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What 1s
Robot Perception?

Making sense
of the unstructured, real, physical world
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A Dynamical System Approach for Softly Catching a
Flylng ObJ ect: Theory and Experiment 10.1109/TRO.2016.2536749
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Perception 1s the organization,
1dentification, and interpretation
of sensory information 1n order
to represent and understand the
presented information or
environment.

Structural digitization
of the unstructured, real, physical world




Information Theory 1s the
scientific study of the
quantification, storage, and
communication of digital
information.

Digital information can be

Physical information has a fixed
rapidly duplicated and easily distributed position in place and time.

stored in multiple locations
created and communicated automatically

stored with varying levels of “discoverability”
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Physical Human-Robot Collaboration

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846

* Safety
» The first and most important feature in collaborative robots

* Generally addressed through collision avoidance (with both humans or obstacles), a feature that
requires high reactivity (high bandwidth) and robustness at both perception and control layers.
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Physical Human-Robot Collaboration

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846

* Coexistence
» The robot capability of sharing the workspace with humans

» This includes applications involving a passive human (e.g., medical operations where the robot is
intervening on the patients’ body), as well as scenarios where robot and human work together
on the same task, without contact or coordination.
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Physical Human-Robot Collaboration

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846

* Collaboration
» The capability of performing robot tasks with direct human interaction and coordination
* Physical collaboration (with explicit and intentional contact between human and robot), and
» Contactless collaboration (where the actions are guided by an exchange of information, e.g., in
the form of body gestures, voice commands, or other modalities).
* Establish means for intuitive control by the human operators, which may be non-expert users.

* The robot should be proactive in realizing the requested tasks, and it should be capable of inferring the
user’s intentions, to interact more naturally from the human viewpoint.
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Physical Human-Robot Collaboration

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846

o ~

The unpredictability of human actions



Common Sensors 1n Robots

Proprioceptive vs. Exteroceptive

https://doi.org/10.1186/s10033-020-00485-9

Legged robots as an example

Sensors for legged robots

| 1

Proprioceptive sensors Exteroceptive sensors
| |
I 1 [ ]
Joint Body Physical information Geometry information
I
[ 1
‘7“ Visual Non-Visual
T |
[ 1 [ | ]
Encoder Torque MU F/T Tactile Binocular RGB-D Radar | | LIDAR Ultrasonic
sensor sensor sensor camera camera sensor
[ I
v v
Kinematics & Dynamics Mapping & Localization
v v
Fully autonomous Global locomotion
reaction planning
Local area Long range
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Common Sensors 1n Robots

Proprioceptive sensors

Sensors for legged robots

https://doi.org/10.1186/s10033-020-00485-9

Legged robots as an example

Exteroceptive sensors

_l Proprioceptive sensors I
|

general on the status of the robot.

BionicDL@SUSTech

Joint Body Physical information Geometry information
I
[ 1
‘7“ Visual Non-Visual
T |
[ 1 [ | ]
Encoder Torque MU F/T Tactile Binocular RGB-D Radar | | LIDAR Ultrasonic
sensor sensor sensor camera camera sensor
I
v v
Kinematics & Dynamics Mapping & Localization
v v
Fully autonomous Global locomotion
reaction planning
Local area Long range

Sense states inside the robot (e.g., joint angle, speed, torque)
=» «  Used by the robot control systems to receive feedback on the execution of motion and in
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Common Sensors 1n Robots

EXterO C eptive S ens Ors https://doi.org/;O. 1 186/310033-020-00;185-9

Sensors for legged robots

Proprioceptive sensors Exteroceptive sensors I
| |
I 1 [ ]
Joint Body Physical information Geometry information
I
‘7“ Visual Non-Visual
T |
[ 1 [ | ]
Encoder Torque MU F/T Tactile Binocular RGB-D Radar | | LIDAR Ultrasonic
sensor sensor sensor camera camera sensor
I
v v
Kinematics & Dynamics Mapping & Localization
v 4
Fully autonomous Global locomotion
reaction planning
Local area Long range
Sense states outside the robot (e.g., proximity, vision)

. Provide the robot control system information <=
. About the environment around the robot (e.g., rover Cameras provide images of the terrain around the rover) and
. About the effect of robot actions on the environment (e.g., the distance between a robot hand and the object it grasps)
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Sensing Modalities for Control

Distance

doi: 10.3389/fnbot.2020.576846
Microsoft Kinect®

SIC
CM P-KCI®
Sa, T4

W

Sony D-Link DCS-5222L.®

Intel Realsense® .

AVT GT®

Syntouch BioTac®

Sharp

Sabh

3Dio Free Space Pro [I®

|QK
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Sensing Modalities Explained

Further Details for Reading

doi: 10.3389/fnbot.2020.576846

 Vision. This includes methods for processing and understanding images, to produce
numeric or symbolic information reproducing human sight.

*  Although image processing is complex and computationally expensive, the richness of this sense is unique. Robotic vision is fundamental
for understanding the environment and human intention, so as to react accordingly.

* Touch. Here, touch includes both proprioceptive force and tact, with the latter
involving direct physical contact with an external object.

*  Proprioceptive force is analogous to the sense of muscle force. The robot can measure it either from the joint position errors or via torque
sensors embedded in the joints; it can then use both methods to infer and adapt to human intentions, by relying on force control.

*  Human tact, on the other hand, results from activation of neural receptors, mostly in the skin. These have inspired the design of artificial
tactile skins, thoroughly used for human-robot collaboration.

e Audition. In humans, localization of sound is performed by using binaural audition
(i.e., two ears).

* By exploiting auditory cues in the form of level/time/phase differences between left and right ears we can determine the source’s
horizontal position and its elevation. Microphones artificially emulate this sense, and allow robots to “blindly” locate sound sources.
Although robotic hearing typically uses two microphones mounted on a motorized head, other non- biological configurations exist, e.g., a
head instrumented with a single microphone or an array of several omni-directional microphones.

* Distance. This is the only sense among the four that humans cannot directly measure.

*  Yet, numerous examples exist in the mammal kingdom (e.g., bats and whales), in the form of echolocation. Robots measure distance with
optical (e.g., infrared or lidar), ultrasonic, or capacitive (Goger et al., 2010) sensors. The relevance of this particular “sense” in human-
robot collaboration is motivated by the direct relationship existing between the distance from obstacles (here, the human) and safety.
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Sensor-Based Control

Basic Formulation

. L. doi: 10.3389/fnbot.2020.576846
* Sensor-based control aims at deriving the robot control

input u that minimizes a trajectory error e = e(u), which
can be estimated by sensors and depends on u.

* u: operational space velocity, joint velocity, displacement,
etc.

u = arg minz lle(w)||?
u

* A general way of formulating this controller is as the
quadratic minimization problem

 actuation redundancy dim(u) > dim(e),
» sensing redundancy dim(u) < dim(e), and
* task constraints
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Sensor-Based Control

Basic Formulation

* Sensor-based control aims at deriving the robot control

input u that minimizes a trajectory error e = e(u), which

can be estimated by sensors and depends on u.

* u: operational space velocity, joint velocity, displacement,
etc.

u = arg minz lle(w)||?
u

* Inverse Kinematics Problem

* Letu = q, Given x,
* Solve: a designed value of x*

BionicDL@SUSTech ME336 Collaborative Robot Learning

doi: 10.3389/fnbot.2020.576846

Controlling the robot joint
velocities g, so that the end-
effector operational space
position x converges to a
desired value x*
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Sensor-Based Control

Basic Formulation

. L. doi: 10.3389/fnbot.2020.576846
* Sensor-based control aims at deriving the robot control

input u that minimizes a trajectory error e = e(u), which
can be estimated by sensors and depends on u.

* u: operational space velocity, joint velocity, displacement,
etc.

u = arg minz lle(w)||?
u

e Inverse Kinematics Problem
* Letu=q, Given x,
* Solve: a designed value of x*
* Define: x* = —A(x — x*) as desired end-effector rate (1 > 0)
* Set:e=Jq—x" (J =0x/0q: Jacobian matrix)
A is a positive tuning scalar that
determines the convergence
rate of task error e to 0
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Sensor-Based Control

Basic Formulation

. L. doi: 10.3389/fnbot.2020.576846
* Sensor-based control aims at deriving the robot control

input u that minimizes a trajectory error e = e(u), which
can be estimated by sensors and depends on u.

* u: operational space velocity, joint velocity, displacement, A X* X

etc. G ?C

Ve .\C =
u = arg min— ||e(w)||?
u 2
* Inverse Kinematics Problem c ] D

¢ Letu = gq, Givenx, h A5
. o . ) il

Solve: a designed value of x i £l
* Define: x* = —A(x — x*) as desired end-effector rate (1 > 0) \T(f"@ i é 9
e Set:e=Jqg—x" (J=0x/0q)

. C e 4k For simplicity, we assume there are no constraints in
Solution: q= J'x this formulation, although off-the-shelf quadratic

e J*isthe generalized inverse of | programming solvers could account for them.

* Nocedal, J., and Wright, S. (2000). Numerical
Optimization. Springer Series in Operations
Research and Financial Engineering. doi:
10.1007/b98874
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 Set-point controller: g = —J"A(x — x*)



Sensor-Based Control

The four types that are commonly used in collaborative robots

doi: 10.3389/fnbot.2020.576846

Indirect force
control: by applying
a wrench, the user
deviates the contact
point away from a
reference trajectory.

Visual servoing:
the user hand is
centered in the
camera image.

C D

Audio-based control: u 4(“‘,:\ Distance-based

a microphone rig is /:;--.\.5.?) control: the user
automatically oriented acts as a repulsive
toward the sound d force, related to

his/her distance from
the robot.

source (the user’s
mouth)
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Visual Servoing S

The use of vision to control robot motion @

The error e is defined with regards to some image features,
here denoted by s, to be regulated to a desired configuration s*

* s is analogous to x in the inverse kinematic formulation | Inverse Kinematics Problem

* Letu = q, Given x,
* Solve: a designed value of x*

e Define: x* = —A(x — x*)
« Set:e=Jq—x" (J=0x/0q)
. . . . * : . A - + Lk
The visual errorise =§— § Solution: § =J &
» J7 is the generalized inverse of J
Hardware Specific To Be Measured To Be Calculated * Set-point controller: § = —J*A(x — x*)

Flange

Flange
Camera
Gripper

Base Base

L T Tt A
(a) Eye-in-Hand (b) Eye-on-Base (c) Learning-based
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Visual Servoing R

The use of vision to control robot motion @

* The error e 1s defined with regards to some image features,
here denoted by s, to be regulated to a desired configuration s*

* s is analogous to x in the inverse kinematic formulation

e The visual errorise = § — §*

» Uses images, calibrated
camera and known geometry
model of the target to

a Position-based visual servo

* Position-based it s 1s defined . s [

+—  Joint

. . ~ | control controller determine the pose of the
in the 3D operational space [ — target with respect to the
. . camera.
* PTOJeCtmg the taSk from the Pose |4 Feature | * Control is performed in task
image to the operational %r f space SE(3).
space to obtain x and then :
apply q == _]+A (x - x*) b Image-based visual servo ¢ Uses the image feature
directly omitting the pose
s BVS | Joint . estimation step.
— control controller « Control is performed in
* Image-based if s is defined in S iniags oondinals space K-
the image space 7 e 2

CES
SUSTech
AncoraSIR.com Potaticn
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X* X

Visual Servoing Bt ’ ?

The use of vision to control robot motion @ centroid of

human hand

* Image-based 1t s 1s defined in the image space
e The visual errorise = § — §™ X and Y as the coordinates

* The simplest image-based controller uses s = [X,Y]T ofanimagepixel, to
generate u that drives s to

a reference s* = [X*, YV*]|T

* Defining e as s — 5" = X=X Gith & /1).(_).(]
y —v* Y-Y*
» If we use the camera’s 6D velocity as the control input u = v, the image

Jacobian (/nteraction) matrix relating [X ) Y] and U is:
1 X

l -z V7 Xxr -1-x*vY ¢ denotes the depth of the point

* = with respect to the camera

1 Y
0 —- = 2 _ —
;7 1+7Y XY —X

* In the absence of constraints, the solution of u = arg min % lle(w)]|? is
u

*uU=v= _];A[X_X*]

Y-Y*
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A X* X

Visual Servoing R,

Application to Human-Robot Collaboration @ centroid of

human hand

1) Object Selection

= Ready for

User Input

|

7) Return to User

- Selection

10.1109/CRV.2015.39 10.1155/2011/698079
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Touch (or Force) Control

Requires measurement of one or multiple wrenches A

(in the case of tactile skins)

* The measured wrenches & are (at most) composed of three translational
forces, and three torques

* h is fed to the controller that moves the robot so that it exerts a desired
interaction force with the human or environment.

* Force control strategies
 Direct control regulates the contact wrench to obtain a desired wrench h*.

* Specifying h* requires an explicit model of the task and environment.
* i.e., Hybrid position/force control

 Indirect control does not require an explicit force feedback loop.

* Impedance control | Admittance control (Hogan, 1985)
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Touch (or Force) Control

Requires measurement of one or multiple wrenches A

(in the case of tactile skins)
* Direct force control regulates the contact wrench to obtain a desired
wrench h™.
» Specifying h* requires an explicit model of the task and environment.

* Hybrid position/force control, which regulates the velocity and wrench
along unconstrained and constrained task directions, respectively.

u = arg minE lle(w)||?
u

 This is equivalent to settinge = S(x — x*) + (I — S)(h — h")

S§ = ST > 0: a binary diagonal selection matrix | I : the identity matrix.

* Applying a motion u that nullifies e guarantees that the components of x
(respectively h) specified via § (respectively I — S) converge to x* (respectively h*).
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Touch (or Force) Control

Requires measurement of one or multiple wrenches A

(in the case of tactile skins)
 Indirect force control does not require an explicit force feedback loop.
* Impedance control | Admittance control (Hogan, 1985)

* Modeling the deviation of the contact point from a reference trajectory x" (t)
associated to the desired h*, via a virtual mechanical impedance with adjustable
parameters

* this is equivalent to settinge = M(X —X") + B(x —x") + K(x —x") — (h — h")
* inertia M, damping B, and stiffness K
« Xx represents the “deviated” contact point pose, with x and X as time derivatives.

*  When e = 0, the displacement x — x" responds as a mass-spring-damping system under the action of an
external force h — h*.
* In most cases, x" (t) is defined for motion in free space (h* = 0). u = arg min E ” e(u) ” 2
u

* The general formulation above can account for both impedance control (x 1s measured and
u = h) and admittance control (h measured and u = x).
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=N

Audio-Based Control Qéj &

To locate the sound source and move the robot toward it.

* For simplicity, we present the two-dimensional binaural (1.e.,
with two microphones) configuration with the angular
velocity of the microphone rig as control input: u = «

u = arg minE lle(w)||?
* Two popular methods for defining error e ’

 Interaural Time Difference (ITD) based aural servoing

* Uses the difference t between the arrival times of the sound on each
microphone

* 7 must be regulated to a desired 7*

 Interaural Level Difference (ILD) based aural servoing
» Uses p, the difference in intensity between the left and right signals

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



b

Audio-Based Control Q@; &

To locate the sound source and move the robot toward it.

* Interaural Time Difference (ITD) based aural servoing

e Uses the difference T between the arrival times of the sound on each
microphone; T must be regulated to a desired 7*

» Setting e = 7 — 7", with the desired rate T = —A(t — ") (to obtain set-
point regulation to 7*)

» Feature 7 can be derived in real-time by using standard cross-correlation of the
signals. Under a far field assumption:

v e=t—t"=—(JB/Z - )u-1

* c the sound celerity and b the microphones baseline.

* The scalar ITD Jacobian is J, = —\/ (b/c)? — 12

 The motion that minimizes e is u = —AJ;1(t — %)
* locally defined for a € (0,m), to ensure that [J,| = 0
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Audio-Based Control , &

To locate the sound source and move the robot toward it.

* Interaural Level Difference (ILD) based aural servoing
» Uses p, the difference in intensity between the left and right signals

: : : : : : E
* This can be obtained in a time window of size Nas p = E—l
r

«  Ep = YN_o¥in[n]? denote the signals’ sound energies
Yinln] are the intensities at iteration 7.
» To regulate p to a desired p*, one cansete = p — p* with p* = —A(p — p*). Assuming
spherical propagation and slowly varying signal:

« e=p—p'= Yslp+1)b p* * Y is the sound source frontal coordinate in the moving auditory frame
L7 * L, is the distance between the right microphone and the source
. . +1)b
* The scalar ILD Jacobian is J, = %
T
* The motion that minimizes e is u = —/1];1(,0 —p¥)

| ;1 is defined for sources located in front of the rig.

e In contrast with ITD-servoing, here the source location (i.e., y. and L,.) must be
known or estimated.
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Distance-Based Control %
The user acts as a repulsive force, related to his/her distance from the robot

e The simplest (and most popular) distance-based controller is the artificial
potential fields method

* Despite being prone to local minima, it has been thoroughly deployed both on
manipulators and on autonomous vehicles for obstacle avoidance.

* Besides, it is acceptable that a collaborative robot stops (e.g., because of local
minima) as long as it avoids the human user.

* The potential fields method consists in modeling each obstacle as a source of
repulsive forces, related to the robot distance from the obstacle

* All the forces are summed up resulting in a velocity in the most promising direction.

* Given d, the position of the nearest obstacle in the robot frame, the original version
(Khatib, 1985) consists in applying operational space velocity
(2 \_L irid d
. u= (m - a) maiz flldll <do, 4 > 0is the (arbitrarily tuned) minimal
0 otherwise distance required for activating the controller.
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Distance-Based Control R@

The user acts as a repulsive force, related to his/her distance from the robot

1 1 1 .
2 (m — d—o) o iflldll < d

0 otherwise
abrupt accelerations, more recent versions adopt a linear behavior.

* Since the quadratic denominator in u = yields

* This can be obtained by setting e = x — x* with x* = A(1 — d,/||d||)d as
reference velocity

. e=x—,1( —”%On)d

» By defining as control input u = X, the solution to u = arg min % lle(w)]|? is:

p u
. u=/1( —”T"”)d
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10.1109/ACC.1995.529274

Integration of Multiple Sensors

Integrating multiple sensors in a unique controller

* Just like natural senses, artificial senses provide complementary

information about the environment.
* Hence, to effectively perform a task, the robot should measure (and use for

control) multiple feedback modalities

* Challenges to the control design,
* e.g., sensor synchronization, task compatibility, and task representation.

* Three methods for combining N sensors within a controller
* Traded.: the sensors control the robot one at a time.

* Shared: All sensors control the robot throughout operation.
» Hybrid: the sensors act simultaneously, but on different axes of a predefined

Cartesian task-frame.
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Integration of Multiple Sensors

Integrating multiple sensors in a unique controller

* Traded: the sensors control the robot one at a time.
* Predefined conditions on the task trigger the switches:

argmin|le; (w)||? if (condition 1) = true
u

u= :
argmin|ley(uw)||? if (condition N) = true
u

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



10.1109/ROBOT.1998.677418
10.1109/ICRA.2014.6906917
10.1109/IROS.2013.6697019

Integration of Multiple Sensors

Integrating multiple sensors in a unique controller

Shared: All sensors control the robot throughout operation.
* 1i.e., nested control loops for shared vision/touch control
* u=arg muinlle,-(u, u,)||? such that u, = arg nrlllinlleo(uo)ll2

s (Visual feature extraction)‘

x’" f )
Visual servoing w Touch control >.d

= a50 m1n||ev||J L’W—’ (admittance) Bi0lrot

_ : 2
Cu—xu, =i e, =e, X = arg min||eg|
. applymge =§—5" h |4)\ 4

e =é
* applyinge=M(Xx—-X")+B(x—-—x")+Kx—x")— (h—h")

The most common scheme for shared vision/touch (admittance) control
* The goal is to obtain desired visual features s* and wrench h*, based on current image I and wrench h.
»  The outer visual servoing loop based on error e = § — §* outputs a reference velocity x” that is then
deformed by the inner admittance control loop based on errore = M(X — x") + B(x — x") +
K(x — x") — (h — h™), to obtain the desired robot position x.
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10.1109/ROBOT.1998.677418
10.1109/ICRA.2014.6906917
10.1109/IROS.2013.6697019

Integration of Multiple Sensors

Integrating multiple sensors in a unique controller

* Hpybrid: the sensors act simultaneously, but on different axes of a predefined
Cartesian task-frame.

» The directions are selected by binary diagonal matrices S;, j = 1, ..., N with the
dimension of the task space, and such that Z?’:l S=1

* u=arg mlin||2§y=1 Sjej(“)”2

« To express all e in the same task frame, one should apply 2V, and/or & VL when
transforming 6D velocities or wrenches to a unique frame
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TABLE 1 | Classification of all papers according to four criteria: sense(s) used by the robot, objective of the controller, target sector, and type of robot.

References Sense(s) Control objective Sector Robot
Cai et al. (2016) and Gridseth et al. (2016) Vision Contactless guidance Service Arm
Gridseth et al. (2015) Vision Remote guidance Service Arm
Dune et al. (2008), Tsui et al. (2011), and Narayanan et al. (2016) Vision Contactless guidance Medical Wheeled
Agustinos et al. (2014) Vision Contact w/humans Medical Arm
Bauzano et al. (2016) Touch Contact w/humans Medical Arm
Remote guidance
Cortesao and Dominici (2017) Touch Contact w/humans Medical Arm
Maeda et al. (2001), Suphi Erden and Tomiyama (2010), Suphi Erden and Touch Direct guidance Production Arm
Maric (2011), and Ficuciello et al. (2013)
Wang et al. (2015) Touch Carrying Production Wheeled
Bussy et al. (2012) Touch Carrying Production Humanoid
Baumeyer et al. (2015) Touch Remote guidance Medical Arm
Kumon et al. (2003, 2005), Magassouba et al. (2016b) Audition Contactless guidance Service Heads
Magassouba et al. (2015, 2016a,c) Audition Contactless guidance Service Wheeled
De Santis et al. (2007), Flacco et al. (2012), and Schlegl et al. (2013) Distance Collision avoidance Production Arm
Leboutet et al. (2016), Bergner et al. (2017), and Dean-Leon et al. (2017) Distance Collision avoidance Service Arm
Cherubini et al. (2016) V+T (tra.) Assembly Production Arm
Okuno et al. (2001), Okuno et al. (2004), and Hornstein et al. (2006) V+A(tra.) Contactless guidance Service Heads
Chan et al. (2012) V+A(tra.) Contactless guidance Service Wheeled
Papageorgiou et al. (2014) V+T+A+D Direct guidance Medical Wheeled
(tra.)
Navarro et al. (2014) D+T(tra.) Collision avoidance Production Arm
Huang et al. (1999) D+A(tra.) Collision avoidance Service Wheeled
Natale et al. (2002) V+A(sh.) Contactless guidance Service Heads
Pomares et al. (2011) V+T(hyb.) Collision avoidance Production Arm
Chatelain et al. (2017) V+T Contact w/humans Medical Arm
(hyb.) Remote guidance
Agravante et al. (2013, 2014) V+T Contact w/humans Production Humanoid
(sh.+hyb.)
Cherubini and Chaumette (2013), Cherubini et al. (2014) D+V Collision avoidance Production Wheeled
(sh.+hyb.)
Dean-Leon et al. (2016) D+T Direct guidance Service Arm
(sh.+tra.)
Cherubini et al. (2015) V+T Assembly Production Arm
(sh.+hyb.) 10.3389/fnbot.2020.576846




TABLE 4 | Classification based on target/potential sectors.

Production
(manufacturing,
transportation,
construction)

Medical (surgery,
diagnosis,
assistance)

Service
(companionship,
domestic, personal)

TABLE 5 | Classification based on the type of robot platform.

Touch (Maeda et al., 2001; Suphi Erden and Tomiyama, ~ Arms Vision (Agustinos et al., 2014; Gridseth et al., 2015, 2016; Cai
2010; Suphi Erden and Maric, 2011; Bussy et al., 2012; et al., 2016), touch (Maeda et al., 2001; Suphi Erden and
Ficuciello et al., 2013; Wang et al., 2015), distance (De Tomiyama, 2010; Suphi Erden and Maric, 2011; Ficuciello
Santis et al., 2007; Flacco et al., 2012; Schlegl et al., etal., 2013; Baumeyer et al., 2015; Bauzano et al., 2016;
2013), Cortesao and Dominici, 2017), distance (De Santis et al.,
2007; Flacco et al., 2012; Schlegl et al., 2013; Leboutet et al.,
D+T (Navarro et al., 2014) V+T (Pomares et al., 2011; 2016; Bergner et al., 2017; Dean-Leon et al., 2017),
Agravante et al., 2013, 2014; Cherubini et al., 2015, o
2016), V+T (Pomares et al., 2011; Cherubini et al., 2015, 2016;
Chatelain et al., 2017), D+T (Navarro et al., 2014; Dean-Leon
V+D (Cherubini and Chaumette, 2013; Cherubini et al., et al., 2016)
2014) Wheeled Vision (Dune et al., 2008; Tsui et al., 2011; Narayanan et al.,
Vision (Dune et al., 2008; Tsui et al., 2011; Agustinos 2016), touch (Wang et al., 2015), audition (Magassouba et al.,
etal,, 2014; Narayanan et al., 2016), touch (Baumeyer 2015, 2016a,b), V+A (Chan et al., 2012), V+T+A+D
et al.,, 2015; Bauzano et al., 2016; Cortesao and (Papageorgiou et al., 2014), D+A (Huang et al., 1999),
Dominici, 2017), V+D (Cherubini and Chaumette, 2013; Cherubini et al., 2014)
V+T+A+D (Papageorgiou et al., 2014), V+T (Chatelain Humanoids Touch (Bussy et al., 2012), V+T (Agravante et al., 2013, 2014)
etal,, 2017) Heads Audition (Kumon et al., 2003, 2005; Magassouba et al.,

Vision (Gridseth et al., 2015, 2016; Cai et al., 2016),
audition (Kumon et al., 2005; Youssef et al., 2012;
Magassouba et al., 2015, 2016a,b,c),

distance (Leboutet et al., 2016; Bergner et al., 2017;
Dean-Leon et al., 2017), V+A (Okuno et al., 2001, 2004;
Natale et al., 2002; Hornstein et al., 2006; Chan et al.,
2012),

D+A (Huang et al., 1999), T+D (Dean-Leon et al., 2016)

TABLE 2 | Classification based on the sensors.

2016b), V+A (Okuno et al., 2001, 2004; Natale et al., 2002;
Hornstein et al., 2006)

Vision

Touch

Audition

Distance

Dune et al., 2008; Tsui et al., 2011; Agustinos
et al., 2014; Gridseth et al., 2015, 2016; Cai
et al., 2016; Narayanan et al., 2016

Maeda et al., 2001; Suphi Erden and
Tomiyama, 2010; Suphi Erden and Maric,
2011; Bussy et al., 2012; Ficuciello et al.,
2013; Baumeyer et al., 2015; Wang et al.,
2015; Bauzano et al., 2016; Cortesao and
Dominici, 2017

Kumon et al. (2003, 2005), Youssef et al.
(2012), Magassouba et al. (2015, 2016a,b,c)

De Santis et al., 2007; Flacco et al., 2012;
Schlegl et al., 2013; Leboutet et al., 2016;
Bergner et al., 2017; Dean-Leon et al., 2017

Mono

tra. (Cherubini et al., 2016),

hyb. (Pomares et al., 2011;
Chatelain et al., 2017)

sh.+hyb. (Agravante et al., 2013,
2014; Cherubini et al., 2015)

tra. Okuno et al. (2001, 2004),
Hornstein et al. (2006), Chan

et al. (2012), Papageorgiou et al.
(2014), sh. (Natale et al., 2002)

sh.+hyb. (Cherubini and

2014)

sh.+tra. (Dean-Leon et al.,

TABLE 3 | Classification based on the control objective with corresponding pHRI
layer as proposed in De Luca and Flacco (2012) (in parenthesis).

Collision avoidance
(safety)

Contact with passive
humans
(coexistence)

Contactless guidance
(collaboration)

Direct guidance
(collaboration)

Remote guidance
(collaboration)

Collaborative assembly
(collaboration)
Collaborative carrying
(collaboration)

Distance (De Santis et al., 2007; Flacco et al., 2012;
Schlegl et al., 2013; Leboutet et al., 2016; Bergner et al.,
2017; Dean-Leon et al., 2017), distance+touch (Navarro
et al., 2014),

Distance+audition (Huang et al., 1999), vision+touch
(Pomares et al., 2011),

Vision+distance (Cherubini and Chaumette, 2013;
Cherubini et al., 2014)

Vision (Agustinos et al., 2014), touch (Bauzano et al.,
2016; Cortesao and Dominici, 2017),

Vision+touch (Chatelain et al., 2017)

Vision (Dune et al., 2008; Tsui et al., 2011; Cai et al.,
2016; Gridseth et al., 2016; Narayanan et al., 2016)
Audition (Kumon et al., 2005; Youssef et al., 2012;
Magassouba et al., 2015, 2016a,b,c)

Vision+audition (Okuno et al., 2001, 2004; Natale et al.,
2002; Hornstein et al., 2006; Chan et al., 2012)
Touch+audition+distance-+vision (Papageorgiou et al.,
2014),

Touch (Maeda et al., 2001; Suphi Erden and Tomiyama,
2010; Suphi Erden and Maric, 2011; Ficuciello et al.,
2013), touch+distance (Dean-Leon et al., 2016)

Vision (Agustinos et al., 2014; Gridseth et al., 2015),
touch (Baumeyer et al., 2015; Bauzano et al., 2016),
Vision+touch (Chatelain et al., 2017)

Vision+touch (Cherubini et al., 2015, 2016)

Touch (Bussy et al., 2012; Wang et al., 2015),
vision+touch (Agravante et al., 2013, 2014)

tra. (Papageorgiou et al.,

10.3389/fnbot.2020.576846

tra. (Huang et al., 1999;

Papageorgiou et al., 2014)

tra. (Navarro et al., 2014)

Chaumette, 2013; Cherubini 2016)
etal., 2014)
Vision Touch

“haoyang

Audition




Difterentiate Robots & Mechanisms

The ability to adapt to changes of their subjects of operation or of their operating environment

* To understand the surrounding environment

* To derive a set of actions from a high-level goal

* To implement (actuate and control) these actions



Robot Perception

Physically implemented by sensors and by dedicated processing of the data they produce

e To understand the surrounding environment

* To implement (actuate and control) these actions




Why do robots need
to see?







From Animals, to Computers, then Robots

)

%

Original picture Gradient image

Early results in computer vision for estimating the shape and pose of objects,
from the PhD work of L. G. Roberts at MIT Lincoln Lab in 1963.

Ll natilon, —— ) image
, reflection — . > transduction
VAALErLO L s fl Light | formation (L)Le ht 0 Robotics, Vision
w
properties ﬁ’;‘; ng censor and Control by
- - - Peter Corke

digital image

et __| feature >

processing [digital| extyaetion image features Vviston-
Lmaae
L bused
> Robot
multL-view Control
QCDMCtY!j 2d structure
et camera motion

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



What Does Vision Tell Us About the World?

Or the Robot as a Machine

Vision System Display

e Static features
e Distance

Color

Shape

Texture

Environment

Good oil filter Reject oil filter
(all holes are open) (some holes are blocked)

* Dynamic motions
* Understanding of the behavior
* An important method to interact with the physical world

2/23/23 Bionic Design & Learning Group 50



Differentiating Concepts about Vision

O Signal Processing involves processing electronic signals to either
clean them up, extract information, prepare them to output to a display
or prepare them for further processing. Anything can be a signal, more

or less.

O Image Processing techniques
are primarily used to improve
the quality of an image,
convert it into another format
(like a histogram) or
otherwise change it for
further processing.

Signal
Processing

\ 7
N~ e o e e e e e 9 —_— X
SR— 2N \|
| Engineering Machinq Robot |
| Domain Vision | Vision I
\ ) !
____________: Scientific & :

| Engineering |
\ Domain !
N /

—— — — — — — —

O Machine Vision refers to the industrial use of

vision for automatic inspection, process control
and robot guidance.

2/23/23

Bionic Design & Learning Group

O Computer Vision is more about
extracting information from images
to make sense of them.

O Machine Learning is focused on
recognizing patterns in data.

O Robotic Vision involves using a
combination of camera hardware
and computer algorithms to allow
robots to process visual data from
the world and execute physical
actions.

51




Differentiating Concepts about Vision

Electrical signals Electrical signals
Images Information/features
Pattern Recognition/Machine Learning {080 ssst:1500 075 {1008 (o1 Information
Images Information
Images Physical Action

Signal Machine
Processing Learning

Image Computer
Vision

a goal oriented machine that
can sense, plan and act

Processing
Machine

Vision
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What 1s Vision?

Vision System

* Visual perception L e

1s the act of

observing patterns aso Siag N
and Obj eCtS -rreetrinnpaoral_’ - ;r:trinnpaoral ] He

through sight Optic nerve

Optic chiasma

A

Lateral geniculate
nucleus (LGN)

Primary visual cortex

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



What 1s Vision?

Vision System

P=(X,Y,2)
World coordinate system

* Visual systems
allow us to build a
model of the
physical world.

optical axis

coordinate
system

=

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



Formulation of An Image
As a 2D sampling of signal

Signal: function A
depending on Illumination (energy)

.
some variable “;7/ l\ source

with physical
meaning.

L[]

Imaging system

(Internal) image plane

Scene element

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



Formulation of An Image

Asa?2D

Signal: function
depending on
some variable
with physical
meaning.

Scene element

sampling of signal
Can be other physical values
, too: temperature, pressure,

depth ...

Illumination (energy)

,7?\

Imaging system

(Internal) image plane

20
Annual Mean Temperature

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



Formulation of An Image
As a 2D sampling of signal

Sienal: funct " Image: sampling of that
dé%eﬁdingngnlon Illumination (energy) A function.
e 2 variables: xy coordinates
e 3 variables: xy + time
(video)
* ‘Brightness’ is the value of
the function for visible light

with physical
meaning.

o
some variable “:7/ L\ source

Imaging system aninankstyletsid |

(Internal) image plane

Scene element T

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



Sampling Physical World Using Images
Physical Understanding of Images

e Sampling in 1D takes a function

A sample A ¢ ¢
/\ Sampley and returns a vector whose
< o elements are values of that
= - function at the sample points.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



Sampling Physical World Using Images
Physical Understanding of Images

e Sampling in 1D takes a function

A A .
SzlmpIch *
and returns a vector whose
elements are values of that
- - function at the sample points.
\,’\}/_g_ >
/ L — « Sampling in 2D takes a

function and returns a matrix.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



Sampling Physical World Using Images
Physical Understanding of Images

A S, A .
ample D °
<
- — Grayscale Digital Image

R
/ / 5 7 Q]plk‘qn

‘ .
! .
S . .
[+ i H H
1. .
e —
]
— i AL
; ) ; )

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang
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Sampling Physical World Using
High-framerate Depth Sensing




Image Representation

Example of a grayscale [0, 1] image within a planar area of size [m, n]

In [1]:

import numpy as np
from numpy import random as r

Ih [2]:

from matplotlib import pyplot as p
I = r.rand(100,100);

Pixel as picture element
NOT A SQUARE !!!

In [3]:

p.imshow(I, cmap="gray", vmin=0.0, vmax=1.0);
p.colorbar()

I[e,1]
255 | 255 | 255 4 4 49 255 | 255 | 255
Out[3]: 255 | 255 | 255 6 44 4 255 | 255 | 255
©.9564898647579192 255 | 255 | 255 68 4 46 8 255 | 255 | 255
10 / 60
60 638 6 4
08 0] 40 O
06
60
04 —
e 2 5o A T 255 | 255 | 255 62 44 4 255 | 255 | 255
:;ﬁ-_. VRN A Ly S 02
. I-.);_L'-" 1-'. ] B \ 68 4 46 8
ﬁ;&j -u':: '::""':;J-“f': :\‘*{‘.?ﬁ ’zﬁl; 255 | 255 | 255 255 | 255 | 255
Y o e ST - B
Tl T S 0.0 255 | 255 | 255 60 4 48 |6 255 | 255 | 255
0 20 4 60 80
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Formulation of An Image

As a 2D sampling of signal

Signal: function !
. AT
depending on some @) umination (enerey) A Can be other
. . /”/’ source AT physwal values
variable with /l\ A
] ] ittty too: temperature,
phys1ca1 meaning. , s pressure, depth

Imaging system

(Internal) image plane

Scene clement Image: sampling of that function.

e 2 variables: xy coordinates

* 3 variables: xy + time (video)

* ‘Brightness’ is the value of the
function for visible light

AncoraSIR.com
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Sampling Physical World Using Images

Physical Understanding of Images

Sample, . Sampling in 1D takes a function, and returns a
—_— vector whose elements are values of that
function at the sample points.
— — —
Grayscale Digital Image
et > Brightness e
G or intensity
s, - SﬂmplezD
Sampling in 2D

takes a function
and returns a

; I ke i it
matrix. e

2/23/23
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An RGB Image

bluwe plane

green plane

2/23/23 Bionic Design & Learning Group 65



A Robotic Way of Interpreting Images

An important method of sensing the environment

* Computer Vision Machine Vision
« Digitization of physical world in multi-dimensional linear algebra  actually measures

* Physical meaning is not a required way of interpretation or usage but no ac.tw;
required.

* Robotic Vision
» Same as Computer Vision, but with a focus on Physical Interpretation
* Because actions need to be executed by a robot and people might get hurt

Image Size: u, v Time Series: ¢ Other variables

Heatmap: H
Color Space: Red, Green, Blue Temperature: T

Grayscale: Gray A %

. ) [0, 1] as normalized form, not an integer
Point Cloud: x(u’ V), y(u’ V), Z(u’ V) [0, 255] as a byte number of range 25=256 from 0 to 255
all in integer forms I

Texture: r(x, y, z), g(x, y, 2), b(x, y, 2)

AncoraSIR.com
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175 .
3/5 Other variables

4/5 Heatmap: H
Temperature: T

50 40 20 20 <10 0 10 2 30
Annual Mean Temperature

Texture:
rx, y, z),
g(x, y, 2),
b(x, y, z)

Point Cloud: x(u, v), y(u, v), z(u, v)

AncoraSIR.com
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Perspective Transform

Camera Models

Lens Law 1 + i _ 1 the focal length perspective f X y= fz
P Zo vf\ of the lens projection ’
the distance the distance f homo
geneous
to the object to the image P=(X,Y,2) ~»p=(x)) form i
m (X,Y,2) p=,y,7)
: x’:ﬁl,y’:ﬁ,,z’:Z

SSo o ___

|
i
|
I fguivalent /
: Al hole Z
|
! | o}’t[
! < o p i
Z < ~1A S P
,:,><f l bnverted S —
|
focal points &= i | bmage Z ~_|
KY)
. 1 3 ,
Image formation geometry | 7% ' oweR
lens |1 |p' '\‘V\X. ZC
. | 'S The central- A origin
the need to focu; 1s the tradeoff ! | 3 projection . / w
for j[he 1nc'r'eased light- | | model W e
gathering ability of a lens | : :l}
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Characteristics

Perspective Transform

* A mapping from 3D space to the 2D image plane

* Straight lines in the world are projected to straight
lines on the image plane. h

* Parallel lines in the world are projected to lines that
intersect at a vanishing point.

* The exception are lines in the plane parallel to the
image plane which do not converge.

* Conics in the world are projected to conics on the
image plane. @

y
e

P-— (X, Y,Z)—f>p=(x,y)

®

* The mapping is not one-to-one and a unique
inverse does not exist.

* The transformation is not conformal

It does not preserve shape since internal angles are not
preserved, different from translation, rotation and

ling.
AncoraSI (.:c%m g
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Retinal Image Plane Coordinates

Written in homogeneous form

P=(X,Y,2)

Cp—T.'P

homogeneous form

P=(X,Y,2) »P=(X,Y,Z,1)"
=Ly S g :
z z camera matrix )
X Y f 0 o)X f 0 0 O .
x:f?ysz p=|0 f ofy p=|0 f 0 o|°P
0 0 11Z 0 0 1 0
f o 0][1
v v ﬁ: 0 f 010
f— > P — / /
p=(%y) homogeneous form p=.02) 0 0 1)0
_x Y
X = 2 Y= o What about the physical coordinates

on the actual image?

AncoraSIR.com
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Express w.r.t the Camera

Physical Meanings of Camera Pixels

* A camera sensor with a WX H grid of image pixels

* The pixel coordinates (u, v) light sensitive
o S . P=(X,Y,Z) photosites
Principal point in pixel coordinate
yorr U
Uu=—=+uy,v=-=-—+4+v, TH
sfss
Pw Ph < ”==’== g
e
/ > T ‘q”H”" g
. . . M ST
width and height of each pixel His><Q ==i= ii";f=<==== -
SEgEEE S8 LN
/ / EEnSGrs gslf sBsesis
p = (U, v, w) _uv v ===ZE 1§!E====h’< s
'y » Vs U=—7FV=—7 =‘== g =‘=>====;
pixel coordinate W W H ﬁiﬁi ii’i;ﬁ;.}
of Z) 4.
camera (projection) matrix Eﬁﬁg, =====ﬁiﬁ [ > s
'“EE.‘ ’=="' origin
~ — (0
p=| 0 1/p, v |0 f 0 of°P e ¢
A

0 0 1J0 0 1 0 /
r— !
camera parameter matrix

AncoraSIR.com
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Camera Projection In General Form

Still, something 1s missing

* The 3x4 Camera Calibration Matrix cp_1-1p -
* Performs scaling, translation and ’
perspective projection > e P
Y el
flp, 0 u)l 0 0 0 ) 8
p=| 0 flp, vllo 1 0 of°T.)'P
0 0 10 0 1 O extrinsic
intrinsic
e Unconstrained

— KPO OTC IP D= (CH_I)(H]::’) —C'P’ ngsali Sacl:alz

-~ Factor
= CP C is 3x4 with 12 elements

p= T(@ £} > Camera pose: 6 parameters

» Camera parameter matrix: 5 parameters

It can only be solved if we have information
AncoraSIR.com about the camera or the 3D object
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Camera Calibration

In general, the cameras are not made as modeled

P=(X,Y,Z)

P = (X Y, Z ) not at the center of the photosite array

‘p

The extrinsic parameters, the correct if the lens is focused

I\/A at infinity

: 7
| ' ! P 7/
A U
- =/

[ © ‘ £ L 7 The focal length of a lens is
- = . 7 only accurate to 4% of what
I Plicg, > . = it purports to be, and is only

Yo >0l ’

> g

camera’s pose, raises the

7

WA A AL P RN AR R

o

T
T
o
PR
sEsss
question of where exactly is ===== i
the center point of the A =j==i’ g
camera. - 555555 = =
~H .
- iigagg g | origin
o Bosasss
The only intrinsic paﬁmeters ====ﬁ 38
o

that it may be possible to obtain . . common experience that the.
are the photosite dimensions p,, / intrinsic parameters change if a
v

and p,, from the sensor lense is detached and reattached,
manufacturer’s data sheet. or adjusted for focus or aperture.

nnnnnnnnnnnnnnnnnn

AncoraSIR.com oy
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Camera Calibration

Some are done before shipping, some are not, and some are provided with a software to do so

* The process of determining the camera’s intrinsic parameters and the
extrinsic parameters with respect to the world coordinate system

Disregard overall scaling, set to 1

L P=W%D) X +CuY +CZ + Cpy — CyyiX — Copt¥ — CyguZ —|Cyfu = 0

y=—
1 w' Increasing sampling for a solution 11 unknows to be solved

N > 6 for a solution, but usually more are used to solve using least square

What if the points are coplanar?

AncoraSIR.com
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About Intel Realsense D435

Entry level stereo depth sensor with abundant resources at a low cost

Environment
Depth Technology
Image Sensor Technology

Main Intel® RealSense™ Products

Depth Field of View (FOV)—(Horizontal
x Vertical) for HD 16:9

Depth Stream Output Resolution
Depth Stream Output Frame Rate
Minimum Depth Distance (Min-Z)

Maximum Range

RGB Sensor Resolution & Frame Rate

RGB Sensor FOV (Horizontal x
Vertical)

Camera Dimension (Length x Depth x
Height)

Connector

Mounting Mechanism

2/23/23

Intel RealSense Depth Camera D435
Indoor and outdoor

Active IR stereo

Global shutter: 3 um x 3 um pixel size

Intel® RealSense™ vision processor D4

Intel® RealSense™ module D430

85.2° x 587 (+/- 3°)

Up to 1280 x 720
Up to 90 fps
0.1 m

Approximately 10 meters
Accuracy varies depending on calibration
scene, and lighting conditions

1920 x 1080 at 30 fps

69.4° x 42.5° (+/- 3°)

90 mm x 25 mm x 25 mm

USB Type-C*

One 1/4-20 UNC thread mounting point

Two M3 thread mounting points

Bionic Design & Learning Group




Stereo Vision

Triangulation Principle

z Q P= (X, Y, Z) Stereo geometry equations
I\ x=f*XZ ... (1)
// \\ x =f*(T-X)/Z...Q2)
/ \\ (1) = (2) > Z=1fT/(x—x), ifd = x—x,
/
l \
/ \ Y=yT/d
/ \ X=xT/d
/l \
/ \
/ \
/ \
\
/ ),
e ’
Left Camera ] X
Right Camera fl o/ v f
/ \ —
_____________________________________________ P, = (X,Y) / \ P, = (Xr’yr)
y x Ol,l Y0,
X

Pixg, ¥n, Z5)

AncoraSIR.com
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ME336 Collaborative Robot Learning
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Thank you ~

Song Chaoyang

Southern University of Science and Technology

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang



