

ME336 Collaborative Robot Learning Spring 2023

Lecture 02 Cobot Design

Song Chaoyang Southern University of Science and Technology

A Review of Robot Design Towards Collaboration

A Historical Note on Collaborative Robots

Examples of Engineering Specifications Today's Agenda

Factory Robot vs. Collaborative Robot

BionicDL@SUSTech

Song Chaoyang

Factory Robot vs. Collaborative Robot From engineering need to design specifications

Factory Robot vs. Collaborative Robot

From engineering need to design specifications

• Factory robots perform automated programmable movements in manufacturing.

• Cobots work side by side with humans to improve work quality.

Factory Robot vs. Collaborative Robot

From engineering need to design specifications

- Factory robots perform automated programmable movements in manufacturing.
- Mechanical or sensor technologies can help keep factory robots from interfering with human activity.

- Cobots work side by side with humans to improve work quality.
- A cobot can sense and stop movement, helping create a safer working environment.

Towards a Safer Working Environment

Mechanical or sensor technologies can help keep robots from interfering with human activity

Common Designs of Robot @ Work

Task-specific Structure

Common Designs of Robot @ Work

Different robot types have different advantages depending on the application

Articulated Robot

- The manipulator connects to the base with a twisting joint.
- A rotary axis connects the links in the manipulator.
- Each axis provides an additional degree of freedom, or range of motion.

Features a rotary axis and can range from simple three-axis structures to 10 or more joints

Cartesian Robot

- Cartesian robots have three linear axes that use the Cartesian coordinate system (x, y and z).
- They may have an attached axis that enables rotational movement.
- Three prismatic joints facilitate linear motion along the axis.

Also called rectilinear or gantry robots

SCARA

- This selectively compliant manipulator for robotic assembly is primarily cylindrical in design.
- It features two parallel axes that provide compliance in one selected plane.

Selective Compliance Assembly Robot Arm

Delta Robot ?

3 axes for the parallelograms; 1~3 axes for the end effector Delicate, precise movements in a dome-shaped work area Heavily used in food, pharmaceutical and electronic industries

Jointed parallelograms connected to a common base

What are the Building Blocks of a Robotic System?

From the Industrial Perspective

Payload (weight) vs. Reach

If heavier the object to move, then the motor needs to generate more force

- This force is generated with electric energy and is provided to the motor from the power stage.
- This power requirement is part of deciding whether the robot will be a high- or low-voltage system.
- A high-voltage robot system will require defined isolation architecture for safe operation.

- In a centralized system, the robot controller cabinet includes most of the electronic modules that control the robot manipulator
- Usually leading to a larger size of the controller box

Centralized Robotic System Example

Decentralized Robotic System Example

Some modules move to the robot manipulator to support form factor of the cabinet, cabling and more

How will the different subsystems of the robot communicate with each other?

What are the interface requirements?

How does the programming interface work?

Will the robot operate from the user interface or through task programming?

Will you need an extra interface to connect the teaching pendant or joystick in order to enable operator functionality? Other design questions ...

Real-time Communication Timing Needs for Robot Control

Is the Robot Nonadaptive or Adaptive?

Design question ...

Nonadaptive or Adaptive

Any feedback received from the environment, or ways to react

- A **nonadaptive robot** does not receive feedback from the environment and will execute its task as programmed.
- Adaptive robots use input and output data to generate environment data. With this data, the robot can react to environmental changes and stop its task if necessary.
 - It is important to define the environment data to which the robot is reacting. The data might be pre-defined parameters, like material amounts or sizes or shapes for quality definitions.
 - Or it might be uncontrolled parameters, like having people move around the robot or malfunctions that when detected put the robot in a safe state.

Collaborative Robots

A Historical Note

BionicDL@SUSTech

Song Chaoyang

Early Concept of CoBot

From 1994 to 2003

5,952,796

Sep. 14, 1999

Patent Number:

Date of Patent:

United States Patent [19]

Colgate et al.

[54] COBOTS

- [76] Inventors: James E. Colgate, 2210 Ashbury, Evanston, Ill. 60201; Michael A.
 Peshkin, 4843 Fargo, Skokie, Ill. 60077
- [21] Appl. No.: **08/959,357**
- [22] Filed: Oct. 28, 1997

Related U.S. Application Data

- [63] Continuation-in-part of application No. 08/605,997, Feb. 23, 1996.
- [51] Int. Cl.⁶ H02K 7/00

pp. 633-638.

[11]

[45]

Peshkin et al., Passive Robots and Haptic Displays Based on Nonholonomic Elements, Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, Apr. 1996, pp. 551–556.

Colgate et al., Nonholonomic Haptic Display, Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, Apr. 1996, pp. 539–544.

Colgate et al., Cobots: Robots for Collaboration With Human Operators, Proceedings of the ASME Dynamic Systems and Control Division, DSC-vol. 58, Nov. 1996, Atlanta, GA, pp. 633–638.

Kelley et al., On The Development Of a Force–Feedback Mouse and Its Integration Into a Graphical User Interface, DSC–vol. 55–1, Proceedings of the ASME Dynamics and Control Division, 1994, pp. 287–294.

(List continued on next page.)

Early Concept of CoBot

From 1994 to 2003

Early Concept of CoBot

From 1994 to 2003

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 4, AUGUST 2001

Cobot Architecture

Michael A. Peshkin, Member, IEEE, J. Edward Colgate, Member, IEEE, Witaya Wannasuphoprasit, Carl A. Moore, R. Brent Gillespie, Member, IEEE, and Prasad Akella, Member, IEEE

Abstract—We describe a new robot architecture: the collaborative robot, or cobot. Cobots are intended for direct physical interaction with a human operator. The cobot can create smooth, strong virtual surfaces and other haptic effects within a shared human/cobot workspace. The kinematic properties of cobots differ markedly from those of robots. Most significantly, cobots have only one mechanical degree of freedom, regardless of their taskspace dimensionality. The instantaneous direction of motion associated with this single degree of freedom is actively servo-controlled, or steered, within the higher dimensional taskspace. This paper explains the kinematics of cobots and the continuously variable transmissions (CVTs) that are essential to them. Powered cobots are introduced, made possible by a parallel interconnection of the CVTs. We discuss the relation of cobots to conventionally actuated robots and to nonholonomic robots. Several cobots in design, prototype, or industrial testbed settings illustrate the concepts discussed.

Index Terms—Cobot, ergonomics, haptics, human/machine interaction, intelligent assist device (IAD), nonholonomic, passive. General Motors

Fig. 1. A single wheel in contact with a planar rolling surface is the simplest cobot, having a 2-D taskspace. From top to bottom are the user's handle, a force sensor to measure the user's applied (xy) force, a rail system which holds the assembly upright and incorporates xy position sensors, a steering motor which can reorient the rolling direction of the wheel, and the "steerable transmission" which is central to all cobots—in this case a single free-rolling RollerbladeTM wheel. An encoder monitors the rolling speed of the wheel.

377

DLR/KUKA

From 2003 to 2013

• Integrated force/torque sensing at joint level


```
LWR-I
```

LWR-II

Link Position Sensor

Cross Roller Bearing

Power Converter Unit

- Joint - and Motorcontroller Board

BionicDL@SUSTech

ME336 Collaborative Robot Learning

Song Chaoyang

Soft-tissue injury in robotics

10.1109/ROBOT.2010.5509854

Scissors at 0.64 m/s

Universal Robots

From 2003 to 2013

- Cheaper to buy, and
- Easier to use

BionicDL@SUSTech

ME336 Collaborative Robot Learning

Song Chaoyang

- (12) United States Patent Kassow et al.
- (54) PROGRAMMABLE ROBOT AND USER INTERFACE
- (71) Applicant: Universal Robots ApS, Odense C. (DK)
- Inventors: Kristian Kassow, København S. (DK);
 Esben Hallundbæk Østergaard,
 Odense C. (DK); Kasper Støy, Odense
 C. (DK)
- (73) Assignee: Universal Robots ApS, Odense S. (DK)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 13/827,824

(65)

- (22) Filed: Mar. 14, 2013
 - Prior Publication Data
 - US 2013/0255426 A1 Oct. 3, 2013

- (10) Patent No.: US 8,614,559 B2
 (45) Date of Patent: Dec. 24, 2013

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,155,423	Α	201	10/1992	Karlen e	et al	318/568.11
5,293,107	Α	244	3/1994	Akeel .		318/568.11

* cited by examiner

Primary Examiner — Anthony M Paul
(74) Attorney, Agent, or Firm — Stites & Harbison PLLC;
Douglas E. Jackson

(57) ABSTRACT

A programmable robot system includes a robot provided with

(54) PROGRAMMABLE ROBOT AND USER INTERFACE

(71) Applicant: Universal Robots ApS, Odense C. (DK)

- Inventors: Kristian Kassow, København S. (DK);
 Esben Hallundbæk Østergaard,
 Odense C. (DK); Kasper Støy, Odense
 C. (DK)
- (73) Assignee: Universal Robots ApS, Odense S. (DK)

(10) Patent No.: US 8,6
(45) Date of Patent: D

US 8,614,559 B2 Dec. 24, 2013

Fig. 25

Modular Design of Robotic Joint

What's so special about the Universal Robots?

ME336 Collaborative Robot Learning

Song Chaoyang

î

Rethink Robotics

From 2003 to 2013

- Video, dual arm, UX with a cute face
- Series Elastic Actuator with Integrated sensing
 - Patented by MIT in 1993
 - Inexpensive way to get good force control
 - Make robots that are compliant, good at tasks, safer around humans, good in unstructured environments etc.
 - Spring in series with gearbox
 - Turn force control problem into position control
 - Spring filters gearbox nonlinearities, gives smooth output torque
 - Gain in compliance, sacrifice bandwidth

ME336 Collal

More and more designs ...

Since 2013 ...

ME336 Collaborative Robot Learning

Song Chaoyang

Examples of Engineering Specifications

Reading the Technical Data Sheet

A

TDS

HARDWARE

Arm	
Degrees of freedom	7
Payload	3 kg
Workspace	see backside
Maximum reach	855 mm
Force/ Torque sensing	link-side torque sensors in all 7 axes
Expected nominal lifetime ^{3,4}	20,000 h
Joint position limits	A1, A3, A5, A7: -166°/166° A2: -101°/101° A4: -176°/-4° A6: -1°/215°
Mounting flange	DIN ISO 9409-1-A50
Installation position	upright
Weight	~ 17.8 kg
Moving mass	~ 12.8 kg
Protection rating	IP30
Ambient temperature ²	15 – 25 °C (typical) 5 – 45 °C (extended)
Air humidity	20 - 80 % non-condensing
Power consumption	max. ~ 350 W typical application ~ 60 W
Interfaces • • •	ethernet (TCP/IP) for visual in- tuitive programming with Desk input for external enabling device input for external activation device or safeguard Control connector Connector for end effector

e (19")	355 x 483 x 89 mm (D x W x H
e	100 - 240 Vac
ncy	47 – 63 Hz
mption	~ 80 W
factor FC)	yes
	~ 7 kg
ting	IP20
	15 – 25 °C (typical) 5 – 45 °C (extended)
	20 - 80 % non-condensing
•	 ethernet (TCP/IP) for internet and/or shop-floor connection power connector IEC 60320- C14 (V-Lock) Arm connector

....

Control

Weight

Protection ra Ambient temperature

Air humidity Interfaces

Controller siz Supply voltag Mains freque Power consul Active power correction (P

Interaction		
Guiding force		~ 2 N
Collision detection time		<2 ms
Nominal collision reaction	time ^{3,4}	<50 ms
Worst case collision reaction	on time ³	<100 ms
Adjustable translational sti	ffness	0 - 3000 N/m
Adjustable rotational stiffn	ess	0 - 300 Nm/ra
Monitored signals joint positio cartesian po		n, velocity, torque sition, velocity, force

DD-ONS	
afety retrofit option vith safety-rated PLC	PLd Cat. 3 • Safe torque off (STO) • Safe OSSD inputs
ully integrated nd effectors	 2-finger gripper Vacuum gripper
ast mounting	Clamping Adapter
Demonstration	Pop-up Box
esearch interface	1kHz Franka Control Interface (FCI)
ieldhuses	Modbus/TCP OPC UA

SOFT-ROBOT PERFORMANCE

Motion	
Joint velocity limits	A1, A2, A3, A4: 150°/s A5, A6, A7: 180°/s
Cartesian velocity limits	up to 2 m/s end effector speed
Pose repeatabillity	<+/- 0.1 mm (ISO 9283)
Path deviation ³	<+/- 1.25 mm
Force	

Sensing³

0	
Force resolution	<0.05 N
Relative force accuracy	0.8 N
Force repeatability	0.15 N
Force noise (RMS)	0.035 N
Torque resolution	0.02 Nm
Relative torque accuracy	0.15 Nm
Torque repeatability	0.05 Nm
Torque noise (RMS)	0.005 Nm

1 kHz Control ³

Minimum controllable	0.05 N	
Force controller band	10 Hz	
Force range [N]	Nominal case	Local best case
Fx	-125 - 95	-150 - 115
Fy	-100 - 100	-275 - 275
Fz	-50 - 150	-115 - 155
Torque range [Nm]	Nominal case	Local best case
Mx	-10 - 10	-70 - 70
My	-10 - 10	-16 - 12
Mz	-10 - 10	-12 - 12

Reading the Technical Data Sheet TDS

Reading the Technical Data Sheet TDS

- <u>https://support.franka.de/</u>
- <u>https://github.com/bionicd</u> <u>l-sustech/DeepClaw</u>
- <u>https://de3-rob1-</u> <u>chess.readthedocs.io/en/lat</u> <u>est/franka.html</u>
- <u>https://visp-</u> <u>doc.inria.fr/doxygen/visp-</u> <u>daily/tutorial-franka-</u> <u>pbvs.html</u>
- <u>https://github.com/ARISE-</u> <u>Initiative/robosuite</u>
- <u>https://github.com/stepjam</u> /<u>RLBench</u>

Reading the Technical Data Sheet

Another robot ...

TECHNICAL SPECIFICATIONS:

Robot Type
Controlled Axes DoF
Reach
Payload
Weight
Footprint
Collaborative Operation

Certifications

Repeatability Linear Velocity **Power Consumption** Materials Ambient Humidity

Ambient Temperature IP Classification of Robot Programing

Communication Motor Type Installation Orientation

AXIS MOVEMENT

J1 axis rotation base
J2 axis rotation shoulder
J3 axis rotation elbow
J4 axis wrist rotation
J5 axis wrist swing
J6 axis wrist rotation

I/O PORT ON WRIST

Voltage	Current	Digital In	Digital out	Analog In	Analog Out
0/12/24 V	800 mA	4	4	2	0

WORKING

RANGE

(+/-) 175°

(+/-) 175°

(+/-) 175°

(+/-) 175°

(+/-) 175°

(+/-) 175°

UBO-i5 Articulated Type / Modular	
i axes (J1, J2, J3, J4, J5, J6) J7max	
124 mm, 880 mm (working range)	
iKg	
4 Kg	
72 mm diameter	
Safety monitored stop, speed and separation monitoring, and guide operation, power and force limiting design	
SO 10218-1:2011, EN 60204-1:2006 + A1:2009, SO 12100: 2010, ISO 13849-1:2008, CE	
+/- 0.05 mm)	
.8 m/s adjustable	
200 watts typical application	
luminum, Steel, Plastic	
lormal 75% RH or less without frost r dew, 85% RH short term	
to 45 degrees Celsius	
P54	
each pendant with user interface, guide to teach, ROS compatibility through an API, Lua or Python	
AN bus	

Harmonic drive 48 Volt Any Ceiling, Floor, Wall

MAXIMUM

SPEED

150°/sec

150°/sec

150°/sec

180°/sec

180°/sec

180°/sec

MAX. JOINT

MOMENTS

207 Nm

207 Nm

207 Nm

34 Nm

34 Nm

34 Nm

CONTROL BOY
JONTROL BOX
 ······································

Digital out	16	16
Analog In	4	-
Analog out	4	-
Power input	24 Volts	
Power output	3	A

TEACH PENDANT

Dimensions (LxWxH)
Weight
Display Screen
Cabling
IP Classification
Color

355x235x54 mm
1.8 Kg
30 cm Touch LCD Screen
4.5 mm
IP54
Orange

Safety I/O

16

Reading the Technical Data Sheet

Another robot ...

Tell us about yourself

Have you worked with a Collaborative Robot before? What do you expect to take away from the class? Do you perfer to work alone or as a team? Tell us about your coding experience ...

ME336 Collaborative Robot Learning Spring 2023

Thank you ~

Song Chaoyang

Southern University of Science and Technology

BionicDL@SUSTech

ME336 Collaborative Robot Learning

Song Chaoyang