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Convolutional Networks
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A Design Challenge with Increasing Dimensions
Regular Neural Nets don’t scale well to full images
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𝟓𝟏𝟐×𝟓𝟏𝟐×𝟑 = 𝟕𝟔𝟓, 𝟒𝟑𝟐
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Convolutional Operation
𝑠 𝑡 = $𝑥 𝑎 𝑤 𝑡 − 𝑎 𝑑𝑎 = 𝑥 ∗ 𝑤 𝑡
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Motivations
• Sparse interactions
• Parameter sharing
• Equivariant representations
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Convolution in 3D Volumes
Preserved spatial structure between the input and output volumes in width, height, number of channels
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Filter sizes in 3×3×3
• always extend the full depth 

of the input volume 

3×3×2

2 (depth)

3 (width)

3 (height)

Layers in a ConvNet: 
Transform an input 3D volume to 
an output 3D volume with some 

differentiable function that may or 
may not have parameters.

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products”
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The Design of a Convolutional Layer
Defined by the filter (or kernel) size, the number of filters applied and the stride
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Output Volume Size
Defined by the filter (or kernel) size, the number of filters applied and the stride
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• Depth (number of channels): 
• adjusted by using more or fewer filters

• Width & Height: 
• adjusted by using a stride >1 
• (or with a max-pooling operation)
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The Last Layer
From a Cubic Volume in 3D to predicted labels
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Similar like a 
normal neural 
network

Expensive in 
#weights

But preseves the 
location data (x, y)

Much lighter in 
calculation

The average 
pooling explicitly 
discards all 
location data
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Stacking Up a ConvNet
Layer-by-layer
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Layers in ConvNets
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The Three Stages of a Typical ConvNet Layer
The Convolution, Detector and Pooling Stages
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Performs several convolutions in parallel to produce a set of linear activations
(can be viewed as weighted-sum)

Each linear activation is run through a nonlinear activation function, such as ReLU
(can be viewed as activation function)

Replace the output of the net at a certain location with a summary statistic of the nearby outputs
(can be viewed as a further abstraction of the learned features)

• The maximum output within a rectangular neighborhood (max-pooling)
• The average of a rectangular neighborhood
• The L2 norm of a rectangular neighborhood
• A weighted average based on the distance from the central pixel
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A Visualized Understanding of ConvNet
Multi-layered abstraction of 3D features towards a linerly separable classification
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https://arxiv.org/pdf/1311.2901.pdf

https://arxiv.org/pdf/1311.2901.pdf
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A Simple ConvNet for CIFAR-10 Classification
[INPUT - CONV - RELU - POOL - FC]
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FC (i.e. fully-
connected) layer will 
compute the class scores, 
resulting in volume of size 
[1x1x10], where each of 
the 10 numbers correspond 
to a class scoreINPUT layer 

[32x32x3] will hold 
the raw pixel values 
of the image

CONV layer compute the output of 
neurons that are connected to local regions 
in the input, i.e. [32x32x12] with 12 filters.

RELU layer will apply an elementwise activation 
function, such as the max(0,x) thresholding at zero. This 
leaves the size of the volume unchanged ([32x32x12]).

POOL layer will perform a downsampling
operation along the spatial dimensions (width, 
height), resulting in volume such as [16x16x12].

raw image pixels

class scores
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Convolutional Layer

• Small-size filers 
• e.g. 3x3 or at most 5x5, using a stride of S=1, 
• Padding the input volume with zeros to avoid altering the spatial dimensions of the input.

Small filters that slide across the input volume 
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Original image 
with 7x7 raw pixels

Small 
filers

Zero 
paddings

INPUT features: 7x7

Filer size: 3x3

Stride: 1 (move step-by-step)

Padding: 1 pixel of 0 on all borders

OUTPUT features: 7x7

What if without paddings on 
the border?
• The spatial dimensions of 

the input will be changed, 
causing information loss on 
the border
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Pooling Layer

• A network-wise regularization
• Progressively reduce the spatial size of the representation to reduce the amount of 

parameters and computation in the network, and hence to also control overfitting
• Operates over each activation map independently
• Usually, no need to zero padding (no convolutional operations)

Downsampling the spatial dimensions of the input volume
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Max Pooling

Downsampling



AncoraSIR.com

Fully-Connected Layer

• Contains neurons that connect to the entire input volume
• Softmax is a common choice

Full connections to all activations in the previous layer, as seen in regular Neural Networks
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ConvNet Architectures

• INPUT → CONV → RELU ∗ N → POOL? ∗ M → FC − RELU ∗ K → FC
• the * indicates repetition, 
• the POOL? indicates an optional pooling layer. 
• N >= 0 (and usually N <= 3), M >= 0, K >= 0 (and usually K < 3)

• INPUT (that contains the image) should be divisible by 2 many times
• 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. ImageNet), 384, and 512

• CONV should be using small filters using a stride of S=1
• 3x3 or at most 5x5 with zero padding of the input volume

• POOL downsamples the spatial dimensions of the input
• Common setting is to use max-pooling with 2x2 receptive fields with a stride of 2

Common choice of hyperparameters of ConvNet designs
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Thank you~
songcy@sustech.edu.cn

Bionic Design & Learning Lab
@ SIR Group 仿生设计与学习实验室

Room 606
7 Innovation Park
南科创园7栋606室

mailto:songcy@sustech.edu.cn

