Lecture 06
Deep Networks 1

AncoraSIR com [Please refer to the course website for copyright credits]

Neural Network

= Bionic Design
& Learning Lab

AncoraSIR.com

What 1s a Neural Network?

From biological inspiration to mathematical modeling

Neuron (peripheral nervous system)

Dendrite

“n acuvatlon ™~ D(X,, X, ... X,)

— \ g “”“°"°" B

nucleus /
cell body

perceptron /
neuron

sajlusp
asdeuAs

%

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I

A Perceptron as an Artificial Neuron

Biological Inspiration

L0 Wo
Linear score function: f=We ; *® synapse
2-layer Neural Network f = Wamax(0, Wix) AR e S T wWoT(

3072 1

cell body

Zwimi +b f

or

00 10 T E w;x; +b
‘ plane car bird cat dec dog frog horse. Ship truck w 1 m 1 '

output axon

activation
function

Impulses carried toward cell body

\ dendrite w2 x2

presynaptic 1 Leaky RelLU ’
terminal
1 max(0.1z, z)
T 14e— =
axon -10 To - = 1o
cellbody—— tanh Maxout
tanh(x) o max(wi z + by, wl T + by)
Impulses carried away . ;
| | from cell body RelLU ELU
is Iicensedz)rl\::rhm IIlaX(O, :1;) xT xr > 0
-10 10 a(em - 1) :L‘ < 0 _>772 N
AncoraSIR.com e
ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 4

Multi-Layer Perceptrons

Artificial Neural Networks

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or

“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I

Computation Graph

A simple example with backpropagation

z,Y,2) = (x+y)z iy ay 95 _
f(' Y) (y) =" Bq_z’(’)z_q
eg.x=-2,y=95,z=-4
dq dq
=T —_— = —_— =
X -2 9 TY oz 1, oy 1
Want- of of Oof
ant. 5z 8y’ 82
Chain rule: / \ Chain rule:
of _of & of _ 0f o
of dr — 0q Ox 0y Oq oy
E - 4= 3 Upstr{a'am LScaI Upstéam Lécal -
AncoraSIR.com gradient gradient gradient gradient SUSTeCh
ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 6

Forward Propogation

Accept inputs to train a Multi-layer Neural Network

Vi = fi(Wey¥y + Weeayia)

Weighted-Sum : Activation

Wy

= non-linear
summing e=X 1W1+x2w2 » element
junction f(e) X,
X; W2
http://galaxy.agh.edu.pl/%7Evlsi/Al/backp t en/backprop.html SUSTech
AncoraSIR.com oty

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 7

http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

Backward Propogation

Calculate the prediction error node-by-node

-

Op = Wy, 04 + Wys05

The idea is to propagate error signal d (computed in single
teaching step) back to all neurons, which output signals
y were input for discussed neuron.

Oy = Wy0

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified.

In formulas on the right, df{e)/de represents derivative of neuron
activation function (which weights are modified).

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I

Weight Update

Update the weights to finish one iteration of computation, then repeat.

Wy = Weey T 770,

Wi = Wean 776

. a0

W2 = Wy T

N
e

ACH
de

Wixza = W +176, 2

- df,

Werays = Weenys 71165

e
).
e

d

AncoraSIR.com

Wiy =Wy +770,

Wy =Wy + 1710,

g —_— N P S
W= W5 + 105

g p— ’ P
W= Wy + 1105

JL— y
Wys= Wi + 1705

5 d];) X, Coefficient 5 affects network teaching speed, to select this parameter: of computation
e

' * The first method is to start teaching process with large value of the
dfi(e) ¥ parameter. While weights coefficients are being established the parameter
de

is being decreased gradually.

et

ZACH
d

ACH
(]e 42

dfe) |
(le 21
AON
d@ K2

(ACH
de 23

Finish one iteration

_df.(e
Wae = Wyg +17(>—f6£)‘1‘4
_df.(e)
X, W'sg=Wsg +770 (ﬁle Vs
y
X;

* The second, more complicated, method starts teaching with small parameter
value. During the teaching process the parameter is being increased when the
teaching is advanced and then decreased again in the final stage. Starting
teaching process with low parameter value enables to determine weights
coefficients signs.

ME336 Collaborative Robot Learning

Lecture 06 Deep Networks I

Deep Forward Networks

fr it A5
53 &

S Bionic Design
& Learning Lab

AncoraSIR.com

From a Neur()n V = Gactivation [fWeightedSum(X)] = g(WTx + b)

to a Perceptron x,(=1) Wo¥o
> — Hidden
then a Neural Network wo(=D) "y
ST : : X1 ‘Knpu} wy
Bio-inspired Architecture Design on from a neum'@
synapse %
Cell body —4:
Telodendria Weighted| Activation
Sum Function
Score

Nucleus

Axon hillock Synaptic terminals
/Zﬁg h® = g(i)(W(i)Tx 4+ b(i)) y = g(WTh(i) + b)

Oc—=C
TSN

l’ Hidden

X e YK

Golgi apparatus

Endoplasmic /
reticulum

Mitochondrion Dendrite

/ { Dendritic branches

Southern University
of Science and Technology

AncoraSIR.com
11

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I

Gradient-based Learning

ML vs NN

* For supervised learning
* NN can be viewed as ML with gradient descent
e an optimization procedure
* acost function
* amodel family

e Difference

* The nonlinearity of a neural network causes most
interesting loss functions to become non-convex

* Neural networks are usually trained by using
iterative, gradient-based optimizers that merely
drive the cost function to a very low value

* Next Steps
* Choose a cost function
* Choose model output

AncoraSIR.com

ME336 Collaborative Robot Learning

Validation

Metrics

ccuracy
'yperparameters

Training

Ob]ec.tlvel Cost
Functions

Optimization

Performance 4 7
H
=
, 4)

Input Output
Data Model Data
. J
Regularization I
Test
Hyperparameters
Generalization

Lecture 06 Deep Networks I

r— — » The maximum likelihood estimator for @

Maximum Likelihood as a Cost Function O, = P AR Bl (50)
6

I

Validation I = arg 31@{12 Pmodel(T (@), OJ
I
I

Performance y
Metrics ccuracy log, (zy) = log; (z) + log, (y)

Training i .
= I Omr = arg maxlz 10g Prnodel (€; 9)]
. . 6 L
a set of m examples Objective =1

Cost — » Optimization k
X={z®,.. . ™} Functions P BIX) =2 aipi = aipr oy oo o ‘

i=1
ptprtetpe=1

MG i O, = g B, s 450

|
I — Input

o 4
Dat O];ltlt)ut 10 maximize
) | I R—— — ata
A parametric family of An empirical distribution
probability distributions I * Training Data, which consists
m— of samples from pga(X)
I - :(X) 1o minimize
ata
A true but . A distribution — Ex~pata [108 Pmodel ()]
unknow data Test
KL Divergence as
l a Dissimilarity Metric
. . Dk (ﬁdata ”pmodel) - Exrvﬁdata [log ﬁdata (il:) - log pmodel(m)]
Generalization

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 13

[] [] [[[[1 i . .
Learning Conditional Distributions MSEuam = — > [1§® —y@|P

with Maximum Likelihood ifl
Validation
Performance' y J(0) = {Ex,yNﬁdata |y — f(x: 0)| |2]+ const
Metrics ccuracy
Mean Squared Loss
Training
<
a set of m examples Objective Cost — > Optimization =— Pmodel(Y | ®) = N (y; f(x;6),1)
X={zD, . . . gm} Functions 1
I EI A I Cross-Entropy Loss
modade 9 I
I Input Output I' —VJ(G) = —Ex,ywﬁdata logpmodel(y | CU)
Data ———. Data

A parametric family of

—
probability distributions I
— |
M 1o minimize I
A true but Pdata () E I ()]
. . . - ~P O Pmodel | T
= A distribution St
unknow data Test
KL Divergence as
l a Dissimilarity Metric
Dy, (ﬁdata ”pmodel) - IEXNﬁdata [log ﬁdata (CI:) - log pmodel(m)]

Generalization

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 14

Learning Conditional Statistics
just one conditional statistic of y given x

Validation
Performance Predicts mean value of y for each x
Metrics ceuracy ,
* = argmin ~ — f(x
« Training f & ; Ex,y~paata [|¥ = F(@)l]
a set of m examples Objecotlve Cost — > Optimization —]
S — {m(l), o ,m(m)} Functions I

v
I Cross-Entropy Loss

Punodel (X310} Weights l
Input OUtput —VJ(G) = _Ex,ywﬁdata logpmodel(y | CU)
Data — : . Data

A parametric family of

e
probability distributions I I
—
Pdata X)
A true but :
unknow data - A distribution f* = argminEx ypg,.. [y — f(@)[h
Test f
l Predicts median value of y for each x

Generalization

Iq

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 15

Outputs Units from Hidden Layers
Features (Inputs) of the Output Units provided by the Hidden Layers

exp(0;)

x100%

¥; = softmax(o;) =

N
Prediction ™.

(x1, y1) Weighted-Sum) j €Xp (oj)
N Ground Scores 0
S Truth
[Foes
Labelled ™. Daa s
L
Yi

| cat 3.2 24.5 | ewn | 0.13 1.00
% exp(0;) %, exp(oy) How to quantify the
g Car 5.1 164.0 -—'(Xloo%) 0.87 | sifferences between two 0.00
FI‘Og 1.7 0.18 0.00 probability distribution? 0.00
Weighted-Sum Unnormalized Normalized Correct
Scores Probability Probability Label Probability
(logits) (>=0) (9; Sum to 1) Label
Any kind of neural Data Model
network unit that may be Distribution Distribution

h=f(x0) y=f(h used as an output can also _/

be used as a hidden unit.
Cross-entropy

is a technique
commonly used
in deep neural networks 22"

nnnnnnnnnnnnnnnnnnnnnn

AncoraSIR.com

Lecture 06 Deep Networks I 16

ME336 Collaborative Robot Learning

Gaussian Output Distributions
Multiple Linear Regression asy = W h + b

V = fweignteasum(h) = WTh + b * Linear Unit outputs the mean of a
ho(=1) Woho conditional Gaussian distribution

j wo (= b) s p(y|x) = N(y; y,1)
Py [fidden

* Cost Function
* Loss function as the mean squared error
Sum Score

n

1 5)2

52,0 =)
oy Linear Regression Data, y=4x + 1 + N(0,) - 1
L=

5.0 ‘
45 0.
R e Maxmizing the log-likelihood

g 35 s

b &1 "

T ‘~:“ 1 2 1 a2
o ~1ogp(y1x) =5) [log(2mo?) + — (v - 97|
15 # 2 n O-
10 & . ' l=1

AncoraSIR.Com 0.0 0.2 04 s 0.6 08 10

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 17

Bernoulli Output Distributions

Statistical Binary Classification as ¥ = sigmoid(w' h + b)

37 — gActivation[fWeightedSum(h)] = Singid(WTh + b) ° Outputs 5) Bem0u111 dlStI'lbll'[lOIl

ho(=1) Woho * Controlled by a sigmoidal transformation
of the weighted-sum
hy =@ * P(y) = sigmoid[(2y — 1)(w'h + b)]

% e Cost Function

Yes% * Maxmizing the log-likelihood

(No%)
Z z y® log 7@

Weighted
Sum

GRADES

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I

Multinoulli Output Distributions

Statistical Multi-class Classification as § = softmax(W'h + b)

y = YActivation [fWeightedSum(h)] = SOftmaX(WTh + b) ¢ Outputs 5) MUItlHOUlll dlStI'lbuthn
ho(=1) Woho * Controlled by normalized exponentials of

the weighted-sums
hy =@ « ¥ = softmax(W'h + b)

% e Cost Function

A% * Averaged cross-entropy loss

n
1
~— yilog(F) + (1 - yplog(1 - 9)
i=1

exp(0;) Zj eXP(OJ’)

o ’ (x100%)

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 19

Hidden Units within the Hidden Layers

A problem unique to deep neural networks (as they have hidden layers)

* The activation design of hidden units Evaluating ﬁ
* An extremely active area of re.Sf:arch B] 1ts Trial and
* Does not yet have many definitive guiding periormance Error
theoretical principles. ond
PHAEID validation set
Usually impossible

to predict in advance

Input Hidd Output . .
p idden P which will work best

Layer Layers Layer

Training a Intuiting
. that a kind of
network with : .
: hidden unit __
that kind of mav work @
Y Activation [fWeightedSum (X)] = g(s) = g(WTx + b) hidden unit Y X
well gyt

aaaaaaaaaaaaaaaaaaaaaa

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I

Rectified Linear Units and Their Generalizations

g(s) = max{0,s} & g(s,a) = max{0, s} + a min{0, s}

* Like a linear unit, easy to optimize
* Output zero across half its domain => Large derivative whenever the unit 1s active
* The 1st derivative 1s 1 whenever the unit 1s active
* The 2nd derivative 1s 0 almost everywhere (not differentiable at z = 0)
* A good practice to initialize the parameters with a small bias, such as 0.01

Re‘LU Absolute Value Rectification Leaky BeLU Maxput

A

- -
0 : v
/ 0/ [N 0"«
/ / S /' N
g(s) = max{0, s} g(s) = |s] g(s) = max{s, s

AncoraSIR.com sotomnsy

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 21

Logistic Sigmoid & Hyperbolic Tangent
g(s) = sigmoid(s) & g(s) = tanh(s)

* Popular before rectified linear units, used to predict classification probability
* Closely related as tanh(s) = 2 sigmoid(2s) — 1

* Widespread saturation
* Approaching 1 when very positive, or approaching 0/-1 when very negative

« Difficult for gradient-based Logistic Sigmoid Hyperbolic Tangent « Typically performs better
learning 1 1 than the logistic sigmoid

* Discouraged for as hidden y \ * Resembles the identity
units for feedforward 1. = function more closely
network > > « tanh(0) =0

* Accceptable as output unit — * Resembles a linear model
with appropriate cost more closely
function g(s) = sigmoid(s) g(s) = tanh(s) f;:ll};ilt?\f:;x;h

AncoraSIR.com

ME336 Collaborative Robot Learning Lecture 06 Deep Networks I 22

21%#&32%1 Room 606

RN o 7 Innovation Park
s I R Bionic Design & Learning Lab véj 71""' /GIJ 74%:\ 606 jgj

Bionic Design & Learning Lab
@ SIR Group fx#it 5% £k=

Thank you~

songcy(@sustech.edu.cn

G5 Bionic Design
&% & Learning Lab

AncoraSIR.com

mailto:songcy@sustech.edu.cn

