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More Than a Feeling: Learning to Grasp and Regrasp
Using Vision and Touch

Roberto Calandra , Andrew Owens, Dinesh Jayaraman , Justin Lin, Wenzhen Yuan, Jitendra Malik,
Edward H. Adelson, and Sergey Levine

Abstract—For humans, the process of grasping an object relies
heavily on rich tactile feedback. Most recent robotic grasping work,
however, has been based only on visual input, and thus cannot eas-
ily benefit from feedback after initiating contact. In this letter, we
investigate how a robot can learn to use tactile information to iter-
atively and efficiently adjust its grasp. To this end, we propose an
end-to-end action-conditional model that learns regrasping poli-
cies from raw visuo-tactile data. This model—a deep, multimodal
convolutional network—predicts the outcome of a candidate grasp
adjustment, and then executes a grasp by iteratively selecting the
most promising actions. Our approach requires neither calibration
of the tactile sensors nor any analytical modeling of contact forces,
thus reducing the engineering effort required to obtain efficient
grasping policies. We train our model with data from about 6450
grasping trials on a two-finger gripper equipped with GelSight
high-resolution tactile sensors on each finger. Across extensive ex-
periments, our approach outperforms a variety of baselines at 1)
estimating grasp adjustment outcomes, 2) selecting efficient grasp
adjustments for quick grasping, and 3) reducing the amount of
force applied at the fingers, while maintaining competitive perfor-
mance. Finally, we study the choices made by our model and show
that it has successfully acquired useful and interpretable grasping
behaviors.

Index Terms—Deep learning in robotics and automation, grasp-
ing, perception for grasping and manipulation, force and tactile
sensing.

I. INTRODUCTION

GRASPING is a deeply interactive task: we initiate con-
tact by reaching our fingers toward an object, adjust the

placement of our fingers, and balance contact forces as we lift.
During this process, the feedback provided by the sense of
touch is paramount, as demonstrated by human experiments [1].
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Fig. 1. We propose an action-conditional model that iteratively adjusts a
robot’s grasp based on raw visuo-tactile inputs.

Nonetheless, incorporating touch sensing into robotic grasping
has thus far proved challenging, due to hardware limitations
(e.g., sensor sensitivity and cost) and the difficulty of integrat-
ing tactile inputs into standard control schemes. Consequently,
the predominant input modalities currently used in the robotic
grasping literature are vision and depth.

However, vision does not easily permit the measurement of
and reaction to ongoing contact forces, thus significantly hinder-
ing the potential benefits of interaction. As a result, vision-based
grasping approaches have largely relied on selecting a grasp con-
figuration (location, orientation, and forces) in advance, before
making contact with the object.

In the quest for interactive grasping, we study how tactile
sensing can be integrated into a grasping system that can probe
an object and then reactively adjust its grasp to achieve the
highest chance of success. Our method is based on learning
an action-conditioned grasping model, trained end-to-end in a
self-supervised manner by using a robot to autonomously col-
lect grasp attempts. In contrast to prior self-supervised grasping
work [2], [3], however, our model incorporates rich touch sens-
ing from a pair of GelSight sensors (see Fig. 1). Incorporating
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tactile sensing into action-conditional models, however, is not
straightforward. The robot only receives tactile input intermit-
tently, when its fingers are in contact with the object and, since
each regrasp attempt can disturb the object position and pose,
the scene changes with each interaction. In contrast, grasping
methods that use vision typically do not interact repeatedly with
the object, but simply drive the arm toward a chosen grasp pose
and then attempt a single grasp.

Our contributions are as follows: (1) we introduce a new
multi-modal action-conditional model for grasping using vision
and touch; (2) we show that our model is effective at grasping
novel objects, in comparison to unconditional models and
vision-only variations; (3) we analyze the learned grasping pol-
icy and show that it produces interpretable and useful grasping
behaviors; (4) we demonstrate that our model permits explicit
constraints on contact forces, allowing us to command the robot
to “gently” grasp an object with significantly reduced force.
Since it incorporates raw visuo-tactile inputs, our approach
requires neither calibration of the tactile sensors, nor any analyt-
ical modeling of contact forces, hence significantly reducing the
engineering effort required to obtain efficient grasping policies.

II. RELATED WORK

A. Learning to Grasp

A significant body of work in robotics has studied analytic
grasping models, which use known or estimated models
of object geometry, environments, and robot grippers, and
which typically make use of manually defined grasping
metrics [4]–[6]. While these methods provide considerable
insight into the physical interactions in grasping, their actual
performance depends on how well the real-world system fits the
assumptions of the analytic model. Model misspecification and
unmodeled factors can substantially reduce their effectiveness.
As an alternative, data-driven approaches have sought to
predict grasp outcomes from human supervision [7], [8],
simulation [9]–[11], or autonomous robotic data collection [2],
[3], typically using visual or depth observations. Among these
works, the most related to ours is [3], which also proposes to
use an action-conditional model. However, these prior works
(with a few exceptions that we discuss below) do not consider
tactile sensing, focusing instead on vision and 3D geometry,
which afford a limited ability to reason about contact forces,
pressures, and compliance. Critically, most of these methods
rely on selecting grasp configurations in advance, before ever
coming into contact with the target object. In contrast, we show
that it is possible to exploit rich tactile feedback after contact to
iteratively adjust and improve robotic grasps. For an overview
of learning for robot grasping, we refer the reader to [12].

B. Tactile Sensors in Grasping

A variety of tactile sensors have been developed [13], mainly
measuring force and torque, or the pressure distribution over the
sensor. Multiple works [14]–[18] suggested the use of tactile
sensors to estimate grasp stability. While these works estimate
the stability of an ongoing grasp, we focus instead on selecting
grasp adjustments to produce a stable new grasp. [19] incor-

porated tactile readings into dynamics models of objects for a
dexterous hand, thereby adapting the grasp. Works such as [20]–
[22] extracted features from tactile signals to detect/predict slip,
so as to adaptively adjust the grasping force. Researchers have
also proposed robotic systems that integrate visual and tactile
information for grasping using model-based methods [23]–[27],
which improved grasping performance over single-modality in-
puts. However, these approaches require accurate models of the
robot and the objects to grasp, and often also calibrated tactile
sensors. Along similar lines, [28] proposed a regrasping policy
based on tactile sensing (without visual input) and a learned sta-
bility metric, which uses a heuristic transition function to predict
future tactile readings. Our approach does not require any prior
model or transition function, as it learns entirely end-to-end
from raw inputs.

Closer to our approach are [29], [30], which proposed to learn
regrasping using tactile sensors. In contrast to our approach, [30]
directly optimizes a policy. Optimizing a policy requires the data
collection to be on-policy and to be intertwined with the policy
update; our approach does not directly optimize a policy, but
learns an action-conditioned model. As a result our approach
can use any data collected. Additionally, by using an action-
conditioned model, we can change the objective of the policy
at evaluation time (as in the case of reducing the grasping force
demonstrated in Section VI-D), while changing the objective for
a policy learning method would require re-training the policy,
and thus require repeating the data collection process. Another
difference with these works is that, in [29], [30], the features
used from the tactile sensors are manually designed by apply-
ing PCA and extracting the first 5 principal components. Our
approach, although using substantially higher resolution tactile
inputs, does not require any manual engineering of features. Fi-
nally, our experiments consider a substantially wider range of
objects than demonstrated by [30], with 65 training objects, and
a detailed evaluation on 22 previously unseen test objects.

Closely related is also our previous work [18], where we
proposed a visuo-tactile model from raw inputs for classifying
grasp outcomes. The main difference to the present work is
that [18] does not make use of the learned visuo-tactile model
to actively select the next grasp to perform, but simply to eval-
uate the stability of an ongoing grasp. For grasp selection, this
method executes random grasps iteratively until it arrives at a
grasp that is stable according to the learned model. While this
allows for evaluation of the correlation between touch sensing
and grasp outcome, it does not by itself provide a practical
method for grasp selection: in our experiments, we found that
this prior approach could require as many as 50 random regrasp
attempts to yield a stable grasp. Furthermore, by including the
grasping force as part of the action, our approach allows for the
grasping force to be modulated during the evaluation to achieve
secondary objectives, such as minimum-force grasps.

Concurrently to our work, [31] also proposed a tactile re-
grasping method based on the GelSight sensor. This method
simulates transformations to tactile readings based on rigid
body dynamics, while our approach is entirely data-driven and
self-supervised, which means that we do not require assump-
tions about dynamics or environment structure. An in-depth
exploration of the tradeoffs between data-driven and analytic
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Fig. 2. Examples of raw tactile data collected by one of the GelSights (right) for different training objects (left).

approaches would an interesting future topic of study. Another
concurrent work [32], explores grasping with a 3-axis force
sensor, but reports comparatively low success rates, focusing
instead on tactile localization without vision. Our method uses
rich touch sensing that is aware of texture and surface shape, si-
multaneously incorporates multiple modalities, and can flexibly
accommodate additional constraints, such as minimum-force
grasps.

The main contribution of this letter is a practical approach
that exploits visual and tactile sensing to grasp successfully
and efficiently i.e., with as few regrasps as possible. We do so
by building predictive models that can predict the grasp out-
come of a given action. Our experiments demonstrate that our
action-conditioned predictive model substantially outperforms
the results that can be obtained via grasp classification, illustrat-
ing the value of closed-loop regrasping. Finally, we demonstrate
that our action-conditioned model can be used to optimize for
gentler grasps, enabling the robot to determine grasps that can
pick up an object with minimal force (hence avoiding damage
to fragile objects). To the best of our knowledge, our work is
the first to propose an action-conditioned model for learning to
grasp from raw visuo-tactile inputs.

III. HARDWARE SETUP

In our experiments we used a hardware configuration consist-
ing of a 7-DoF Sawyer arm, a Weiss WSG-50 parallel gripper,
and two GelSight sensors [33], one for each finger. Each Gel-
Sight sensor provides raw pixel measurements at a resolution
of 1280x960 at 30 Hz over an area of 24 mm × 18 mm. Addi-
tionally, a Microsoft Kinect2 sensor was mounted in front of
the robot to provide visual data. The GelSight sensor is an op-
tical tactile sensor that measures high-resolution topography of
the contact surface [33], [34]. The surface of the sensor is a
soft elastomer painted with a reflective membrane, which de-
forms to the shape of the object upon contact. Underneath this
elastomer is a camera (an ordinary webcam) that views the de-
formed gel. The gel is illuminated by colored lights, which light
the gel from different directions. Additional visual cues of con-
tacts are provided by the deformation of the grid of markers
painted on the sensor surface, which can be used to compute
the shear force and slip information [35]. One valuable property
of the GelSight sensor is that the sensory data is provided on a
regular 2D grid image format, hence we can use convolutional

neural network (CNN) architectures initially designed for visual
processing to process readings from the tactile sensor. Previous
work on material property estimation with GelSight [36], [37]
has successfully applied CNNs pretrained from natural image
data. Examples of raw tactile data from the GelSight are shown
in Fig. 2.

IV. DEEP VISUO-TACTILE MODELS FOR GRASPING

We formalize grasping as a Markov decision process (MDP)
where we greedily select the gripper actions that maximize the
probability of successfully grasping an object. To address this,
we solve the following prediction problem: given the robot’s
current visuo-tactile observations st at time t, and an action a,
we predict the probability that, after applying the action, the
gripper will be in a configuration that leads to a successful grasp
at time t + 1. In Section IV-B, we describe how we use this
prediction model to select optimal grasping actions.

Raw visuo-tactile observations s are acquired from tactile
sensors and the RGB camera, as shown in Fig. 3. Each action a
directs the gripper to a new pose relative to its current pose.
For example, an action a might consist of moving the gripper
to the left by 2 cm, and rotating it by 15◦. More concretely,
let o(st ,a) ∈ {0, 1} be the binary grasp outcome at time t + 1
resulting from executing action a from grasp state st : if o(s,a)
is 1, the grasp is successful. At evaluation time, these outcome
labels o(st ,at) are unknown and the robot must estimate them.
At training time, the robot performs random trials as described
in Section V to collect state-action-outcome tuples (si ,ai , oi) ∈
X , which we will use to train an action-conditional model that
can be used for selecting actions.

A. End-to-End Outcome Prediction

We would like to learn a function f(s,a) that directly pre-
dicts the success probability for a future grasp, given observa-
tions from the current grasp s and a candidate action a. We
parametrize f as a deep neural network, whose architecture is
shown in Fig. 3. There are multiple design choices when de-
signing deep models for multi-modal inputs [38]. In our exper-
iments, we decided to employ a network processing the state s,
consisting of raw RGB inputs from the frontal camera and the
two GelSight tactile sensors, in three deep stacks of convolu-
tional layers. Additionally, the action a is processed in a two-
layer, fully-connected stack (a multi-layer perceptron). We then
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Fig. 3. Action-conditioned visuo-tactile model network architecture.

use a late fusion approach to combine information from these
modalities: the feature vectors produced by these four stacks are
concatenated, and fed to a two-layer fully-connected network
that produces the probability, f(s,a), that the input action from
the current state results in a successful grasp at the next step. We
train the network f on the training dataset X to minimize the loss
Ldir (f,X) =

∑
(s,a,o)∈X L(f(s,a), o) where L is the cross-

entropy loss. As input for the tactile CNNs, we rescale the orig-
inal GelSight RGB images to 256 × 256, and subsequently (for
data augmentation) sample random 224 × 224 crops. This kind
of image resolution is standard for CNN-based object recogni-
tion in computer vision, though it is substantially lower than the
native resolution of the GelSight. Although we did not inves-
tigate the effect of image resolution on performance, this is an
interesting question for future work.

1) Network Design: We process each image using a convo-
lutional network. Specifically, we use the penultimate layer of
a 50-layer deep residual network [39]. We further emphasize
deformations in each GelSight image through background sub-
traction i.e., we pass the neural network the difference of the
GelSight images before and after contact. The action network
is a multi-layer perceptron consisting of two fully-connected
layers with 1024 hidden units each. This network takes as in-
put vector representations of the action and pose. The action
is a 5-dimensional vector consisting of a 3D motion, in-plane
rotation, and change in force. Likewise, the end effector pose
is a 4-dimensional vector represented by position and angle.
Moreover, we also provided the network with the 3D motion
transformed into the gripper’s coordinate system. To fuse these
networks, we concatenate the outputs of the four input branches
(camera image, two GelSight images, and the action network),
and then pass them through a two-layer fully-connected net-
work that produces a grasp success probability. The first layer
of this fusion network contains 1024 hidden units. Our model
architecture is shown in Fig. 3.

2) Training: To speed up training, we pretrain these net-
works using weights from a model trained to classify objects
on ImageNet [40], and we tie the weights of the two tactile
networks. We then jointly optimize the model with a batch size
of 16 for 9,000 iterations (using a dataset of 18,070 examples),
lowering the learning rate by a factor of 10 after 7000 iterations.

B. Regrasp Optimization

Once the action-conditional model f has been learned, we use
it to select the action that maximize the expected probability of
success of the grasp after performing the action

a∗
t = arg maxa f (st ,a) . (1)

We perform this optimization using stochastic search: we ran-
domly sample potential actions and predict the success probabil-
ity using the learned model f , and then select the action with the
highest success probability. Although this optimization can be
computationally expensive (in our experiments, approximately
0.6s for 5000 samples), in practice we find that it performs well.

V. DATA COLLECTION

To collect the data necessary to train our model, we designed a
self-supervised automated data collection process. In each trial,
depth data from the front Kinect was used to approximately
identify the starting position of the object and enclose it within
a cylinder. We then set the end-effector (x, y) coordinates to
the position of the center of the cylinder plus a small random
perturbation, and set its height to be a random value between
the floor and the height of the cylinder. Its orientation φ was set
uniformly at random. Moreover, we randomized the gripping
force F to collect a large variety of behaviors, from firm, stable
grasps, to occasional slips, to overly gentle grasps that fail more
often. After moving to the chosen position and orientation, and
closing the gripper with the desired gripping force, the gripper
attempt to lift the object and wait in the air for 4s. If the object
was still in the gripper at the end of this time, the robot would
place the object back at a randomized position, and a new trial
would start.

The labels for this data (i.e., whether the grasp was successful)
were also automatically generated using deep neural network
classifiers (running two instances, one for each finger) trained
to detect contacts using the raw GelSight images observed.1 We
performed additional manual labeling on a small set of samples

1This model was initially trained using manually collected data, and itera-
tively fine-tuned in a self-supervised manner using the very same automatically
collected, but manually labeled, data.
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for which the automatic classification was borderline ambigu-
ous (e.g., if both sensor were not confident of the presence of
contacts after lifting), or in the rare cases when a visual inspec-
tion would indicate a wrong label. Overall, we collected 6450
grasping trials from over 65 training objects.

As the gripper moves from one position to another, the lo-
cations that it moves to along the way can provide additional
data points for training. We use this idea to augment the dataset
with additional examples. When the robot is gripping an object,
we create a state-action pair with zero translation or rotation,
corresponding to the action of the robot keeping the gripper
in the same position (a useful possible action for regrasping).
Similarly, we create a state-action pair at the moment that the
robot has released the gripper but has not yet moved. In this
case, the action is the same as when the gripper is in contact
with the object. After this augmentation, our dataset contains
18,070 examples.

During the data collection and experimental evaluation, we
replaced the gels of the two GelSight sensors multiple times
due to wear and tear. Each gel is unique, and as a result pro-
duces slightly different inputs (e.g., grid of markers might not
be evenly aligned). Moreover, with the progressive wear of the
surface a single gel, the images can significantly change over
time. In our experiments we noticed how, initially, replacing
the gel would degrade the performance of the learned models.
However, after collecting data with a few different gels, chang-
ing the gels did not seem to significantly affect performance
anymore, hence suggesting that the model learned features that
are reasonably invariant to the specific gel being used.

VI. EXPERIMENTAL RESULTS

To validate our multi-modal grasping model, we first com-
pare the performance of the model on the dataset we collected.
Then, we test the model on an actual robot, and evaluate its
generalization capabilities on additional (unseen) test objects.
Moreover, we analyze the learned visuo-tactile model to gain
some insight into its learned behavior and features. Finally,
we demonstrate that it is possible to exploit our visuo-tactile
action-conditioned model to minimize the applied forces while
maintaining a high success rate. Videos showing the robotic
grasping experiments (and other material) are available online
at: https://sites.google.com/view/more-than-a-feeling

A. Model Evaluation

First, we ask: can our model successfully learn to predict
future grasp success for novel objects? Recall that while previ-
ous works such as [18] have shown that it is possible to predict
stability of ongoing grasps from visuo-tactile inputs, we seek to
evaluate the stability of future grasps, conditional on a relative
adjustment from the current grasp. We compare the predictive
performance of a number of variations of our model, using our
dataset of grasps (Section V). For this, we use K-fold (K = 3)
cross-validation, partitioning the data by object instance. Does
our model learn to use actions to predict future outcomes?
This is critical, since we expect to use this model to search
over possible actions during grasping on a robot. To test this,
we evaluate the model in Fig. 3 without the action (“Tactile +

TABLE I
K-FOLD (K = 3) CROSS-VALIDATION ACCURACY OF THE DIFFERENT MODELS

TRAINED WITH 18,070 DATA POINTS

Vision (no action)” in Table I) – an unconditional model similar
to the one considered in [18] – which without having access
to the action corresponds to computing the expectation over
all the possible actions. We see that performance indeed drops
significantly when action information is withheld, validating
that the model learns to successfully evaluate the importance of
different actions. Next, we test whether our model significantly
outperforms variations where different components are ablated,
such as the vision-only and tactile-only models. As seen in
Table I, the full visuo-tactile model performs best – results for
future-grasp prediction that are consistent with those reported
in [18] for the task of evaluating current grasps.

B. Robot Grasp Evaluation

Next, we evaluated the learned models on the robot. In these
experiments, we had the robot grasp a given object after execut-
ing a series of regrasp actions. Each grasp begins by randomly
sampling an end-effector position and angle with the manually
engineered system used for the data collection of Section V,
but without closing the fingers of the robot. Since we start from
a configuration where the fingers are not in contact, it is im-
possible to fairly compare against the tactile-only variant of our
model, which requires the robot to already be in contact with the
object to select a meaningful action. Consequently, we compare
with the vision-only variant of our model, which is similar to
that in [3]. We then use the learned models to select the next
grasp, by solving the optimization of Eqn. (1). For the action op-
timization, we consider translations in the interval [−2,+2] cm,
gripper rotations from [−17◦,+17◦], and force values in [4, 25]
N. The optimization is performed by randomly sampling 4900
actions, plus 100 additional actions sweeping over the grasping
force interval, but having the end-effector rotation and transla-
tion set to 0. Each action results in performing a translation and
rotation of the end-effector, and in closing the fingers with the
desired force. Moreover, if the predicted grasp success proba-
bility is above the desired threshold, the re-grasp also includes
lifting the object. In our experiments, we set this threshold to
0.9. To ensure that the probabilities are well-calibrated, we ap-
plied Platt scaling [41] to its probability predictions, using a
validation set containing approximately 1900 examples.

As a baseline, we also evaluated against an approach that fits
a cylinder around the object using depth data and subsequently
attempt to grasp the centroid of the object using a constant grasp-
ing force of 10 N. Since we used this cylinder fitting approach as
a component of our data collection procedure, it was manually
engineered to perform well.
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TABLE II
DETAILED GRASPING RESULTS USING DIFFERENT POLICIES FOR THE ”EASY” AND ”HARD” TEST OBJECTS

Fig. 4. Predicted grasp success rate with varying the amount of force F . The
model learned that, when stably in contact with the object, there is a correlation
between force applied and success rate. However, for unstable grasps, the model
learned that increasing the grasp force might misplace the object and result in
an unsuccessful grasp. (a) Stable grasp. (b) Unstable grasp.

Fig. 5. What does the model learn? Here we show examples where the network
predicts that a downward motion will result in a grasp with (a) higher or (b)
lower chance of succeeding. Notice that downward movement is predicted to
be beneficial for cases where the fingers hold the top of an object, but not
when they hold it by the bottom. To more clearly visualize the contact on the
robot’s fingertip, we show the change in intensity of the GelSight images. (a)
Improvement from downward motion. (b) No improvement.

Fig. 6. Histograms of the actions applied by the Tactile+Vision policy for
the successful grasps. It can be noticed how the policy strongly favour moving
downward.

We first trained the models on 18,070 data points collected
as described in Section V, and evaluated them on a test set of
11 previously unseen objects (that we call “Easy”). These ob-
jects significantly differed from the ones seen in the training

Fig. 7. Example of predicted grasp success rate varying the height of the
fingers. The model learned that decreasing the height of the fingers generally
increases the success rate.

set in terms of color, weight, shape, friction, etc. From the eval-
uations, we found that our visuo-tactile model significantly out-
performed both the vision-only and the cylinder fitting models,
achieving 94% accuracy. However, on the harder objects from
the “Hard” test set, this learned model would not perform very
well. Hence, we decided to collect more data on the training
objects, but this time on-policy using the learned model. We
thus collected a new dataset consisting of 25,404 datapoints,
which we used to re-train both the Vision and Tactile+Vision
models. After retraining, we evaluated the performance again
on the “Hard” test set. In Table II, we can see how the visuo-
tactile model again outperform the other two models. Based on
these experiments, the largest improvements in performance of
our model seem to happen in the presence of compliant objects,
and objects where it is difficult to visually ascertain a good
grasp, such as small or irregular objects. Another interesting
result is that the vision-only model performs quite poorly. We
hypothesize that the main cause is the relatively small size of the
dataset. Prior work [3] used a smaller model and 40x more data.
As such, it is likely that the performance of our tactile+vision
model could also be further improved by collecting more data.

C. Understanding the Learned Visuo-Tactile Model

Our approach relies on a future grasp evaluation model
learned entirely from data, without manual specification of
heuristically useful behaviors. We now examine qualitatively:
what strategies has our model learned and what behaviors does
it produce?

1) Grasping Force: The first question we study is whether
or not the model has learned the importance of modulating the
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Fig. 8. Histogram and mean (dashed lines) of the forces applied in the successful grasps. (a) Although the success rates for the two Tactile+Vision policies are
similar (95% maximum success vs 94% minimum force), the mean force applied is significantly reduced when using the minimum force policy (10 vs 20 N). (b)
The success rates for the Vision only policies is lower at 76%, but again the mean force applied is significantly reduced when using the minimum force policy
(6 vs 18 N).

amount of force F applied at the fingers for the grasp outcome.
Naturally, a stronger grasp is typically more likely to succeed.
To test this hypothesis, we placed the gripper in a state where it
was in contact with a previously unseen object. We then asked
the model to predict the probability of grasp success given var-
ious finger forces, keeping the other parts of the action vector
fixed. Given this state and candidate actions, we computed the
corresponding success rate prediction. As illustrated in Fig. 4,
the model appears to have learned that there is a correlation
between the force and the grasp outcome. However, further
analysis shows that the model did not just learn to increase the
force in all cases: for multiple situations having very high forces
seems to reduce the predicted success rate. For example, we saw
this occur when the robot grasped a cube whose corner was only
half in contact with the fingers. Due to the shape of the fingers,
applying large forces in this case would cause the object to be
displaced and slip out of the fingers, and the model correctly
predicts that lower forces should be preferred (see Fig. 4b ).

2) Height and Center-of-Mass: A second important ques-
tion is what the model learned with respect to the height of the
grasp. For instance, it may be important to grasp close to the
vertical center-of-mass of the object: objects that are held close
to their top might slip away under even small perturbations. At
the same time, objects that are grasped below the center-of-mass
might be unstable and rotate around the contact, increasing the
chance of slippage. Evaluating the model in different circum-
stances shows that the model learned that the probability of
success increases when decreasing the height of the fingers (an
example is shown in Fig. 7). The model did not however, seem
to have learned any relevant correlation between the height of
the object, or the center-of-mass, and the preference for mov-
ing downward. In Fig. 5, we show examples, taken from our
dataset, of cases in which the model strongly preferred a down-
ward motion to a static or upward one. For this, we trained a
variation of our model without the end effector pose, so that it
cannot use the height above the table as a cue. We show held-out
examples with the most (and least) predicted improvement in
grasp success. The examples with the largest improvement in
downward motion tend to be cases in which the top of the object
has been gripped (which result in a visible bump in the bottom
of the GelSight image). Fig. 6 shows histograms of the actions
performed by the Tactile+Vision model for the successful grasps
in Section VI-B. For the z-translation, almost 50% of the ac-
tions used the maximum downward motion allowed (i.e., 2 cm),
which clearly shows that the learned model acquired a strong
preference for moving downward to produce stable grasps.

D. Minimum Force Grasp

One of the benefits of training an action-conditional grasp
outcome prediction model, in contrast to the static grasp clas-
sification model in prior work [18], is that we can predict how
successful a given grasp will be if we modify the strength of the
grasp. Humans typically do not use the strongest grasp possible,
but rather employ the minimum amount of contact force, out of
consideration for energy consumption and object fragility. Our
model also allows us to directly optimize for grasps with either a
constraint on the contact force, or via a weighted combination of
contact force and grasp success probability. In this experiment,
we modified the optimization in (1) as a constrained optimiza-
tion problem such that the selected action would instead mini-
mize the use of force, but while still having an expected success
rate > 90% (if such an action existed, otherwise it would revert
to the standard optimization task).

We evaluated the success rate and applied the force of grasps
optimized for either pure grasp success or the minimum force
objective on the ‘Green tea cup’ object. After evaluating 100
grasps for each criterion using the Tactile+Vision model, we
observed a fairly similar grasp success rate, with 95/100 suc-
cessful grasp for the maximum success optimization and 94/100
for the minimum force grasps. However, we can see in Fig. 8a
that, for the successful grasps, the force distribution of the mini-
mum force grasp optimization was substantially lower compared
to the maximum success criterion (mean of 10 vs 20 N). Simi-
lar results were obtained also when evaluating the Vision only
model, as shown in Fig. 8b . This time, both criteria achieved
a success rate of 76% (out of 50 trials), which is lower than
the Tactile+Vision model. However, the force distribution of the
minimum force grasping policy was substantially lower com-
pared to the maximum success criteria at 6 vs 18 N. These
results suggest that using a minimum force optimization with
our learned model can effectively reduce the amount of force
exerted when grasping, without impacting performance. We be-
lieve that this is an important result that show the quality of
the learned visuo-tactile model, and further motivate the use of
tactile sensors in applications which require handling of fragile
objects (i.e., glass or fruit, such as strawberries).

VII. CONCLUSION

Touch sensing is an inherently active sensing modality, and
it is natural that it would be best used in an active fashion,
via feedback controllers that incorporate tactile inputs during
the grasping process. Designing such controllers is challenging,
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particularly with complex, high-bandwidth tactile sensing com-
bined with visual inputs. In this letter, we introduced a novel
action-conditional deep model capable of incorporating raw in-
puts from vision and touch. By using raw visuo-tactile informa-
tion, this model can continuously re-plan what action to take so
as to best grasp objects. To train this model, we collected over
6,000 trials from 65 training objects. The learned model is capa-
ble of grasping a wide range of unseen objects, and with a high
success rate. Moreover, we demonstrated that with an action-
conditioned model, we can easily decrease the amount of force
exerted when grasping, while preserving a similar chance of
success.

Our method has multiple limitations that could be addressed
in future work. First, our action-conditioned model only makes
single-step predictions, and does not perform information-
gathering actions. Second, we consider relatively coarse actions
– A model using fine-grained actions could more delicately
manipulate the object before the grasp, and potentially react
to slippage during the lift-off. Finally, it would be valuable to
extend our approach to more realistic cluttered environments.
Together, addressing these limitations would require a transition
to more continuous feedback control strategy (potentially using
torque control), which is an exciting avenue for future work.
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