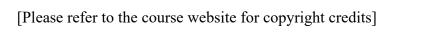
Lecture 10 Markovian Modeling I

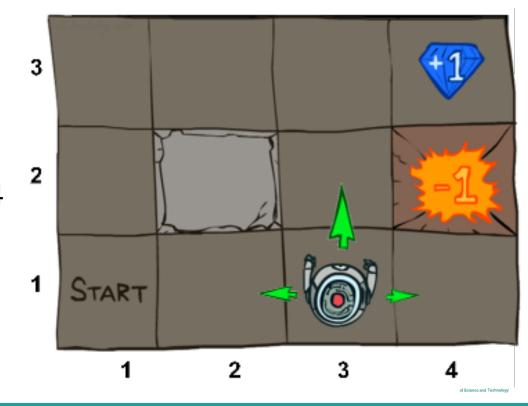


Sequential Decision Problems

An Example of Grid World

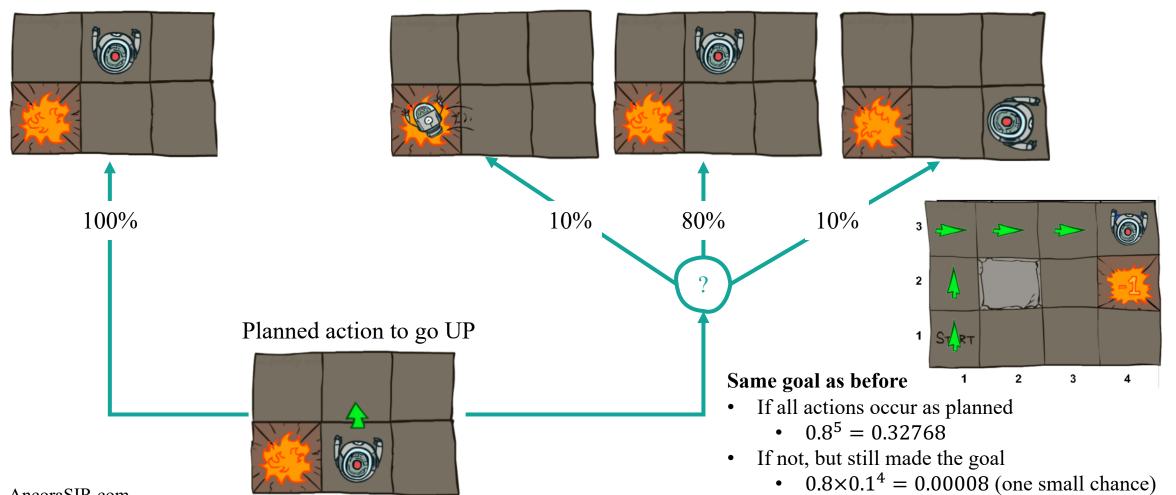
A maze-like problem with an agent in a grid and walls blocking the agent's paths

- Stochastic Motion: Actions do not always go as planned
 - 80% of the time, intended actions occur as planned
 - 10% of the time, turning left/right to the intended action
 - A collision with a wall results in no movement
- Reward Mechanism: received at each time step
 - Two terminal states with (**BIG**) reward +1 and -1
 - All other states have a (LIVING) reward of -0.04
- The Goal
 - Maximize the sum of rewards



Grid World Actions

Deterministic Motion vs. **Stochastic** Movement

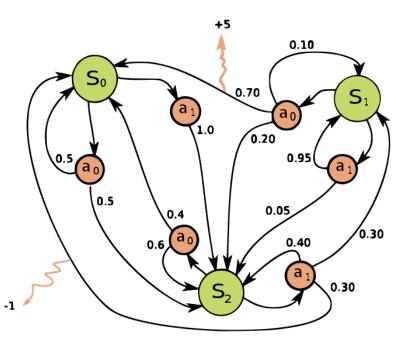


Define a Markov Decision Process

A fully observable, stochastic environment with a Markovian transition model and additive rewards

- A finite set of states $s \in S$
 - With a start state s_0 , and (maybe) a terminal state
- A finite set of actions $a \in A$
 - A_s is the finite set of actions available from state s
- A transition function P(s'|s,a)
 - $Pr(s_{t+1} = s' | s_t = s, a_t = a)$ is a probability
 - Action a in state s at time t will lead to state s' at time t + 1,
- A reward function R(s'|s,a)
 - Can be an immediate reward or an expected immediate reward
 - After transitioning from state s to state s', due to action a

4-tuple (S, A, P_a, R_a)



A Sequential Decision Problem

Or MDP

Markovian Policy

What does a solution to the problem look like?

- "Markov"
 - Action outcomes depend only on the current state (not history)

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

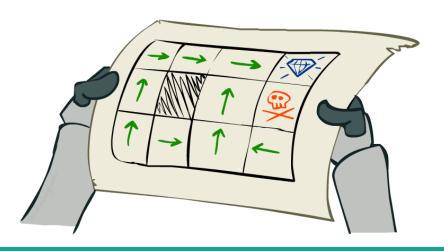
= $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$

- Policy $\pi(s)$
 - A a solution that specifies what the agent should do for any state that the agent might reach (*from start to goal*)
- Optimal Policy π^*
 - A policy that yields the highest expected utility
- Explicit representation of the agent function
 - a description of a simple reflex agent, computed from the information used for a utility-based agent

Andrey Markov (1856-1922)

Non-Markovian examples

- Robot dynamics (hard)
- Quantum physics

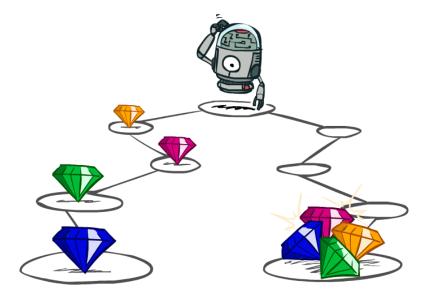


A Finite or Infinite Horizon For Decision Making

Utility Over Time, or a utility function on environment histories, $U_h([s_0, s_1, ..., s_n])$

- Finite Horizon (nonstationary optimal policy)
 - A fixed time N after which nothing matters, the game is over
 - $U_h([s_0, s_1, ..., s_{N+k}]) = U_h([s_0, s_1, ..., s_N])$, for all k > 0
 - the optimal action in a given state could change over time (opportunities are limited)

- Infinite Horizon (stationary optimal policy)
 - With no fixed time limit, why behaving differently in the same state at different times?
 - The optimal action depends **only** on <u>the current state</u> (a simpler problem)



How to Calculate the Utility of State Sequences

Using multi-attribute utility theory with outcomes characterized by two or more attributes

- Attribute: A state s_i of the state sequence $[s_0, s_1, s_2, ...,]$
- Assumption on Stationary Preference
 - The agent's preferences between state sequences are **stationary**
 - If two state sequences $[s_0, s_1, s_2, ...,]$ and $[s'_0, s'_1, s'_2, ...,]$ begin with the same state (i.e., $s_0 = s'_0$), then the two sequences should be preference-ordered the same way as the sequences $[s_1, s_2, ...,]$ and $[s'_1, s'_2, ...,]$
- Additive rewards for the utility of a state sequence
 - $U_h([s_0, s_1, s_2, ...,]) = R(s_0) + R(s_1) + R(s_2) + ...$
 - Just like the path cost functions in heuristic search algorithms

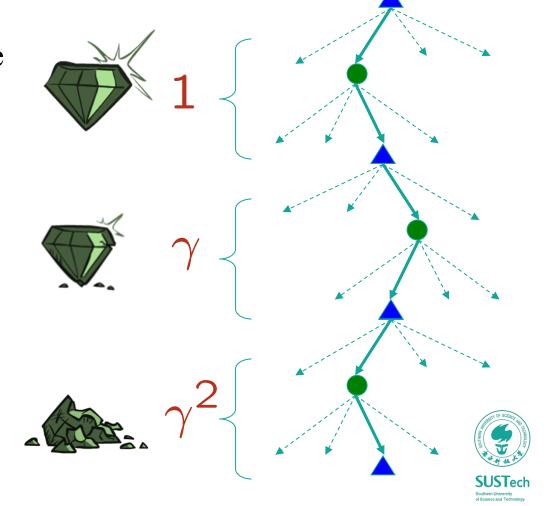
Discounted Rewards

$$U_h([s_0, s_1, s_2, ...,]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

How to discount?

• Each time we descend a level, we multiply in the discount factor once, i.e., $\gamma \in [0, 1]$

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge
- Example: discount of 0.5
 - $U_h([1,2,3]) = 1 + 0.5 \times 2 + 0.5^2 \times 3$
 - $U_h([1,2,3]) < U_h([3,2,1])$



What if the Game Lasts Forever?

Do we get infinite rewards?

- With discounted rewards, the utility of an infinite sequence is *finite*
 - If $\gamma < 1$ and rewards are bounded by $\pm R_{max}$, we have
 - $U_h([s_0, s_1, s_2, ...,]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \sum_{t=0}^{\infty} \gamma^t R_{max} = \frac{R_{max}}{1-\gamma}$

Optimal Quantities

- The value (utility) of a state s:
 - $V^*(s)$ = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s, a):
 - $Q^*(s, a)$ = expected utility starting out having taken action a from state s and acting optimally
- The optimal policy:
 - $\pi^*(s)$ = optimal action from state s

How to Compare Policies

By comparing the expected utilities obtained when executing them

- Assumption
 - The agent is in some initial state s, and a particular policy π to be executed
 - Define S_t (a random variable) to be the state the agent reaches at time t, i.e., $S_t = s$
 - The probability distribution over state sequences S_1, S_2, \ldots , is determined by the initial state s, the policy π , and the transition model for the environment.
- Define the Expected Utility

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right]$$

• Finding the Optimal Policy (when s is the starting state)

$$\pi_s^* = \operatorname{argmax}_{\pi} U^{\pi}(s)$$

Maximum Expected Utility

Choose the action that maximizes the expected utility of the subsequent state

- Notice the differences
 - R(s) is the "short term" reward for being in s,
 - U(s) is the "long term" total reward from s onward.

• The principle of Maximum Expected Utility

$$\pi_s^* = \operatorname{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$$

	0.812	0.868	0.918	+1
	0.762		0.660	-1
	0.705	0.655	0.611	0.388
'	1	2	3	4

Notice that the utilities are higher for states closer to the +1 exit, because fewer steps are required to reach the exit.

Value Iteration

The Bellman Equation for Utilities

A direct relationship between the utility of a state and the utility of its neighbors

• The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state, assuming that the agent chooses the optimal action.

• Bellman equation $U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U(s')$

$$U(1,1) = -0.04 + \gamma \, \max[\, 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \qquad \qquad (Up) \\ 0.9U(1,1) + 0.1U(1,2), \qquad \qquad (Left) \\ 0.9U(1,1) + 0.1U(2,1), \qquad \qquad (Down) \\ 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1) \,]. \qquad (Right)$$

Which action is the best solution?

0.812	0.868	0.918	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388
1	2	2	1

Nonlinearity of the Bellman Equations

The Bellman equation is the basis of the value iteration algorithm for solving MDPs.

- Solving *n* equations with *n* unknown utilities of the states
 - *n* possible states
 - n Bellman equations for each state
 - Non-linear "max" operation
- Iterative Approach for a solution

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U_i(s')$$

$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' s, a) U(s')$
s'

0.812	0.868	0.918	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388
1	2	3	4

The Value Iteration Algorithm

for calculating utilities of states

function Value-Iteration (mdp, ϵ) **returns** a utility function

inputs: mdp, an MDP with states S, actions A(s), transition model $P(s' \mid s, a)$, rewards R(s), discount γ

 ϵ , the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum change in the utility of any state in an iteration

repeat

$$U \leftarrow U'; \delta \leftarrow 0$$

for each state s in S do

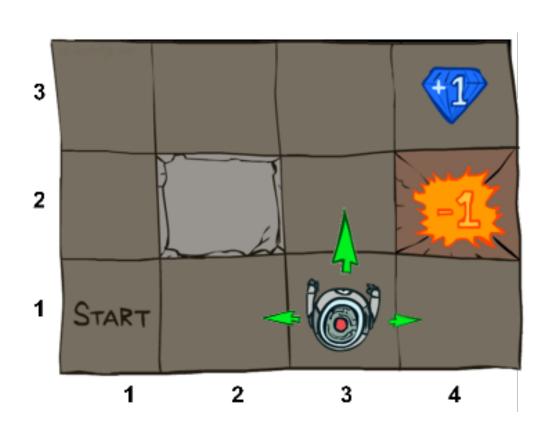
$$U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U[s']$$

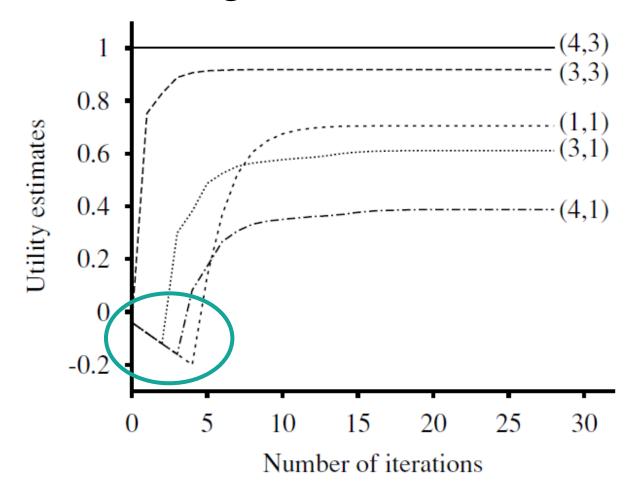
if
$$|U'[s] - U[s]| > \delta$$
 then $\delta \leftarrow |U'[s] - U[s]|$

until
$$\delta < \epsilon (1-\gamma)/\gamma$$
 — Terminal Condition

The Grid World Example

evolution of the utilities of selected states using value iteration





Contraction

Why value iteration eventually converges to a unique set of solutions of the Bellman equations?

- A function of one argument that,
 - when applied to two different inputs in turn,
 - produces two output values that are "closer together,"
 - by at least some constant factor, than the original inputs

an operator max norm
$$U_{i+1} \leftarrow B U_i \qquad ||U|| = \max_{s} |U(s)|$$

$$||B U_i - B U_i'|| \le \gamma ||U_i - U_i'||$$

- 10 4 =
 - /2
- 5 2 = 3
 - /2 1.5
 - /2 ?

Approaching a fixed point in limit

- The Bellman update is a contraction by a factor of γ on the space of utility vectors
 - value iteration always converges to a unique solution of the Bellman equations whenever $\gamma < 1$

The Rate of Convergence

Convergence of Value Iteration

terations

1e+07

• Property of the utilities of all states

$$U_h([s_0, s_1, s_2, \ldots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \sum_{t=0}^{\infty} \gamma^t R_{\text{max}} = R_{\text{max}}/(1-\gamma)$$

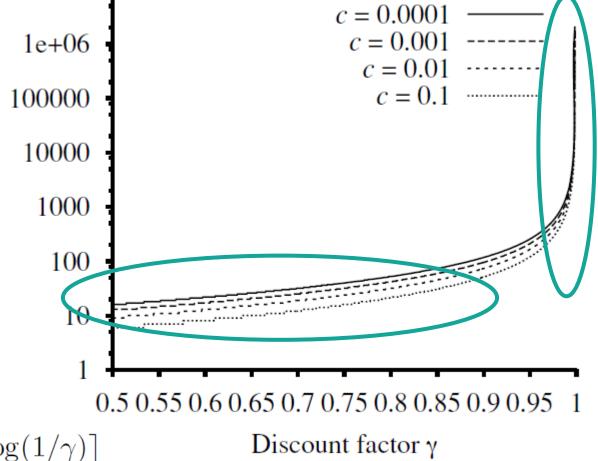
• Then, the maximum initial error

$$||U_0 - U|| \le 2R_{\text{max}}/(1 - \gamma)$$

- Suppose we run for N iterations to reach an error of at most ϵ .
- Because the error is reduced by at least γ each time

$$\gamma^{N} \cdot 2R_{\text{max}}/(1-\gamma) \le \epsilon$$

$$N = \lceil \log(2R_{\text{max}}/\epsilon)(1-\gamma)) / \log(1/\gamma) \rceil$$



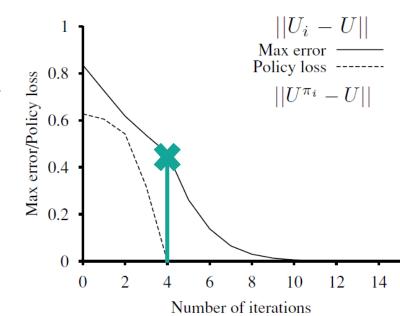
AncoraSIR.com

Southern University

What the Agent Really Cares About?

How well it will do if it makes its decisions on the basis of this utility function?

- Suppose that after *i* iterations of value iteration,
 - the agent has an estimate U_i of the true utility U and
 - obtains the Maximum Expected Utility policy π_i based on one-step look-ahead using U_i
- Will the resulting behavior be nearly as good as the optimal behavior?
 - YES
 - $U^{\pi_i}(s)$ is the utility obtained if π_i is executed starting in s
 - Policy loss $||U^{\pi_i} U||$ is the most the agent can lose by executing π_i instead of the optimal policy π^*



ME336 Collaborative Robot Learning

Bionic Design & Learning Lab

@ SIR Group 仿生设计与学习实验室

Room 606 7 Innovation Park 南科创园7栋606室

Thank you~

songcy@sustech.edu.cn

