is complicated when the actuator has limited bandwidth. SEA
mechanisms generate amplitude-dependent mechanical response time,
and manual tuning of latency parameters becomes challenging. We
tuned the analytical model formore than a week withoutmuch success.

High-speed locomotion
In the previous section, we evaluated the generality and robustness of
the learned controller. Here, we focus on operating close to the limits
of the hardware to reach the highest possible speed. The notion of
high speed is, in general, hardware dependent. There are some legged
robots that are exceptional in this regard. Park et al. (44) demonstrated
full 3D legged locomotion at over 5.0 m/s with the MIT Cheetah. The
Boston Dynamics WildCat has been reported to reach 8.5 m/s (45).
These robots are designed to run as fast as possible, whereas ANYmal
is designed to be robust, reliable, and versatile. The current speed
record on ANYmal is 1.2 m/s and was set using the flying trot gait

(12). Although this may not seem high, it is 50% faster than the pre-
vious speed record on the platform (39). Such velocities are challeng-
ing to reach via conventional controller design while respecting all
limits of the hardware.

We used the presented methodology to train a high-speed loco-
motion controller. This controller was tested on the physical system
by slowly increasing the commanded velocity to 1.6 m/s and lower-
ing it to zero after 10 m. The forward speed and joint velocities/
torques are shown in Fig. 3. ANYmal reached 1.58m/s in simulation
and 1.5 m/s on the physical system when the command was set to
1.6 m/s. All speed values were computed by averaging over at least
three gait cycles. The controller used both the maximum torque
(40N·m) and themaximum joint velocities (12 rad/s) on the physical
system (Fig. 3, B and C). This shows that the learned policy can ex-
ploit the full capacity of the hardware to achieve the goal. For most
existing methods, planning while accounting for the limitations of
the hardware is very challenging, and executing the plan on the real

Fig. 2. Quantitative evaluation of the learned locomotion controller. (A) The discovered gait pattern for 1.0 m/s forward velocity command. LF, left front leg; RF,
right front leg; LH, left hind leg; RH, right hind leg. (B) The accuracy of the base velocity tracking with our approach. (C to E) Comparison of the learned controller
against the best existing controller, in terms of power efficiency, velocity error, and torque magnitude, given forward velocity commands of 0.25, 0.5, 0.75, and 1.0 m/s.
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system reliably is harder still. Even state-of-the-art methods (12, 46)
cannot limit the actuation during planning owing to limitations of
their planning module. Modules in their controllers are not aware of
the constraints in the later stages; consequently, their outputs may not
be realizable on the physical system.

The gait pattern produced by our learned high-speed controller
(Fig. 3D) is distinct from the one exhibited by the command-
conditioned locomotion controller. It is close to a flying trot but with
notably longer flight phase and asymmetric flight phase duration. This
is not a commonly observed gait pattern in nature, andwe suspect that
it is among multiple near-optimal solution modes for this task. The
behavior of the policy is illustrated in movie S5.

Recovery from a fall
Legged systems change contact points as theymove and are thus prone
to falling. If a legged robot falls and cannot autonomously restore itself
to an upright configuration, then a human operator must intervene.
Autonomous recovery after a fall is thus highly desirable. One possi-
bility is to represent recovery behaviors as well-tuned joint trajectories
that can simply be replayed—an approach that has been taken in some
commercial systems (47). Such trajectories have required laborious
manual tuning. They also take a very long time to execute because they
do not take dynamics into account in the motion plan or the control.
Some robots are designed such that recovery is either unnecessary or
trivial (48, 49). However, such a design may not be possible for bigger
and more complex machines. Morimoto et al. (50) demonstrated that
a standing-up motion can be learned on a real robot. However, a
simple three-link chain was used for demonstration, and the method
has not been scaled to realistic systems.

Fast and flexible recovery after a fall, as seen in animals, requires
dynamic motion with multiple unspecified contact points. The col-
lision model for our quadruped is highly complicated: It consists of
41 collision bodies, such as boxes, cylinders, and spheres (Fig. 1,
step 1). Planning a feasible trajectory for such a model is extreme-
ly complicated. Even simulating such a system is challenging be-
cause there are many internal contacts. We used the approach of
Hwangbo et al. (41) owing to its ability to handle such simulation
in numerically stable fashion.

Using the presentedmethodology, we trained a recovery policy and
tested it on the real robot. We placed ANYmal in nine random con-
figurations and activated the controller as shown in movie S6. Many
challenging configurations were tested, including a nearly entirely
upside-down configuration (pose 8) and more complex contact sce-
narios where ANYmal was resting on its own legs (poses 2 and 4). In
all tests, ANYmal successfully flipped itself upright. An example mo-
tion is shown in Fig. 4. These agile and dynamic behaviors demon-
strate that our approach is able to learn performant controllers for
tasks that are difficult or impossible to address with prior methods.

DISCUSSION
The learning-based control approach presented in this paper achieved
a high level of locomotion skill based purely on training in simulation
and without tedious tuning on the physical robot. The system achieved
more precise and energy-efficientmotions than the prior state of the art.
It outperformed the previous speed record by 25% and learned to
consistently restore the robot to an operational configuration by dy-
namically rolling over its body.

Existing controllers are created by engineers. A model with ade-
quate complexity has to be designed, and a control strategy has to
be developed, tested, and tuned. This process typically takes months
and has to be repeated for every distinct maneuver. In contrast, the
simulation and learning framework used in this work are applicable
to any rigid-body system. For applications to new tasks, our method

Fig. 3. Evaluation of the trained policy for high-speed locomotion. (A) Forward
velocity of ANYmal. (B) Joint velocities. (C) Joint torques. (D) Gait pattern.
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only requires a task description, which consists of the cost function,
the initial state distribution, and randomization.

In our method, learned actuator dynamics effectively reduce the
reality gap, whereas stochastic modeling guides the policy to be suf-
ficiently conservative. The recovery task was successful on the very
first attempt on the hardware. We then further improved the success
rate to 100% by relaxing the joint velocity constraints. The results
presented here were obtained on the second day of experiments on
the physical system. In contrast, because of many model abstraction
layers, which are necessary to make the computation tractable, prior
methods often cannot exploit a sophisticated actuatormodel in control-
ling a complex legged system. Consequently, they often compromise
performance or rely on well-tuned low-level controllers. For example,
low-level controllers (e.g., the tracking controllers and the whole-body
controller) have to be extensively tuned in the tested model-based con-
troller (12) to mitigate imperfections of the actuators.

The learned policies are also robust to changes in hardware, such as
those caused by wear and tear. All control policies have been tested for
more than 3months on the real robotwithout anymodification.Within
this period, the robot was heavily used withmany controllers, including
the ones presented here. Many hardware changes were introduced as
well: different robot configurations, which roughly contribute 2.0 kg
to the total weight, and a new drivewhich has a spring three times stiffer
than the original one. All of the policies presented in this paper have
performed robustly even under such conditions.

In terms of computational cost, our approach has an advantage
over priormethods. Although it requires several hours of trainingwith
an ordinary desktop PC, the inference on the robot requires less than
25 ms using a single CPU thread. Our method shifts nearly all com-
putational costs to the training phase, where we can use external
computational resources. Prior controllers often require two orders
of magnitude more onboard computation. These demanding require-
ments limit the level of sophistication and thus the overall performance
of the controller.

Using a policy network that directly outputs a joint-level command
brings another advantage to our method. In contrast to many prior

methods that have numerical issues at singular configurations of
the robot, our policies can be evaluated at any configuration. Conse-
quently, our method is free from using ad hoc methods (e.g., branch-
ing conditions) in resolving such issues.

Although our approach allows for largely automated discovery of
performant policies, it still requires some human expertise. A cost
function and an initial state distribution have to be designed and tuned
for each task. For a person with good understanding of both the task
and RL, this process takes about 2 days for the locomotion policies
presented in this work. Although this is still substantial amount of
time, all the necessary tuning happens in simulation. Therefore, the
development time will keep decreasing as computational technology
evolves. In contrast, the prior controllers that use model abstractions
inevitably require more development time and often extensive tuning
on the real systems. Developing the recovery policy took about a week
largely owing to the fact that some safety concerns (i.e., high impacts,
fast swing legs, collisions with fragile components, etc.) are not very
intuitive to embed in a cost function.Achieving a stand-up behaviorwas
as simple as other tasks. However, for achieving the safe and robust be-
haviors that are demonstrated in this work, the cost function had to be
tweaked several times. Longer development time was also attributed to
the fact that it was trained by a person who had no previous experience
with any real robot.

To train policies for a new robot, necessary modeling effort has to
be made. This includes rigid-body modeling using the CAD model
and actuator modeling using an actuator network. The former is often
automated by modern CAD software, and the latter is easy if all nec-
essary software/hardware infrastructures (e.g., logging, regression, and
torquemeasurements) are in place. If not, it will also take a substantial
portion of the development time. In addition, there are a few actuation
types that manifest coupled dynamics (e.g., hydraulic actuators sharing
a single accumulator). Learning actuators independently might not re-
sult in a sufficient accuracy for these systems. With a good understand-
ing on the actuator dynamics, an appropriate history configuration
can be estimated a priori and tuned further with respect to the val-
idation error. In contrast, constructing an analytical actuator model

Fig. 4. A learned recovery controller deployed on the real robot. The learned policy successfully recovers from a random initial configuration in less than 3 s.
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for ANYmal takes at least 3 weeks even if there is a very similar model
studied in literature (39). The model also has many more parameters,
many of which cannot be accurately obtained from measurements or
the data sheet. Consequently, it requires more tuning than construct-
ing an actuator network.

Another limitation of our approach was observed over the course
of this study. A single neural network trained in one session manifests
single-faceted behaviors that do not generalize across multiple tasks.
Introducing hierarchical structure in the policy network can remedy
this and is a promising avenue for future work (25).

The presented approach is not fundamentally limited to known
and simple environments. We see the results presented in this paper

as a step toward comprehensive locomotion controllers for resilient
and versatile legged robots.

MATERIALS AND METHODS
This section describes in detail the simulation environment, the train-
ing process, and the deployment on the physical system. An overview
of our training method is shown in Fig. 5. The training loop proceeds
as follows: The rigid-body simulator outputs the next state of the robot
given the joint torques and the current state. The joint velocity and the
position error are buffered in a joint state history within a finite time
window. The control policy, implemented by anMLPwith two hidden

layers, maps the observation of the
current state and the joint state his-
tory to the joint position targets. Last,
the actuator network maps the joint
state history and the joint position
targets to 12 joint torque values,
and the loop continues. In what fol-
lows, we describe each component
in detail.

Modeling rigid-body dynamics
To efficiently train a complex policy
within a reasonable time and trans-
fer it to the real world, we needed a
simulation platform that is both fast
and accurate. One of the biggest
challenges with walking robots is
the dynamics at intermittent con-
tacts. To this end, we used the rigid-
body contact solver presented in our
previous work (41). This contact
solver uses a hard contact model
that fully respects the Coulomb
friction cone constraint. Thismodel-
ing technique can accurately capture
the true dynamics of a set of rigid
bodies making hard contacts with
their environment. The solver is
not only accurate but also fast, gen-
erating about 900,000 time steps per
second for the simulated quadruped
on an ordinary desktop machine.

The inertial properties of the
links were estimated from the CAD
model.Weexpectedup to about 20%
error in the estimation due to un-
modeled cabling and electronics. To
account for such modeling inaccu-
racies, we robustified the policy by
training with 30 different ANYmal
modelswith stochastically sampled
inertial properties. The center of
mass positions, the masses of links,
and joint positions were random-
ized by adding a noise sampled
from U(−2, 2) cm, U(−15, 15)%,
and U(−2, 2) cm, respectively.

Fig. 5. Training control policies in simulation. The policy network maps the current observation and the joint state
history to the joint position targets. The actuator network maps the joint state history to the joint torque, which is used
in rigid-body simulation. The state of the robot consists of the generalized coordinate q and the generalized velocity u. The
state of a joint consists of the joint velocity

:
f and the joint position error, which is the current position f subtracted from

the joint position target f*.
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Modeling the actuation
Actuators are an essential part of legged systems. Fast, powerful,
lightweight, and high-accuracy actuators typically translate to dynamic,
versatile, and agile robots. Most legged systems are driven by hydraulic
actuators (51) or electric motors with gears (3), and some even include
dedicated mechanical compliance (5, 52). These actuators have one
thing in common: They are extremely difficult to model accurately.
Their dynamics involve nonlinear and nonsmooth dissipation, and
they contain cascaded feedback loops and a number of internal states
that are not even directly observable. Gehring et al. (39) extensively
studied SEA actuator modeling. The model of Gehring et al. includes
nearly 100 parameters that have to be estimated from experiments or
assumed to be correct from data sheets. This process is error prone
and time consuming. In addition,manymanufacturers do not provide
sufficiently detailed descriptions of their products; consequently, an
analytical model may not be feasible.

To this end, we used supervised learning to obtain an action-to-
torque relationship that included all software and hardware dynam-
ics within one control loop. More precisely, we trained an actuator
network that output an estimated torque at the joints given a history
of position errors (the actual position subtracted from the commanded
position) and velocities. In this work, we assumed that the dynamics
of the actuators are independent to each other such thatwe could learn
a model for each actuator separately. This assumption might not be
valid for other types of actuation. For example, hydraulic actuators
with a single common accumulatormightmanifest coupled dynamics,
and a single large network, representing multiple actuators together,
might be more desirable.

The states of the actuators are only partially observable because the
internal states of the actuators (e.g., states of the internal controllers
and motor velocity) cannot be measured directly. We assumed that
the network could be trained to estimate the internal states given a
history of position errors and velocities, because otherwise the given
information is simply insufficient to control the robot adequately. The
actuator used in this work is revolute and radially symmetric, and the
absolute angular position is irrelevant given the position error.We use
a history consisting of the current state and two past states that cor-
respond to t − 0.01 and t − 0.02 s. Note that too-sparse input configu-
ration might not effectively capture the dynamics at high frequency
(>100Hz). This issuewas partiallymitigated by introducing a smooth-
ness cost term, which penalizes abrupt changes in the output of the
policy. Too-dense history can also have adverse effects: It is more
prone to overfitting and computationally more expensive. The length
of the history should be chosen such that it is sufficiently longer than
the sum of all communication delays and the mechanical response
time. In practice, the exact input configuration is tuned with respect
to the validation error. This tuning process often takes less than a day
because the network is very small.

To train the network, we collected a dataset consisting of joint po-
sition errors, joint velocities, and the torque.We used a simple param-
eterized controller that generates foot trajectories in the form of a sine
wave; the corresponding joint positions were computed using inverse
kinematics. The feet constantly made or broke a contact with the
ground during data collection so that the resulting trajectories roughly
mimicked the trajectories followed by a locomotion controller. To ob-
tain a rich set of data, we varied the amplitude (5 to 10 cm) and the
frequency (1 to 25 Hz) of the foot trajectories and disturbed the robot
manually during data collection. We found that the excitation must
cover a wide range of frequency spectra; otherwise, the trained model

generated unnatural oscillation even during the training phase. Data
collection took less than 4 min because the data could be collected, in
parallel, from the 12 identical actuators on ANYmal. Data were
collected at 400Hz; therefore, the resulting dataset containsmore than
a million samples. About 90% of the generated data were used for
training, and the rest were used for validation.

The actuator network is anMLPwith three hidden layers of 32 units
each (Fig. 5, actuator net box). After testing with two common smooth
and bounded activation functions—tanh and softsign (53)—we chose
the softsign activation function because it is computationally efficient
and provides a smooth mapping. Evaluating the actuator network for
all 12 joints took 12.2 ms with softsign and 31.6 ms with tanh. As shown
here, the tanh activation function resulted in a higher computational
cost and is therefore less preferred. The two activation functions re-
sulted in about the same validation error [0.7 to 0.8 N·m in root mean
square (RMS)]. The validation result with the softsign function is shown
in Fig. 6. The trained network nearly perfectly predicted the torque from
the validation data, whereas the ideal actuatormodel failed to produce a
reasonable prediction.Here, the ideal actuatormodel assumes that there
is no communication delay and that the actuator can generate any com-
manded torque instantly (i.e., infinite actuator bandwidth). The trained
model has an average error of 0.740 N·m on the validation set, which is
not far from the resolution of the torque measurement (0.2 N·m) and
much smaller than the error of the ideal actuator model (3.55 N·m). Its
prediction error on test data (i.e., collected using the trained locomotion
policies) is notably higher (0.966 N·m) but still far less than that of the
ideal model (5.74 N·m).

Reinforcement learning
We represent the control problem in discretized time. At every time
step t, the agent obtains an observation ot ∈O, performs an action
at ∈A, and achieves a scalar reward rt ∈ R. We refer to reward and
cost interchangeably, with cost being the negative of the reward. We
denote byOt= 〈ot, ot − 1,…, ot − h〉 the tuple of recent observations. The
agent selects actions according to a stochastic policy p(at|Ot), which is
a distribution over actions conditioned on the recent observations.
The aim is to find a policy that maximizes the discounted sum of re-
wards over an infinite horizon:

p* ¼ arg max
p

EtðpÞ ∑
∞

t¼0
gtrt

� �
ð1Þ

where g ∈ (0, 1) is the discount factor, and t(p) is the trajectory
distribution under policy p (the distribution depends on both the pol-
icy and the environment dynamics). In our setting, the observations
are the measurements of robot states provided to the controller, the
actions are the position commands to the actuators, and the rewards
are specified so as to induce the behavior of interest.

A variety of RL algorithms can be applied to the specified policy
optimization problem. We chose Trust Region Policy Optimization
(TRPO) (22), a policy gradient algorithm that has been demonstrated
to learn locomotion policies in simulation (54). It requires almost no
parameter tuning; we used only the default parameters [as provided in
(22, 54)] for all learning sessions presented in this paper. We used a
fast custom implementation of the algorithm (55). This efficient im-
plementation and fast rigid-body simulation (41) allowed us to gener-
ate and process about a quarter of a billion state transitions in roughly
4 hours. A learning session terminates if the average performance of
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the policy does not improve by more than a task-specific threshold
within 300 TRPO iterations.

Observation and action
The observations in our method should be observable (i.e., can be
inferred frommeasurements) on the real robot and relevant for the task.
The joint angles, velocities, and body twists are all observable and highly
relevant. Measuring the body orientation is not straightforward be-
cause only two degrees of freedom in the orientation are observable
with an inertial measurement unit (IMU). The set of observable
degrees in the orientation is in bijection with S2, or with a unit vector,
which can be interpreted as the direction of the gravity vector expressed
in the IMU frame. We denote this unit vector as fg. The height of the
base is not observable, but we can estimate it from the leg kinematics,
assuming the terrain is flat. A simple height estimator based on a 1D
Kalman filter was implemented along with the existing state estima-
tion (56). However, this height estimator cannot be used when the ro-
bot is not on its feet, so we removed the height observation when
training for recovery from a fall. The whole observation at t = tk is

defined as ok ¼ 〈fg ; rz; v;w; f;
:
f;Q; ak�1;C〉, where rz, v, and w are

height, linear, and angular velocities of the base, f and
:
f are positions

and velocities of the joints,Q is a sparsely sampled joint state history,
ak−1 is the previous action, and C is the command. The joint state
history is sampled at t = tk − 0.01 s and t = tk − 0.002 s.

The joint state historywas essential in training a locomotion policy.
We hypothesize that this is due to the fact that it enables contact de-
tection. An alternative way to detect contacts is to use force sensors,
which give a reliable contact state estimate. However, such sensors in-
crease the weight of the end effectors and consequently lower the
energy efficiency of the robot. The exact history configuration was
found empirically by analyzing the final performance of the policy.

Our policy outputs low-impedance joint position commands, which
we find to be very effective in many tasks. Peng and van de Panne (57)
found that such a controller can outperform a torque controller in
both training speed and final control performance. Although there
is always a bijective map between them, the two action parameteri-
zations have different smoothness and thus different training diffi-
culty. In addition, a position policy has an advantage in training

Fig. 6. Validation of the learned actuator model. The measured torque and the predicted torque from the trained actuator model are shown. The “ideal model”
curve is computed assuming an ideal actuator (i.e., zero communication delay and zero mechanical response time) and is shown for comparison. (A) Validation set. Data
from (B) a command-conditioned policy experiment with 0.75 m/s forward command velocity and (C) its corresponding policy network output. Data from (D) a high-
speed locomotion policy experiment with 1.6 m/s forward command velocity and (E) its corresponding policy network output. Note that the measured ground truth in
(A) is nearly hidden because the predicted torque from the trained actuator network accurately matches the ground-truth measurements. Test data were collected at
one of the knee joints.
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because it starts as a standing controller, whereas a torque controller
initially creates many trajectories that result in falling. Thus, we use
the policy network as an impedance controller. Our network outputs
a single position reference, which is converted to torque using fixed
gains (kp = 50 N·m rad−1 and kd = 0.1 N·m rad−1 s−1) and zero target
velocity. The position gain is chosen to be roughly the nominal range of
torque (±30 N·m) divided by the nominal range of motion (±0.6 rad).
This ensures that the policy network has similar output range for torque
and position. The velocity gain is chosen to be sufficiently high to pre-
vent unwanted oscillation on the real robot. From our experience, the
final locomotion performance is robust against a small change in gains.
For instance, increasing the position gain to 80 N·m rad−1 does not no-
ticeably change the performance.

Note that the position policy we use here is different from position
controllers commonly used in robotics. Position controllers are some-
times limited in performance when the position reference is time in-
dexed, whichmeans that there is a higher-level controller that assumes
that the position plan will be followed at high accuracy. This is the
main reason that torque controllers have become popular in legged
robotics. However, as in many other RL literature, our control policy
is state indexed and does not suffer from the limitations of common
PD controllers. The policy is trained to foresee that position errors will
occur and even uses them to generate acceleration and interaction
forces. In addition, thanks to kinematic randomization, a trained pol-
icy does not solely rely on kinematics: The policy inevitably has to
learn to exert appropriate impulse on the environment for locomo-
tion. This makes our policy more robust because impulse-based con-
trol approaches are known to be more robust against system changes
and model inaccuracies (44).

Policy training details
The control policies presented in this work were trained only in
simulation. To train performant policies using only simulated data,
we followed both standard and problem-specific training proce-
dures. Here, we describe them in detail and explain the rationale be-
hind them.

Training control policies for locomotion have been demonstrated
multiple times in literature. (22, 24, 25). However, many of the trained
policies do not manifest natural motions, and it is highly questionable
whether they will work on physical systems. Some researchers have
noticed that naive methods cannot generate natural-looking and
energy-efficient locomotion behaviors (58). Low penalty on joint
torque and velocity results in unnaturalmotions, whereas high penalty
on them results in a standing behavior. The main reason for the
standing behavior is that such a behavior is already a good local
minimum when there is high penalty associated with motion.

We solved this problem by introducing a curriculum: Using a
curriculum, we shape the initial cost landscape such that the policy
is strongly attracted to a locomotion policy and then later polish the
motion to satisfy the other criteria. A simple curriculum was gener-
ated by modulating the coefficients of the cost terms and the distur-
bance via a multiplicative curriculum factor. We define a curriculum
factor that describes the progression of the curriculum: kc = k0 ∈ (0, 1)
corresponds to the start of the curriculum and kc = 1 corresponds to
the final difficulty level. The intermediate values are computed as
kc;jþ1 ← ðkc;jÞkd , where kd ∈ (0, 1) is the advance rate, which describes
how quickly the final difficulty level is reached, and j is the iteration
index of RL training. The sequence of curriculum factors is monoton-
ically increasing and asymptotically converging to 1 within the given

parameter intervals. We suspect that many other update rules adher-
ing to these criteria will result in similar learning performance. All of
cost terms are multiplied by this curriculum factor, except the cost
terms related to the objective (i.e., base velocity error cost in the
command-conditioned and high-speed locomotion task and base ori-
entation cost in recovery task). This way, the robot first learns how to
achieve the objective and then how to respect various constraints. This
technique is related to curriculum learning introduced by Bengio et al.
(59), which incrementally introduces samples of more difficulties. In-
stead of altering the samples, we alter the objective to control the
training difficulty. For all training sessions, we use k0 = 0.3 and kd =
0.997. The parameter k0 should be chosen to prevent the initial ten-
dency to stand still. It can be easily tuned by observing the first 100
iterations of the RL algorithm. The parameter kd is chosen such that
the curriculum factor almost reaches 1 (or ~0.9) at the end of training.
Although the required number iterations are not known a priori, there
are sufficient publications on RL applications (including this one) to
provide necessary insights to the users.

We tuned the discount factor g (Eq. 1) separately for each task
based on the qualitative performance of the trained controllers in
simulation. For training the command-conditioned controller and
the high-speed controller, we used g = 0.9988, which corresponds
to a half-life of 5.77 s. We also successfully trained almost equally
performant policies with a lower half-life (2 s), but they manifest a
less natural standing posture. For training the recovery controller, we
used g = 0.993, which corresponds to a half-life of 4.93 s. A sufficiently
high discount factor shows more natural standing posture owing to
the fact that it penalizes standing torque more than motion (torque,
joint velocities, and other quantities incurring due to motion). How-
ever, a too-high discount factor might result in a slow convergence, so
it should be tuned appropriately depending on the task. For training
command-conditioned and high-speed locomotion, TRPO finished
training in 9 days of simulated time, which corresponds to 4 hours
of computation in real time. For training for recovery from a fall,
TRPO took 79 days of simulated time, which corresponds to 11 hours
of computation in real time.

For command-conditioned and high-speed locomotion, we rep-
resent a command by three desired body velocity values: forward
velocity, lateral velocity, and the turning rate. During training,
the commands are sampled randomly from predefined intervals
(see tables S1 and S2 for details), and the cost defined in section S3
is used. The initial state of the robot is sampled either from a previous
trajectory or a random distribution, shown in table S3, with equal
probability. This initialization procedure generates data containing
complicated state transitions and robustifies the trained controller.
Each trajectory lasts 6 s unless the robot reaches a terminal state ear-
lier. There are two possibilities for termination: violating joint limits
and hitting the ground with the base. Upon termination, agent re-
ceives a cost of 1 and is reinitialized. The value of the termination
cost is not tuned: Because only the ratio between the cost coefficients
is important for the final performance, we tune other cost terms to
work with this terminal value.

For training recovery from a fall, the collision bodies of the
ANYmal model are randomized in size and position. Samples that
result in unrealistic internal collisions are removed. The cost function
and the initial state distribution are described in section S4 and fig. S3,
respectively. The special initialization method in section S4 is needed
to train for this task, because naive sampling often results in inter-
penetration and the dynamics become unrealistic. To this end, we
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dropped ANYmal from a height of 1.0 m with randomized orienta-
tions and joint positions, ran the simulation for 1.2 s, and used the
resulting state as initialization.

Another crucial detail is that joint velocities cannot be directly
measured on the real robot. Rather, they are computed by numeri-
cally differentiating the position signal, which results in noisy esti-
mates. We modeled this imperfection by injecting a strong additive
noise [U(−0.5, 0.5) rad/s] to the joint velocity measurements during
training. This way, we ensured that the learned policy is robust to in-
accurate velocity measurements. We also added noise during training
to the observed linear velocity [U(−0.08, 0.08) m/s] and angular veloc-
ity [U(−0.16, 0.16) m/s] of the base. The rest of the observations were
noise free. Removing velocities from the observation altogether led to
a complete failure to train, although in theory, the policy network
could infer velocities as finite differences of observed positions. We
explain this by the fact that nonconvexity of network training makes
appropriate input preprocessing important. For similar reasons, input
normalization is necessary in most learning procedures.

We implemented the policy with an MLP with two hidden layers,
with 256 and 128 units each and tanh nonlinearity (Fig. 5). We found
that the nonlinearity has a strong effect on performance on the physical
system. Performance of two trained policies with different activation
functions can be very different in the real world evenwhen they perform
similarly in simulation. Our explanation is that unbounded activation
functions, such as rectified linear unit, can degrade performance on the
real robot, because actions can have very high magnitude when the ro-
bot reaches states that were not visited during training. Bounded acti-
vation functions, such as tanh, yield less aggressive trajectories when
subjected to disturbances.We believe that this is true for softsign aswell,
but it was not tested in policy networks owing to an implementation
issue in our RL framework (55).

Deployment on the physical system
We used the ANYmal robot (5), shown in step 4 of Fig. 1, to demon-
strate the real-world applicability of ourmethod.ANYmal is a dog-sized
quadrupedal robot weighing about 32 kg. Each leg is about 55 cm long
and has three actuated degrees of freedom, namely, hip abduction/
adduction, hip flexion/extension, and knee flexion/extension.

ANYmal is equipped with 12 SEAs (60, 61). An SEA is composed of
an electric motor, a high gear ratio transmission, an elastic element, and
two rotary encoders to measure spring deflection and output position.
In this work, we used a joint-level PD controller with low feedback gains
on the joint-level actuator module of the ANYmal robot. The dynamics
of the actuators contain multiple components in succession, as follows.
First, the position command is converted to the desired torque using a
PD controller. Subsequently, the desired current is computed using a
PID controller from the desired torque. The desired current is then
converted to phase voltage using a field-oriented controller, which
produces the torque at the input of the transmission. The output of
the transmission is connected to an elastic element whose deflection fi-
nally generates torque at the joint (39). These highly complex dynamics
introducemany hidden internal states that we do not have direct access
to and complicate our control problem.

After acquiring a parameter set for a trained policy fromour hybrid
simulation, the deployment on the real system was straightforward. A
custom MLP implementation and the trained parameter set were
ported to the robot’s onboard PC. This network was evaluated at
200 Hz for command-conditioned/high-speed locomotion and at
100 Hz for recovery from a fall. We found that performance was un-

expectedly insensitive to the control rate. For example, the recovery
motion was trained at 20 Hz but performance was identical when
we increased the control rate up to 100 Hz. This was possible be-
cause the flip-up behaviors involve low joint velocities (mostly below
6 rad/s). More dynamic behaviors (e.g., locomotion) often require a
much higher control rate to have an adequate performance. A higher
frequency (100 Hz) was used for experiments because it made less
audible noise. Even at 100 Hz, evaluation of the network uses only
0.25% of the computation available on a single CPU core.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/26/eaau5872/DC1
Section S1. Nomenclature
Section S2. Random command sampling method used for evaluating the learned
command-conditioned controller
Section S3. Cost terms for training command-conditioned locomotion and high-speed
locomotion tasks
Section S4. Cost terms for training recovery from a fall
Fig. S1. Base velocity tracking performance of the learned controller while following
random commands.
Fig. S2. Base velocity tracking performance of the best existing method while following
random commands.
Fig. S3. Sampled initial states for training a recovery controller.
Table S1. Command distribution for training command-conditioned locomotion.
Table S2. Command distribution for training high-speed locomotion.
Table S3. Initial state distribution for training both the command-conditioned and high-speed
locomotion.
Movie S1. Locomotion policy trained with a learned actuator model.
Movie S2. Random command experiment.
Movie S3. Locomotion policy trained with an analytical actuator model.
Movie S4. Locomotion policy trained with an ideal actuator model.
Movie S5. Performance of a learned high-speed policy.
Movie S6. Performance of a learned recovery policy.
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