
AncoraSIR.com

Lecture 11
Markovian Modeling II

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 1

[Please refer to the course website for copyright credits]



AncoraSIR.com

Policy Iteration

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 2



AncoraSIR.com

The Policy Iteration Algorithm

• Starts
• with some initial policy 𝜋!

• Repeat
• Policy evaluation

• Given a policy 𝜋!, calculate 𝑈! = 𝑈"!, the utility of each state if 𝜋! were to be executed.
• Policy improvement

• Calculate a new MEU policy 𝜋!#$, using one-step look-ahead based on 𝑈!

• Terminates
• when the policy improvement step yields no change in the utilities

If one action is clearly better than all others, 
then the exact magnitude of the utilities on the states involved need not be precise

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 3



AncoraSIR.com

The Policy Iteration Algorithm
for calculating an optimal policy

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 4

Start

Repeat
• Evaluation

• Improvement

Terminate



AncoraSIR.com

A Simplified Version of the Bellman Equation

• At the ith iteration, the policy 𝜋$ specifies the action 𝜋$ 𝑠 in state 𝑠
the action in each state is fixed by the policy

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 5

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈# $

+
$!
𝑃 𝑠%| 𝑠, 𝑎 𝑈 𝑠′ 𝑈& 𝑠 = 𝑅 𝑠 + 𝛾+

$!
𝑃 𝑠%| 𝑠, 𝜋& 𝑠 𝑈& 𝑠′

𝜋& 𝜋& 1, 1 = 𝑈𝑝

𝜋& 1, 2 = 𝑈𝑝

𝜋& 1, 3 = 𝑅𝑖𝑔ℎ𝑡

𝜋& 2, 1 = 𝐿𝑒𝑓𝑡

…

𝑈& 1, 1 = −0.04 + 0.8𝑈& 1, 2 +0.1𝑈& 1, 1 +0.1𝑈& 2, 1

𝑈& 1, 2 = −0.04 + 0.8𝑈& 1, 3 +0.2𝑈& 1, 2

𝑈& 1, 3 = ?

…

…

Linear Simplified Bellman Equations
• Can be solved in time 𝑂 𝑛'
• Efficient for small state spaces
• What about large state spaces?

𝑛 states 𝑛 equations 𝑛 unknowns



AncoraSIR.com

The Simplified Bellman Process

• Perform some number of simplified value iteration steps to give a reasonably 
good approximation of the utilities

• Modified Policy Iteration
• Much more efficient than standard policy iteration or value iteration

• Asynchronous Policy Iteration
• It is not necessary to update the utility or policy for all states at once
• On each iteration, we can pick any subset of states and apply either kind of updating 

(policy improvement or simplified value iteration) to that subset

it is not necessary to do exact policy evaluation

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 6

𝑈& 𝑠 = 𝑅 𝑠 + 𝛾+
$!
𝑃 𝑠%| 𝑠, 𝜋& 𝑠 𝑈& 𝑠′ 𝑈&() 𝑠 ← 𝑅 𝑠 + 𝛾+

$!
𝑃 𝑠%| 𝑠, 𝜋& 𝑠 𝑈& 𝑠′

Repeat 𝑘 times



AncoraSIR.com

Formalizing Manipulation Learning

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 7



AncoraSIR.com

Formalizing Robot Learning Problems

• A 5-tuple formalization 𝑆, 𝐴, 𝑇, 𝑅, 𝛾
• A finite set of states 𝑆 ⊆ ℝH
• A finite set of actions 𝐴 ⊆ ℝI
• A transition function 𝑇 𝑠J| 𝑠, 𝑎
• A reward function 𝑅 𝑠J| 𝑠, 𝑎
• A discount factor 𝛾 ∈ 0, 1

• Goal of Learning 
• To find a control policy

• POMDPs (Partially Observable MDPs)
• A more accurate characterization, but more difficult to solve

Typically formulated as individual Markov Decision Processes (or MDPs)

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 8

𝜋$∗ = argmax++
,-.

/

𝛾,𝑅 𝑠, To identify and exploit task structure to obtain 
faster learning and better generalization



AncoraSIR.com

Structured Collection of MDPs as a Task Family

• Task Family
• A distribution, 𝑃 𝑀 , over MDPs, each of which is a task.

• Action Space
• Determined by the robot and remains the same across tasks
• Each task may have its own state space and transition and reward functions

• Reward Function
• Typically formulated as a robot-dependent background cost function
• Shared across the entire family
• Plus a terminal reward that is specific to that task

Ideally attempt to learn a policy that generalizes across the entire task family

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 9

𝑅& = 𝐺& − 𝐶

the general background cost functionthe reward function for the 𝑖,0 task



AncoraSIR.com

Structured Collection of MDPs as a Task Family

• State Space
• The state space of the 𝑖OP task

• Factorize the environment as a collection of object states
• Many task environments will consist of a collection of objects and 

the variables describing the aspects of those objects that are relevant to the task

• Facilitates object-centric generalization
• Can be reused in new environments containing the same objects 

Ideally attempt to learn a policy that generalizes across the entire task family

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 10

𝑆& = 𝑆1 × 𝑆2"

the state of the 𝑖,0 environmentthe state of 
the robot • raw pixels and sensor values

• a highly pre-processed collection 
of relevant task variables

𝑆2" = 𝑆3" × Ω)
& × … × Ω4"

&

the state of the 𝑗,0 relevant object in 
task 𝑖, and task 𝑖 contains 𝑘& objects

the state of the general environment



AncoraSIR.com

Structure in Transition Function

• Modularity in Transition Functions
• Model the tasks as hybrid systems with piecewise continuous dynamics

• Mode: Each of the continuous dynamical subsystems
• the state will often contain discrete variables to capture the current mode

• Mode Switches: occur when the robot enters certain sets of states
• when the robot makes or breaks contact with an object. 

• Limit the state variables that the robot may alter by restricting itself to certain 
modes

the robot will only be able to affect a subset of objects and state variables from any given state

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 11



AncoraSIR.com

Structure in Action Space, or Skills

• Typically modeled using a hierarchical learning framework
• Models each motor skill as an option: 𝑜 = 𝐼U, 𝛽U, 𝜋U
• 𝐼U: 𝑆 → 0, 1 is the initiation set

• an indicator function describing the states from which the option may be executed.
• 𝛽U: 𝑆 → 0, 1 is the termination condition

• describing the probability that an option ceases execution upon reaching state s.
• 𝜋U is the option policy

• mapping states in the option’s initiation set to low-level motor actions and corresponding to the motor 
skill controller.

• Examples of the robot action space
• Pre-equipped with a set of motor skills to reuse across the family of tasks
• Discovers reusable skills as part of its learning task

Exploited using higher-level actions

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 12



AncoraSIR.com

A Dilemma between a Single Task and a Task Family

• Learned policies for a single task may not share the same task space with others
• Different tasks in a task family may require different functions of the task state

• Adding extra information to the task
• for example, information about the color and shape of various objects in the task
• Incompatible with the state space representation (no change)

• Extra information modelled as a context vector 𝜏
• Added to each task MDP, and which the robot can use to inform its behavior. 
• Can be monolithic for each task, or factored into object contexts.

Challenges when transfer learned functions across a task family

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 13



AncoraSIR.com

Modeling a Family of Manipulation Tasks

• A 6-tuple 𝑀! = 𝑆! , 𝐴, 𝑅! , 𝑇! , 𝛾, 𝜏! of 𝑃 𝑀
• 𝑆! = 𝑆" × 𝑆#5 is the state space

• Where 𝑆! describes the robot state, and 𝑆"" the environment state. Often the environment state is primarily 
factored into a collection of object states: 𝑆"" = 𝑆#" × Ω$

% × …× Ω&"
% , for a task with 𝑘% objects;

• 𝐴 is the action space
• Common across tasks, which may include both low-level primitive actions and a collection of options 𝑂;

• 𝑅! = 𝐺! − 𝐶 is the reward function
• Comprising a background cost function 𝐶 (common to the family) and a task-specific goal function 𝐺% ;

• 𝑇! is the transition function
• May contain exploitable structure across the sequence of tasks, especially object-centric structure;

• 𝛾 is a discount factor
• 𝜏! is task-specific context information 

• A vector of real numbers, possibly factored into object context: 𝜏% = 𝜏$% × …× 𝜏&% , for 𝑘 objects.

a task family specified by a distribution of manipulation MDPs, 𝑃 𝑀

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 14



AncoraSIR.com

Learning to Open Doors

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 15



AncoraSIR.com

Example: Learning to Open Doors
Many doors …

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 16

A successful door opening policy 
• Robust to many different 

• doors
• lighting conditions
• environment settings

• Quick, reliable, and safe

Subtask decomposition
• Turning the handle 
• Pulling open the door

Sources: Google Brain, UC 
Berkley, Boston Dynamics



AncoraSIR.com

Approaches to Learn Openning Doors

• Door Keypoint Detection
• locating the doorknob location, 

and axes of rotation, 
• then using motion planning 

to open the door

• Model Based
• Creating a model of the door
• Learning the kinematics of doors 

• Reinforcement Learning based
• A growing interest of research

Door Keypoint Detection, Model Based, and Reinforcement Learning based

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 17

sci-hub.si/10.1109/IROS.2010.5649847                                sci-hub.si/10.1109/iros.2012.6385835                              sci-hub.si/10.1109/icar.2017.8023522



AncoraSIR.com

Domain Randomization in Reinforcement Learning

• Drawbacks in Reinforemenct Learning
• sample inefficiency, the curse of dimensionality, and
• the reality gap between simulators and the real world

• Assumption
• Hard to model the real world perfectly, but easy to create many different 

simulations that approximate the real world. 

• Proposal
• It is possible to ensemble a variety of simulator environments with different 

visual or physical properties to generalize to a domain that overlaps the real world

Bridge the reality gap between simulation and the real world

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 18

Top row shows the 
function to make 
semantic 
segmentation labels. 

Bottom row shows 
the image when the 
Gaussian noise, 
camera distortion, 
and chromatic 
aberration are added.

Examples of the post processing that can be apply by Unity

OpenAI Gym 



AncoraSIR.com

List of Randomized Parameters in the Door World
Door

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 19

STL models

Pull Knob

Lever Knob

Round Knob



AncoraSIR.com

List of Randomized Parameters in the Door World
Robot

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 20

https://www.berkeleyopenarms.org/

https://www.berkeleyopenarms.org/


AncoraSIR.com

List of Randomized Parameters in the Door World
Vision

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 21

Unity can 
render realistic 
shadows and 
detailed 
textures.

MuJoCo API



AncoraSIR.com

The Shaped Reward Function for DoorGym

• Elements of an observation 
• The position and the velocity of each robot joint
• The position of the door-knob

• Can be obtained directly from the simulator, or using a 256x256 RGB image and vision network
• The position of the end-effector in world coordinates

• Policy actions 
• Force for linear actuators and torque for rotational actuators, which can be configured to use position control
• The size of the action space corresponds to the # DoF of each robot

Use simple and readily available observations from the environment

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 22

The Reward Function to incentivize the agent to open the door

The distance between the fingertip of the end-
effector and the center coordinate of the doorknob

To give a precision when the agent get close to a target (𝛼 = 0.005)

The difference between the current fingertip orientation of the 
robot and the ideal orientation to hook/grip the doorknob The control input to the system

The angle of the door

The angle of the door-knob

Subscript 
indicate 
the value 
at time t

𝑎.,),7,' = 1
𝑎8 = 30
𝑎9 = 50

To minimize (-)

To maximize (+)

Quiz:
The robot tries to open the 
door before or after it hooks 
or rotates the door knob ?



AncoraSIR.com

The Unshaped Reward Function for DoorGym

• We define a successful attempt as the robot opening the door at least 0.2 radians within 10 
seconds.

• For attempt i,

• Two unshaped reward function 
(measured over 100 attempts)

Other forms of evaluation

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 23

The Reward Function to incentivize the agent to open the door

The distance between the fingertip of the end-
effector and the center coordinate of the doorknob

To give a precision when the agent get close to a target (𝛼 = 0.005)

The control input to the system

The angle of the door

The angle of the door-knob

𝑎.,),7,' = 1
𝑎8 = 30
𝑎9 = 50

The average success rate 
of opening a door

The average time 
to open the door

𝑡!: the time to completion for successful attempts
𝑛: the number of successful attempts

Subscript indicate 
the value at time t

To minimize (-)

To maximize (+)



AncoraSIR.com

Environment Summary
36 possible environment combinations with 3 grippers, 6 robots, and 2 directions (push/pull) 

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 24



AncoraSIR.com

The Door Opening Agent
An on-policy (Proximal Policy Optimization) and off-policy (Soft Actor Critic) update algorithm

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 25

to estimate 
doorknob 
position

to output actions

Refer to the paper for further details
https://arxiv.org/pdf/1908.01887.pdf

https://github.com/vitchyr/rlkit

https://arxiv.org/pdf/1908.01887.pdf
https://github.com/vitchyr/rlkit


AncoraSIR.com

Experiments
The agent has 10.2sec to try open the door for each of the 100 test door-worlds

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 26

Task 1 has a pull knob 
environment with 
floating hook

Task 2 has a lever knob 
with floating hook

Task 3 has a pull knob 
with the BLUE-with-
gripper platform



AncoraSIR.com

Results
Average Success Ratio and Average Time to Open measured in seconds

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 27

Task 1 has a pull knob 
environment with 
floating hook

Task 2 has a lever knob 
with floating hook

Task 3 has a pull knob 
with the BLUE-with-
gripper platform

• PPO (~70%) has a much higher successrate than SAC
• SAC shows better exploration and faster convergence, but 

PPO shows better exploitation in trade-off of its training speed
• Success rates of both algorithm decrease

• When adding gaussian noise to the door knob position
• When the door knob position information comes from the 

vision network
• Position estimation in the 3D space of the door knob is 

extremely important for the door opening task. 



AncoraSIR.com

Thank you~
songcy@sustech.edu.cn

ME336 Collaborative Robot Learning Lecture 11 Markovian Modeling II 28

Bionic Design & Learning Lab
@ SIR Group !"#$%&'()*

Room 606
7 Innovation Park
+,-.7/606*

mailto:songcy@sustech.edu.cn

