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Convolutional Networks
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A Design Challenge with Increasing Dimensions

Regular Neural Nets don t scale well to full images

512%x512%x3 = 765,432
Gray-scaled 3' MNIST

28%x28%x1 = 784 Input Features 32%X32X3 = 3,072

N DN e 1 EEN BN = =

Weighted-Sum
(10x784 « W — 10x3072)
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000 = Goo-T

airplane cat frog ship

CIFAR-10 Color (RGB)

Output Label

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 07 Deep Networks I1




Convolutional Operation

s(t) = fx(a)w(t —a)da = (x *w)(t)
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Convolution in 3D Volumes

Preserved spatial structure between the input and output volumes in width, height, number of channels

7X7X3
Input .
Volume 7 (height)
in 3D
7 (width)

3 (depth)

Layers in a ConvNet:
Transform an input 3D volume to
an output 3D volume with some
differentiable function that may or
may not have parameters.
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Filter sizes in 3X3X3
« always extend the full depth
of the input volume
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Output Volume (3x3x2)
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Output
Volume
in 3D

3 (height)

3 (width)
: 2 (depth)

Bias bl (1x1x1)

blf[:,
0

:,0]

Convolve the filter with the image
1.e. “slide over the image spatially,
computing dot products”

toggle movement
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The Design of a Convolutional Layer
Defined by the filter (or kernel) size, the number of filters applied and the stride

+PMO(//{5
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Filter input output
s, 2¢ channels channels
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Output Volume Size
Defined by the filter (or kernel) size, the number of filters applied and the stride

1111111111111

* Depth (number of channels):

Y (“ - ‘/\//[_5 ) % ) q ) é] * adjusted by using more or fewer filters
! J
* Width & Height:
* adjusted by using a stride >1
P W C L) L) é) / 0] * (or with a max-pooling operation)
A ( ‘
Y

P W;[/) /, 10, ..]

stride 2

/0

\
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The Last Layer

From a Cubic Volume in 3D to predicted labels

Fully connected layer Global average pooling

Similar like a
normal neural
network

Much lighter in
calculation

The average
pooling explicitly
discards all
location data

Expensive in
#weights

But preseves the
location data (x, y)

W [245, 5]
S0060 " sl sl
softmidox sottmox
_ cheaper .
1225 weights  __ 4____,7 0 weights SUSTech
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Stacking Up a ConvNet

Layer-by-layer

convolutionod
s«bsampl in9

convolutionod
5«[95&414/[ 19

convolutionod
5«b504wp1 /119
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Layers in ConvNets
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The Three Stages of a Typical ConvNet Layer

The Convolution, Detector and Pooling Stages

Next layer * The maximum output within a rectangular neighborhood (max-pooling)
e The average of a rectangular neighborhood
T * The L2 norm of a rectangular neighborhood
Convolutional Layer * A weighted average based on the distance from the central pixel
Pooling stage Replace the output of the net at a certain location with a summary statistic of the nearby outputs

(can be viewed as a further abstraction of the learned features)

\

Detector stage:

Each linear activation is run through a nonlinear activation function, such as ReLU

Nonlinearity . . . .
e.., rectified linear (can be viewed as activation function)
Convolution stage: Performs several convolutions in parallel to produce a set of linear activations
Affine transform (can be viewed as weighted-sum)

A

|
Input to layer

AncoraSIR.com

ME336 Collaborative Robot Learning

Lecture 07 Deep Networks II 11



A Visualized Understanding of ConvNet

Multi-layered abstraction of 3D features towards a linerly separable classification

. . Linearly
Low-level Mid-level High-level separable
features features features -
classifier

VGG-16 Convi 1 VGG-16 Conv3 2 VGG-16 Convs 3

SUSTech
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A Simple ConvNet for CIFAR-10 Classification

[INPUT - CONV - RELU - POOL - FC]

CONY layer compute the output of RELU layer will apply an elementwise activation POOL layer will perform a downsampling
neurons that are connected to local regions function, such as the max(0,x) thresholding at zero. This ~ operation along the spatial dimensions (width,
in the input, i.e. [32x32x12] with 12 filters. leaves the size of the volume unchanged ([32x32x12]). height), resulting in volume such as [16x16x12].

i

I

ELU RELU ELU RELU RELU RELU
CONV |CONV| CONV [CONV| CONV [CONV FC (1.e. fully-
. _ l l l l connected) layer will
raw image pixels = & P - compute the class scores,
= — 2 resulting in volume of size
= = - [1x1x10], where each of
> = - the 10 numbers correspond
INPUT layer g = | to a class score
[32x32x3] will hold (;.J — > = P~ -
the raw pixel values §% é’\' \' — = - -
of the image g = =
© = | = -
= -
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Convolutional Layer

Small filters that slide across the input volume

e Small-size filers

* e.g. 3x3 or at most 5x5, using a stride of S=1,
* Padding the input volume with zeros to avoid altering the spatial dimensions of the input.

0O(0|0O|0O|O0]|O

Small — N INPUT features: 7x7

filers
0 Filer size: 3x3 What if without paddings on
5 the border?

/ Stride: 1 (move step-by-step) * The spatial dimensions of
7610 0 the input will be changed,
paddings Original image Padding: 1 pixel of 0 on all borders causing information loss on

7T el the border
T Rl OUTPUT features: 77
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Pooling Layer

Downsampling the spatial dimensions of the input volume

* A network-wise regularization

* Progressively reduce the spatial size of the representation to reduce the amount of
parameters and computation in the network, and hence to also control overfitting

* Operates over each activation map independently

 Usually, no need to zero padding (no convolutional operations)
224x224x64

112x112x64
pool e Single depth slice
dl1]1]2]4
max pool with 2x2 filters
) |16 (7|8 and stride 2 6 | 8
l Downsampling ¢} >
3 | 2 NS 3|4
224 : — S 112 1 | 2 A .
downsampling ,2 Max Pooling

\/

224
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Fully-Connected Layer

Full connections to all activations in the previous layer, as seen in regular Neural Networks

* Contains neurons that connect to the entire input volume

e Softmax 1s a common choice

exp(0;)

y; = softmax(o;) = x100%
A T L R I C)
\\\ rc;fmth
—
N —U| wx+p [ |1
Labelled ™ || Data loss
N X;
Prediction ™.
Yi
| cat 3.2 245 | ewo) | 0.13 |- - 1.00
(]

Z Car 51 exp(oiz 164.0 2; EXP(OJ): 0.87 How to quantify the 0.00

- : ' (x100%) ' differences between two .

probability distribution?
Frog -1.7 0.18 0.00 0.00
Weighted-Sum Unnormalized Normalized Correct
Scores Probability Probability Label Probability
(logits) (>=0) (¥; Sum to 1) Label
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ConvNet Architectures

Common choice of hyperparameters of ConvNet designs

» INPUT - [[CONV — RELU] * N - POOL? | * M — [FC — RELU] * K — FC

* the * indicates repetition,
* the POOL? indicates an optional pooling layer.
* N>=0 (and usually N <= 3), M >= 0, K >= 0 (and usually K < 3)

* INPUT (that contains the image) should be divisible by 2 many times
* 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. ImageNet), 384, and 512

* CONY should be using small filters using a stride of S=1

* 3x3 or at most 5x5 with zero padding of the input volume

* POOL downsamples the spatial dimensions of the input
* Common setting 1s to use max-pooling with 2x2 receptive fields with a stride of 2
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