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What is 
Robot Perception?
Making sense 
of the unstructured, real, physical world
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Perception is the organization, 
identification, and interpretation 
of sensory information in order 
to represent and understand the 
presented information or 
environment.
Structural digitization 
of the unstructured, real, physical world
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Information Theory is the 
scientific study of the 
quantification, storage, and 
communication of digital 
information.
Digital information can be
• rapidly duplicated and easily distributed
• stored in multiple locations
• created and communicated automatically
• stored with varying levels of “discoverability”
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Physical information has a fixed 
position in place and time.
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Physical Human-Robot Collaboration

• Safety
• The first and most important feature in collaborative robots
• Generally addressed through collision avoidance (with both humans or obstacles), a feature that 

requires high reactivity (high bandwidth) and robustness at both perception and control layers.

• Coexistence
• The robot capability of sharing the workspace with humans
• This includes applications involving a passive human (e.g., medical operations where the robot is 

intervening on the patients’ body), as well as scenarios where robot and human work together 
on the same task, without contact or coordination.

• Collaboration
• The capability of performing robot tasks with direct human interaction and coordination
• Physical collaboration (with explicit and intentional contact between human and robot), and 
• Contactless collaboration (where the actions are guided by an exchange of information, e.g., in 

the form of body gestures, voice commands, or other modalities).
• Establish means for intuitive control by the human operators, which may be non-expert users. 
• The robot should be proactive in realizing the requested tasks, and it should be capable of inferring the 

user’s intentions, to interact more naturally from the human viewpoint.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846



Physical Human-Robot Collaboration

• Safety
• The first and most important feature in collaborative robots
• Generally addressed through collision avoidance (with both humans or obstacles), a feature that 

requires high reactivity (high bandwidth) and robustness at both perception and control layers.

• Coexistence
• The robot capability of sharing the workspace with humans
• This includes applications involving a passive human (e.g., medical operations where the robot is 

intervening on the patients’ body), as well as scenarios where robot and human work together 
on the same task, without contact or coordination.

• Collaboration
• The capability of performing robot tasks with direct human interaction and coordination
• Physical collaboration (with explicit and intentional contact between human and robot), and 
• Contactless collaboration (where the actions are guided by an exchange of information, e.g., in 

the form of body gestures, voice commands, or other modalities).
• Establish means for intuitive control by the human operators, which may be non-expert users. 
• The robot should be proactive in realizing the requested tasks, and it should be capable of inferring the 

user’s intentions, to interact more naturally from the human viewpoint.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846



Physical Human-Robot Collaboration

• Safety
• The first and most important feature in collaborative robots
• Generally addressed through collision avoidance (with both humans or obstacles), a feature that 

requires high reactivity (high bandwidth) and robustness at both perception and control layers.

• Coexistence
• The robot capability of sharing the workspace with humans
• This includes applications involving a passive human (e.g., medical operations where the robot is 

intervening on the patients’ body), as well as scenarios where robot and human work together 
on the same task, without contact or coordination.

• Collaboration
• The capability of performing robot tasks with direct human interaction and coordination
• Physical collaboration (with explicit and intentional contact between human and robot), and 
• Contactless collaboration (where the actions are guided by an exchange of information, e.g., in 

the form of body gestures, voice commands, or other modalities).
• Establish means for intuitive control by the human operators, which may be non-expert users. 
• The robot should be proactive in realizing the requested tasks, and it should be capable of inferring the 

user’s intentions, to interact more naturally from the human viewpoint.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846



Physical Human-Robot Collaboration

• Safety
• The first and most important feature in collaborative robots
• Generally addressed through collision avoidance (with both humans or obstacles), a feature that 

requires high reactivity (high bandwidth) and robustness at both perception and control layers.

• Coexistence
• The robot capability of sharing the workspace with humans
• This includes applications involving a passive human (e.g., medical operations where the robot is 

intervening on the patients’ body), as well as scenarios where robot and human work together 
on the same task, without contact or coordination.

• Collaboration
• The capability of performing robot tasks with direct human interaction and coordination
• Physical collaboration (with explicit and intentional contact between human and robot), and 
• Contactless collaboration (where the actions are guided by an exchange of information, e.g., in 

the form of body gestures, voice commands, or other modalities).
• Establish means for intuitive control by the human operators, which may be non-expert users. 
• The robot should be proactive in realizing the requested tasks, and it should be capable of inferring the 

user’s intentions, to interact more naturally from the human viewpoint.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang

3 nested layers of consistent behaviors that the robot must follow to achieve safe pHRI

doi: 10.3389/fnbot.2020.576846

The unpredictability of human actions



Common Sensors in Robots
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Proprioceptive vs. Exteroceptive
https://doi.org/10.1186/s10033-020-00485-9

Legged robots as an example



Common Sensors in Robots
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Proprioceptive sensors
https://doi.org/10.1186/s10033-020-00485-9

Sense states inside the robot (e.g., joint angle, speed, torque)
• Used by the robot control systems to receive feedback on the execution of motion and in 

general on the status of the robot. 

Legged robots as an example



Common Sensors in Robots
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Exteroceptive sensors
https://doi.org/10.1186/s10033-020-00485-9

Sense states outside the robot (e.g., proximity, vision)
• Provide the robot control system information
• About the environment around the robot (e.g., rover Cameras provide images of the terrain around the rover) and
• About the effect of robot actions on the environment (e.g., the distance between a robot hand and the object it grasps)



Sensing Modalities for Control
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Distance
Microsoft Kinect®

Intel Realsense®

Sony D-Link DCS-5222L®

AVT GT®

Syntouch BioTac®

ATI Nano 43®

LM393®
3Dio Free Space Pro II®

Sharp 
GP2Y0A02YK0F®

Laser SICK®

Hokuyo 
URG®

SICK 
CM18-08BPP-KC1®

doi: 10.3389/fnbot.2020.576846



Sensing Modalities Explained
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Further Details for Reading
• Vision. This includes methods for processing and understanding images, to produce 

numeric or symbolic information reproducing human sight. 
• Although image processing is complex and computationally expensive, the richness of this sense is unique. Robotic vision is fundamental 

for understanding the environment and human intention, so as to react accordingly.

• Touch. Here, touch includes both proprioceptive force and tact, with the latter 
involving direct physical contact with an external object. 

• Proprioceptive force is analogous to the sense of muscle force. The robot can measure it either from the joint position errors or via torque 
sensors embedded in the joints; it can then use both methods to infer and adapt to human intentions, by relying on force control. 

• Human tact, on the other hand, results from activation of neural receptors, mostly in the skin. These have inspired the design of artificial 
tactile skins, thoroughly used for human-robot collaboration.

• Audition. In humans, localization of sound is performed by using binaural audition 
(i.e., two ears). 

• By exploiting auditory cues in the form of level/time/phase differences between left and right ears we can determine the source’s 
horizontal position and its elevation. Microphones artificially emulate this sense, and allow robots to “blindly” locate sound sources. 
Although robotic hearing typically uses two microphones mounted on a motorized head, other non- biological configurations exist, e.g., a 
head instrumented with a single microphone or an array of several omni-directional microphones.

• Distance. This is the only sense among the four that humans cannot directly measure. 
• Yet, numerous examples exist in the mammal kingdom (e.g., bats and whales), in the form of echolocation. Robots measure distance with 

optical (e.g., infrared or lidar), ultrasonic, or capacitive (Göger et al., 2010) sensors. The relevance of this particular “sense” in human-
robot collaboration is motivated by the direct relationship existing between the distance from obstacles (here, the human) and safety.

doi: 10.3389/fnbot.2020.576846



Sensor-Based Control

• Sensor-based control aims at deriving the robot control 
input 𝒖 that minimizes a trajectory error 𝒆 = 𝒆(𝒖), which 
can be estimated by sensors and depends on 𝒖.
• 𝒖 : operational space velocity, joint velocity, displacement, 

etc.

• A general way of formulating this controller is as the 
quadratic minimization problem
• actuation redundancy dim(𝒖) > dim(𝒆), 
• sensing redundancy dim(𝒖) < dim(𝒆), and 
• task constraints

• Inverse Kinematics Problem
• Let 𝒖 = �̇�, Given 𝒙,
• Solve: a designed value of 𝒙∗

• Define: �̇�∗ = −𝜆 𝒙 − 𝒙∗ as desired end-effector rate (𝜆 > 0)
• Set: 𝒆 = 𝑱�̇� − �̇�∗ (𝑱 = ⁄𝜕𝒙 𝜕𝒒)

• Solution: �̇� = 𝑱!�̇�∗
• 𝑱" is the generalized inverse of 𝑱
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Basic Formulation
doi: 10.3389/fnbot.2020.576846

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "
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Basic Formulation
doi: 10.3389/fnbot.2020.576846

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "

Controlling the robot joint 
velocities �̇�, so that the end-

effector operational space 
position x converges to a 

desired value x∗
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Basic Formulation
doi: 10.3389/fnbot.2020.576846

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "

𝜆 is a positive tuning scalar that 
determines the convergence 

rate of task error e to 0
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Basic Formulation
doi: 10.3389/fnbot.2020.576846

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "

For simplicity, we assume there are no constraints in 
this formulation, although off-the-shelf quadratic 
programming solvers could account for them.
• Nocedal, J., and Wright, S. (2000). Numerical 

Optimization. Springer Series in Operations 
Research and Financial Engineering. doi: 
10.1007/b98874



Sensor-Based Control
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The four types that are commonly used in collaborative robots

Visual servoing: 
the user hand is 
centered in the 
camera image.

Indirect force 
control: by applying 
a wrench, the user 
deviates the contact 
point away from a 
reference trajectory.

Audio-based control: 
a microphone rig is 
automatically oriented 
toward the sound 
source (the user’s 
mouth)

Distance-based 
control: the user 
acts as a repulsive 
force, related to 
his/her distance from 
the robot.

doi: 10.3389/fnbot.2020.576846



Visual Servoing

• The error 𝒆 is defined with regards to some image features, 
here denoted by 𝒔, to be regulated to a desired configuration 𝒔∗
• 𝒔 is analogous to 𝒙 in the inverse kinematic formulation

• The visual error is 𝒆 = �̇� − �̇�∗
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The use of vision to control robot motion

Inverse Kinematics Problem
• Let 𝒖 = �̇�, Given 𝒙,
• Solve: a designed value of 𝒙∗
• Define: �̇�∗ = −𝜆 𝒙 − 𝒙∗
• Set: 𝒆 = 𝑱�̇� − �̇�∗ (𝑱 = ⁄𝜕𝒙 𝜕𝒒)
Solution: �̇� = 𝑱!�̇�∗
• 𝑱" is the generalized inverse of 𝑱
• Set-point controller: �̇� = −𝑱"𝜆 𝒙 − 𝒙∗



Visual Servoing

• The error 𝒆 is defined with regards to some image features, 
here denoted by 𝒔, to be regulated to a desired configuration 𝒔∗
• 𝒔 is analogous to 𝒙 in the inverse kinematic formulation

• The visual error is 𝒆 = �̇� − �̇�∗
• Position-based if 𝒔 is defined 

in the 3D operational space
• Projecting the task from the 

image to the operational 
space to obtain x and then 
apply �̇� = −𝑱!𝜆 𝒙 − 𝒙∗

• Image-based if 𝒔 is defined in 
the image space
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The use of vision to control robot motion



Visual Servoing

• Image-based if 𝒔 is defined in the image space
• The visual error is 𝒆 = �̇� − �̇�∗

• The simplest image-based controller uses 𝒔 = 𝑋, 𝑌 "

• Defining e as �̇� − �̇�∗ = �̇� − �̇�∗
�̇� − �̇�∗

, with �̇�∗ = −𝜆 �̇� − �̇�∗
�̇� − �̇�∗

• If we use the camera’s 6D velocity as the control input 𝒖 = 𝒗𝒄, the image 
Jacobian (Interaction) matrix relating �̇�, �̇� %

and 𝒖 is:

• 𝑱0 =
− 1
2

0 3
2 𝑋𝑌 −1 − 𝑋4 𝑌

0 − 1
2

5
2 1 + 𝑌4 −𝑋𝑌 −𝑋

• In the absence of constraints, the solution of 𝒖 = arg min
𝒖

&
"
𝒆 𝒖 " is

• 𝒖 = 𝒗𝒄 = −𝑱0"𝜆
𝑋 − 𝑋∗
𝑌 − 𝑌∗
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The use of vision to control robot motion centroid of 
human hand

𝜁 denotes the depth of the point 
with respect to the camera

X and Y as the coordinates 
of an image pixel, to 
generate u that drives s to 
a reference 𝒔∗ = [𝑋∗, 𝑌∗]⊤



Visual Servoing
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Application to Human-Robot Collaboration centroid of 
human hand

10.1109/TRO.2016.2535443

10.1109/CRV.2015.39 10.1155/2011/698079



Touch (or Force) Control

• The measured wrenches h are (at most) composed of three translational 
forces, and three torques 
• h is fed to the controller that moves the robot so that it exerts a desired 

interaction force with the human or environment.

• Force control strategies
• Direct control regulates the contact wrench to obtain a desired wrench 𝒉∗.

• Specifying 𝒉∗ requires an explicit model of the task and environment. 
• i.e., Hybrid position/force control

• Indirect control does not require an explicit force feedback loop.
• Impedance control | Admittance control (Hogan, 1985)
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Requires measurement of one or multiple wrenches h
(in the case of tactile skins)



Touch (or Force) Control

• Direct force control regulates the contact wrench to obtain a desired 
wrench 𝒉∗.
• Specifying 𝒉∗ requires an explicit model of the task and environment. 

• Hybrid position/force control, which regulates the velocity and wrench 
along unconstrained and constrained task directions, respectively. 

• This is equivalent to setting 𝒆 = 𝑺 �̇� − �̇�∗ + 𝑰 − 𝑺 𝒉 − 𝒉∗
• 𝑺 = 𝑺" ≥ 0 : a binary diagonal selection matrix | 𝑰 : the identity matrix. 

• Applying a motion u that nullifies e guarantees that the components of �̇�
(respectively 𝒉) specified via 𝑺 (respectively 𝑰 − 𝑺) converge to �̇�∗ (respectively 𝒉∗).
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Requires measurement of one or multiple wrenches h

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "

(in the case of tactile skins)



Touch (or Force) Control

• Indirect force control does not require an explicit force feedback loop.
• Impedance control | Admittance control (Hogan, 1985)

• Modeling the deviation of the contact point from a reference trajectory 𝒙' 𝑡
associated to the desired 𝒉∗, via a virtual mechanical impedance with adjustable 
parameters
• this is equivalent to setting 𝒆 = 𝑴 �̈� − �̈�( + 𝑩 �̇� − �̇�( +𝑲 𝒙 − 𝒙( − 𝒉 − 𝒉∗

• inertia 𝑴, damping 𝑩, and stiffness 𝑲
• 𝒙 represents the “deviated” contact point pose, with �̇� and �̈� as time derivatives. 

• When 𝒆 = 0, the displacement 𝒙 − 𝒙# responds as a mass-spring-damping system under the action of an 
external force 𝒉 − 𝒉∗. 

• In most cases, 𝒙# 𝑡 is defined for motion in free space (𝒉∗ = 0). 

• The general formulation above can account for both impedance control (𝒙 is measured and 
𝒖 = 𝒉) and admittance control (𝒉 measured and u = x).
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Requires measurement of one or multiple wrenches h
(in the case of tactile skins)

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "



Audio-Based Control

• For simplicity, we present the two-dimensional binaural (i.e., 
with two microphones) configuration with the angular 
velocity of the microphone rig as control input: 𝒖 = �̇�

• Two popular methods for defining error 𝒆
• Interaural Time Difference (ITD) based aural servoing

• Uses the difference 𝜏 between the arrival times of the sound on each 
microphone

• 𝜏 must be regulated to a desired 𝜏∗

• Interaural Level Difference (ILD) based aural servoing
• Uses 𝜌, the difference in intensity between the left and right signals
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To locate the sound source and move the robot toward it.

𝒖 = arg min
𝒖

1
2 𝒆 𝒖 "



Audio-Based Control

• Interaural Time Difference (ITD) based aural servoing
• Uses the difference 𝜏 between the arrival times of the sound on each 

microphone; 𝜏 must be regulated to a desired 𝜏∗

• Setting 𝒆 = �̇� − �̇�∗, with the desired rate �̇�∗ = −𝜆 𝜏 − 𝜏∗ (to obtain set-
point regulation to 𝜏∗)
• Feature 𝜏 can be derived in real-time by using standard cross-correlation of the 

signals. Under a far field assumption:
• 𝒆 = �̇� − �̇�∗ = − 𝑏/𝑐 ' − 𝜏' 𝒖 − �̇�∗

• 𝑐 the sound celerity and 𝑏 the microphones baseline.

• The scalar ITD Jacobian is 𝑱𝝉 = − 𝑏/𝑐 M − 𝜏M

• The motion that minimizes 𝒆 is 𝒖 = −𝜆𝑱NOP 𝜏 − 𝜏∗
• locally defined for 𝛼 ∈ 0, 𝜋 , to ensure that 𝑱𝝉 ≠ 𝟎
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To locate the sound source and move the robot toward it.



Audio-Based Control

• Interaural Level Difference (ILD) based aural servoing
• Uses 𝜌, the difference in intensity between the left and right signals

• This can be obtained in a time window of size N as 𝜌 = /7
/8

• To regulate 𝜌 to a desired 𝜌∗, one can set 𝒆 = �̇� − �̇�∗ with �̇�∗ = −𝜆 𝜌 − 𝜌∗ . Assuming 
spherical propagation and slowly varying signal:
• 𝒆 = �̇� − �̇�∗ = %# &'( )

*$%
𝒖 − �̇�∗

• The scalar ILD Jacobian is 𝑱3 =
49 3!5 6

78:

• The motion that minimizes 𝒆 is 𝒖 = −𝜆𝑱385 𝜌 − 𝜌∗

• 𝑱;<1 is defined for sources located in front of the rig.

• In contrast with ITD-servoing, here the source location (i.e., 𝑦( and 𝐿') must be 
known or estimated.
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To locate the sound source and move the robot toward it.

• 𝑦+ is the sound source frontal coordinate in the moving auditory frame
• 𝐿# is the distance between the right microphone and the source

• 𝐸,,# = ∑./01 𝛾,,. 𝑛 2 denote the signals’ sound energies 
• 𝛾,,. 𝑛 are the intensities at iteration n. 



Distance-Based Control

• The simplest (and most popular) distance-based controller is the artificial 
potential fields method
• Despite being prone to local minima, it has been thoroughly deployed both on 

manipulators and on autonomous vehicles for obstacle avoidance. 
• Besides, it is acceptable that a collaborative robot stops (e.g., because of local 

minima) as long as it avoids the human user.

• The potential fields method consists in modeling each obstacle as a source of 
repulsive forces, related to the robot distance from the obstacle
• All the forces are summed up resulting in a velocity in the most promising direction. 
• Given d, the position of the nearest obstacle in the robot frame, the original version 

(Khatib, 1985) consists in applying operational space velocity

• 𝒖 = 7𝜆
5
𝒅 − 5

@=
5
𝒅 : if 𝒅 < 𝑑A,

0 otherwise
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The user acts as a repulsive force, related to his/her distance from the robot

𝑑> > 0 is the (arbitrarily tuned) minimal 
distance required for activating the controller.



Distance-Based Control

• Since the quadratic denominator in 𝒖 = :𝜆
&
𝒅
− &

*(

&
𝒅 ) if 𝒅 < 𝑑+

0 otherwise
yields 

abrupt accelerations, more recent versions adopt a linear behavior. 

• This can be obtained by setting 𝒆 = �̇� − �̇�∗ with �̇�∗ = 𝜆 1 − 𝑑+/ 𝒅 𝒅 as 
reference velocity
• 𝒆 = �̇� − 𝜆 1 − @=

𝒅
𝒅

• By defining as control input 𝒖 = �̇�, the solution to 𝒖 = arg min
𝒖

&
"
𝒆 𝒖 " is:

• 𝒖 = 𝜆 1 − @=
𝒅 𝒅
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The user acts as a repulsive force, related to his/her distance from the robot



Integration of Multiple Sensors

• Just like natural senses, artificial senses provide complementary 
information about the environment. 
• Hence, to effectively perform a task, the robot should measure (and use for 

control) multiple feedback modalities

• Challenges to the control design, 
• e.g., sensor synchronization, task compatibility, and task representation.

• Three methods for combining N sensors within a controller
• Traded: the sensors control the robot one at a time.
• Shared: All sensors control the robot throughout operation.
• Hybrid: the sensors act simultaneously, but on different axes of a predefined 

Cartesian task-frame. 
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Integrating multiple sensors in a unique controller

10.1109/ACC.1995.529274



Integration of Multiple Sensors

• Traded: the sensors control the robot one at a time.
• Predefined conditions on the task trigger the switches:

𝒖 =
argmin

𝒖
𝒆𝟏 𝒖 4 if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1 = true

⋮
argmin

𝒖
𝒆@ 𝒖 4 if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁 = true
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Integrating multiple sensors in a unique controller



Integration of Multiple Sensors

• Shared: All sensors control the robot throughout operation.
• i.e., nested control loops for shared vision/touch control
• 𝒖 = argmin

𝒖
𝒆𝒊 𝒖, 𝒖C D such that 𝒖C = argmin

𝒖A
𝒆C 𝒖C D
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Integrating multiple sensors in a unique controller

The most common scheme for shared vision/touch (admittance) control
• The goal is to obtain desired visual features 𝒔∗ and wrench 𝒉∗, based on current image 𝑰 and wrench 𝒉. 
• The outer visual servoing loop based on error 𝒆 = �̇� − �̇�∗ outputs a reference velocity �̇�B that is then 

deformed by the inner admittance control loop based on error 𝒆 = 𝑴 �̈� − �̈�B + 𝑩 �̇� − �̇�B +
𝑲 𝒙 − 𝒙B − 𝒉 − 𝒉∗ , to obtain the desired robot position 𝒙.

10.1109/ROBOT.1998.677418 
10.1109/ICRA.2014.6906917 
10.1109/IROS.2013.6697019 

• 𝒖 = 𝒙, 𝒖3 = �̇�#, 𝒆3 = 𝒆4, 
• applying 𝒆 = �̇� − �̇�∗

• 𝒆5 = 𝒆6
• applying 𝒆 = 𝑴 �̈� − �̈�# + 𝑩 �̇� − �̇�# +𝑲 𝒙 − 𝒙# − 𝒉 − 𝒉∗



Integration of Multiple Sensors

• Hybrid: the sensors act simultaneously, but on different axes of a predefined 
Cartesian task-frame. 
• The directions are selected by binary diagonal matrices 𝑺K, 𝑗 = 1,… ,𝑁 with the 

dimension of the task space, and such that ∑KL5M 𝑺 = 𝑰

• 𝒖 = argmin
𝒖

∑KL5M 𝑺K𝒆K 𝒖
D

• To express all 𝒆 in the same task frame, one should apply N𝑉O and/or N𝑉OP when 
transforming 6D velocities or wrenches to a unique frame
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Integrating multiple sensors in a unique controller

10.1109/ROBOT.1998.677418 
10.1109/ICRA.2014.6906917 
10.1109/IROS.2013.6697019 
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10.3389/fnbot.2020.576846
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10.3389/fnbot.2020.576846



Differentiate Robots & Mechanisms

• To understand the surrounding environment
• To derive a set of actions from a high-level goal
• To implement (actuate and control) these actions
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The ability to adapt to changes of their subjects of operation or of their operating environment



Robot Perception

• To understand the surrounding environment
• To derive a set of actions from a high-level goal
• To implement (actuate and control) these actions
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Physically implemented by sensors and by dedicated processing of the data they produce
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From Animals, to Computers, then Robots

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang

Early results in computer vision for estimating the shape and pose of objects, 
from the PhD work of L. G. Roberts at MIT Lincoln Lab in 1963.

Original picture                       Gradient image             Connected feature points    Reconstructed line drawing

Robotics, Vision 
and Control by 

Peter Corke

Vision-
based 
Robot 

Control



What Does Vision Tell Us About the World?

• Static features
• Distance
• Color
• Shape
• Texture
• Environment
• …

• Dynamic motions
• Understanding of the behavior 
• An important method to interact with the physical world
2/23/23 Bionic Design & Learning Group 50

Or the Robot as a Machine



Differentiating Concepts about Vision
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p Signal Processing involves processing electronic signals to either 
clean them up, extract information, prepare them to output to a display 
or prepare them for further processing. Anything can be a signal, more 
or less.

p Image Processing techniques 
are primarily used to improve 
the quality of an image, 
convert it into another format 
(like a histogram) or 
otherwise change it for 
further processing.

p Machine Vision refers to the industrial use of 
vision for automatic inspection, process control 
and robot guidance.

p Robotic Vision involves using a 
combination of camera hardware 
and computer algorithms to allow 
robots to process visual data from 
the world and execute physical 
actions.

p Computer Vision is more about 
extracting information from images 
to make sense of them.

p Machine Learning is focused on 
recognizing patterns in data.

Scientific Domain

Engineering
Domain

Scientific & 
Engineering

Domain



Differentiating Concepts about Vision
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Technique Input Output

Signal Processing Electrical signals Electrical signals

Image Processing Images Images

Computer Vision Images Information/features

Pattern Recognition/Machine Learning Information/features Information

Machine Vision Images Information

Robot Vision Images Physical Action

a goal oriented machine that 
can sense, plan and act



What is Vision?

• Visual perception 
is the act of 
observing patterns 
and objects 
through sight 
• Visual systems 

allow us to build a 
model of the 
physical world.

BionicDL@SUSTech ME336 Collaborative Robot Learning Song Chaoyang

Vision System



What is Vision?
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Vision System
• Visual perception 

is the act of 
observing patterns 
and objects 
through sight 
• Visual systems 

allow us to build a 
model of the 
physical world.



Formulation of An Image 
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As a 2D sampling of signal

Signal: function 
depending on 
some variable 
with physical 
meaning. 



Formulation of An Image 
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As a 2D sampling of signal

Signal: function 
depending on 
some variable 
with physical 
meaning. 

Can be other physical values 
too: temperature, pressure, 

depth …



Formulation of An Image 
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As a 2D sampling of signal

Signal: function 
depending on 
some variable 
with physical 
meaning. 

Image: sampling of that 
function.
• 2 variables: xy coordinates
• 3 variables: xy + time 

(video)
• ‘Brightness’ is the value of 

the function for visible light



Sampling Physical World Using Images 

• Sampling in 1D takes a function 
and returns a vector whose 
elements are values of that 
function at the sample points.
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Physical Understanding of Images



Sampling Physical World Using Images 

• Sampling in 2D takes a 
function and returns a matrix.
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Physical Understanding of Images
• Sampling in 1D takes a function 

and returns a vector whose 
elements are values of that 
function at the sample points.



Sampling Physical World Using Images 
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Physical Understanding of Images

Grayscale Digital Image



Sampling Physical World Using 
High-framerate Depth Sensing
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Image Representation
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Example of a grayscale [0, 1] image within a planar area of size [m, n]

Pixel as picture element
NOT A SQUARE !!!
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Formulation of An Image
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As a 2D sampling of signal
Signal: function 

depending on some 
variable with 

physical meaning. 

Image: sampling of that function.
• 2 variables: xy coordinates
• 3 variables: xy + time (video)
• ‘Brightness’ is the value of the 

function for visible light

Can be other 
physical values 
too: temperature, 
pressure, depth 
…
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Sampling Physical World Using Images
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Physical Understanding of Images
Sampling in 1D takes a function, and returns a 
vector whose elements are values of that 
function at the sample points.

Sampling in 2D 
takes a function 
and returns a 
matrix.

Brightness
or intensity

Grayscale Digital Image
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An RGB Image
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A Robotic Way of Interpreting Images

• Computer Vision
• Digitization of physical world in multi-dimensional linear algebra
• Physical meaning is not a required way of interpretation or usage

• Robotic Vision
• Same as Computer Vision, but with a focus on Physical Interpretation
• Because actions need to be executed by a robot and people might get hurt
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An important method of sensing the environment

Other variables
Heatmap: H
Temperature: T
…

[0, 1] as normalized form, not an integer
[0, 255] as a byte number of range 28=256 from 0 to 255, 
all in integer forms

Machine Vision 
actually measures 

but no action 
required.

Image Size: u, v Time Series: t

Color Space: Red, Green, Blue
Grayscale: Gray 

Point Cloud: x(u, v), y(u, v), z(u, v)

Texture: r(x, y, z), g(x, y, z), b(x, y, z)
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Color Space: Red, Green, Blue

Point Cloud: x(u, v), y(u, v), z(u, v)

Time Series: t

Texture: 
r(x, y, z), 
g(x, y, z), 
b(x, y, z)

Other variables
Heatmap: H
Temperature: T
…
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Perspective Transform
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Camera Models

the distance 
to the object

the distance 
to the image

the focal length
of the lens

the need to focus is the tradeoff 
for the increased light-

gathering ability of a lens

Image formation geometry
The central-

projection 
model

perspective 
projection

Lens Law

homogeneous 
form
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Characteristics

• A mapping from 3D space to the 2D image plane
• Straight lines in the world are projected to straight 

lines on the image plane.
• Parallel lines in the world are projected to lines that 

intersect at a vanishing point. 
• The exception are lines in the plane parallel to the 

image plane which do not converge.

• Conics in the world are projected to conics on the 
image plane. 

• The mapping is not one-to-one and a unique 
inverse does not exist. 

• The transformation is not conformal
• It does not preserve shape since internal angles are not 

preserved, different from translation, rotation and 
scaling.
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Perspective Transform
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Retinal Image Plane Coordinates
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Written in homogeneous form

camera matrix

homogeneous form

homogeneous form

What about the physical coordinates 
on the actual image?
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Express w.r.t the Camera

• A camera sensor with a W× H grid of image pixels
• The pixel coordinates (u, v)
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Physical Meanings of Camera Pixels

light sensitive 
photosites

width and height of each pixel

Principal point in pixel coordinate

camera (projection) matrix

camera parameter matrix

pixel coordinate
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Camera Projection In General Form

• The 3x4 Camera Calibration Matrix
• Performs scaling, translation and 

perspective projection
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Still, something is missing

Camera parameter matrix: 5 parameters

Camera pose: 6 parameters

C is 3x4 with 12 elements

Unconstrained 
Overall Scale 
Factor

It can only be solved if we have information 
about the camera or the 3D object
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Camera Calibration
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In general, the cameras are not made as modeled

not at the center of the photosite array

The focal length of a lens is 
only accurate to 4% of what 
it purports to be, and is only 
correct if the lens is focused 
at infinity

common experience that the 
intrinsic parameters change if a 
lense is detached and reattached, 
or adjusted for focus or aperture.

The only intrinsic parameters 
that it may be possible to obtain 
are the photosite dimensions ρw
and ρh from the sensor 
manufacturer’s data sheet.

The extrinsic parameters, the 
camera’s pose, raises the 
question of where exactly is 
the center point of the 
camera.
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Camera Calibration

• The process of determining the camera’s intrinsic parameters and the 
extrinsic parameters with respect to the world coordinate system
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Some are done before shipping, some are not, and some are provided with a software to do so

Disregard overall scaling, set to 1

11 unknows to be solved

for a solution, but usually more are used to solve using least square

What if the points are coplanar?

Increasing sampling for a solution
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About Intel Realsense D435
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Entry level stereo depth sensor with abundant resources at a low cost
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Stereo Vision
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Triangulation Principle
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Song Chaoyang
Southern University of Science and Technology
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