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What 1s a Neural Network?

From biological inspiration to mathematical modeling
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A Perceptron as an Artificial Neuron

Biological Inspiration
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Multi-Layer Perceptrons

Artificial Neural Networks

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or

“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers
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Computation Graph

A simple example with backpropagation

z,Y,2) = (x+y)z iy ay 95 _
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Forward Propogation

Accept inputs to train a Multi-layer Neural Network

Vi = fi(Wey¥y + Weeayia)

Weighted-Sum : Activation

Wy

= non-linear
summing e=X 1W1+x2w2 » element
junction f( e) X,
X; W2
http://galaxy.agh.edu.pl/%7Evlsi/Al/backp t en/backprop.html SUSTech
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Backward Propogation

Calculate the prediction error node-by-node

-

Op = Wy, 04 + Wys05

The idea is to propagate error signal d (computed in single
teaching step) back to all neurons, which output signals
y were input for discussed neuron.

Oy = Wy0

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified.

In formulas on the right, df{e)/de represents derivative of neuron
activation function (which weights are modified).
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Weight Update

Update the weights to finish one iteration of computation, then repeat.
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Wi = Wean 776
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5 d]; ) X, Coefficient 5 affects network teaching speed, to select this parameter: of computation
e

' * The first method is to start teaching process with large value of the
dfi(e) ¥ parameter. While weights coefficients are being established the parameter
de

is being decreased gradually.
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Finish one iteration
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Wae = Wyg +17(>—f6£ )‘1‘4
_df.(e)
X, W'sg=Wsg +770 (ﬁle Vs
y
X;

* The second, more complicated, method starts teaching with small parameter
value. During the teaching process the parameter is being increased when the
teaching is advanced and then decreased again in the final stage. Starting
teaching process with low parameter value enables to determine weights
coefficients signs.
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Deep Forward Networks
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From a Neur()n V = Gactivation [fWeightedSum(X)] = g(WTx + b)

to a Perceptron x,(=1) Wo¥o
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Gradient-based Learning

ML vs NN

* For supervised learning
* NN can be viewed as ML with gradient descent
e an optimization procedure
* acost function
* amodel family

e Difference

* The nonlinearity of a neural network causes most
interesting loss functions to become non-convex

* Neural networks are usually trained by using
iterative, gradient-based optimizers that merely
drive the cost function to a very low value

* Next Steps
* Choose a cost function
*  Choose model output
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r— — » The maximum likelihood estimator for @

Maximum Likelihood as a Cost Function O, = P AR Bl (50)
6

I

Validation I = arg 31@{12 Pmodel(T (@), OJ
I
I
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Metrics ccuracy log, (zy) = log; (z) + log, (y)
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. . 6 L
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[ ] [ ] [ [ [ [ 1 i . .
Learning Conditional Distributions MSEuam = — > [1§® —y@|P

with Maximum Likelihood ifl
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Learning Conditional Statistics
just one conditional statistic of y given x

Validation
Performance Predicts mean value of y for each x
Metrics ceuracy ,
* = argmin ~ — f(x
« Training f & ; Ex,y~paata [|¥ = F(@)l]
a set of m examples Objecotlve Cost — > Optimization — ]
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Outputs Units from Hidden Layers
Features (Inputs) of the Output Units provided by the Hidden Layers

exp(0;)

x100%

¥; = softmax(o;) =

N
Prediction ™.

(x1, y1) Weighted-Sum ) j €Xp (oj)
N Ground Scores 0
S Truth
[Foes
Labelled ™. Daa s
L
Yi

| cat 3.2 24.5 | ewn | 0.13 1.00
% exp(0;) %, exp(oy) How to quantify the
g Car 5.1 164.0 -—'(Xloo%) 0.87 | sifferences between two 0.00
FI‘Og 1.7 0.18 0.00 probability distribution? 0.00
Weighted-Sum Unnormalized Normalized Correct
Scores Probability Probability Label Probability
(logits) (>=0) (9; Sum to 1) Label
Any kind of neural Data Model
network unit that may be Distribution Distribution

h=f(x0) y=f(h used as an output can also \_/

be used as a hidden unit.
Cross-entropy

is a technique
commonly used
in deep neural networks 22"

nnnnnnnnnnnnnnnnnnnnnn
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Gaussian Output Distributions
Multiple Linear Regression asy = W h + b

V = fweignteasum(h) = WTh + b * Linear Unit outputs the mean of a
ho(=1) Woho conditional Gaussian distribution

j wo (= b) s p(y|x) = N(y; y,1)
Py [fidden

* Cost Function
* Loss function as the mean squared error
Sum Score

n

1 5)2

52,0 =)
oy Linear Regression Data, y=4x + 1 + N(0, ) - 1
L=

5.0 ‘
45 0. . . . .
R e Maxmizing the log-likelihood

g 35 s

b &1 "

T ‘~:“ 1 2 1 a2
o ~1ogp(y1x) =5 ) [log(2mo?) + — (v - 97|
15 # 2 n O-
10 & . ' l=1
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Bernoulli Output Distributions

Statistical Binary Classification as ¥ = sigmoid(w' h + b)

37 — gActivation[fWeightedSum(h)] = Singid(WTh + b) ° Outputs 5) Bem0u111 dlStI'lbll'[lOIl

ho(=1) Woho * Controlled by a sigmoidal transformation
of the weighted-sum
hy =@ * P(y) = sigmoid[(2y — 1)(w'h + b)]

% e Cost Function

Yes% * Maxmizing the log-likelihood

(No%)
Z z y® log 7@

Weighted
Sum

GRADES
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Multinoulli Output Distributions

Statistical Multi-class Classification as § = softmax(W'h + b)

y = YActivation [fWeightedSum(h)] = SOftmaX(WTh + b) ¢ Outputs 5) MUItlHOUlll dlStI'lbuthn
ho(=1) Woho * Controlled by normalized exponentials of

the weighted-sums
hy =@ « ¥ = softmax(W'h + b)

% e Cost Function

A% * Averaged cross-entropy loss

n
1
~— yilog(F) + (1 - yplog(1 - 9)
i=1

exp(0;) Zj eXP(OJ’)

o ’ (x100%)
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Hidden Units within the Hidden Layers

A problem unique to deep neural networks (as they have hidden layers)

* The activation design of hidden units Evaluating ﬁ
* An extremely active area of re.Sf:arch B ] 1ts Trial and
* Does not yet have many definitive guiding periormance Error
theoretical principles.  ond
PHAEID validation set
Usually impossible

to predict in advance

Input Hidd Output . .
p idden P which will work best

Layer Layers Layer

Training a Intuiting
. that a kind of
network with : .
: hidden unit __
that kind of mav work @
Y Activation [fWeightedSum (X)] = g(s) = g(WTx + b) hidden unit Y X
well gyt

aaaaaaaaaaaaaaaaaaaaaa
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Rectified Linear Units and Their Generalizations

g(s) = max{0,s} & g(s,a) = max{0, s} + a min{0, s}

* Like a linear unit, easy to optimize
* Output zero across half its domain => Large derivative whenever the unit 1s active
* The 1st derivative 1s 1 whenever the unit 1s active
* The 2nd derivative 1s 0 almost everywhere (not differentiable at z = 0)
* A good practice to initialize the parameters with a small bias, such as 0.01

Re‘LU Absolute Value Rectification Leaky BeLU Maxput

A

- -
0 : v
/ 0/ [N 0"«
/ / S /' N
g(s) = max{0, s} g(s) = |s] g(s) = max{s, s
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Logistic Sigmoid & Hyperbolic Tangent
g(s) = sigmoid(s) & g(s) = tanh(s)

* Popular before rectified linear units, used to predict classification probability
* Closely related as tanh(s) = 2 sigmoid(2s) — 1

* Widespread saturation
* Approaching 1 when very positive, or approaching 0/-1 when very negative

« Difficult for gradient-based Logistic Sigmoid Hyperbolic Tangent  «  Typically performs better
learning 1 1 than the logistic sigmoid

* Discouraged for as hidden y \ * Resembles the identity
units for feedforward 1. = function more closely
network > > « tanh(0) =0

* Accceptable as output unit — * Resembles a linear model
with appropriate cost more closely
function g(s) = sigmoid(s) g(s) = tanh(s) f;:ll};ilt?\f:;x;h
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