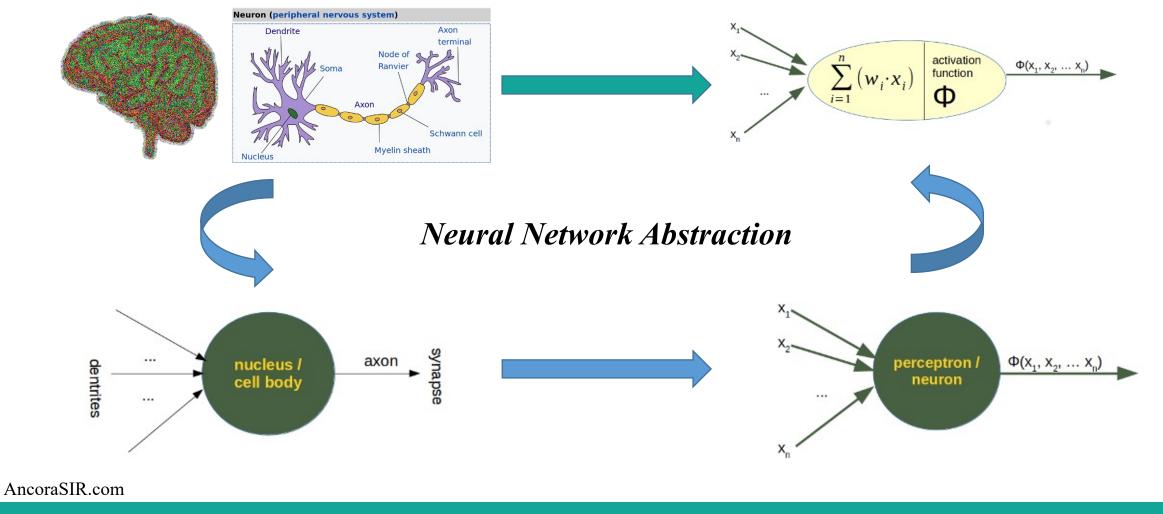
Lecture 06 Deep Networks I

[Please refer to the course website for copyright credits]

Neural Network

What is a Neural Network?

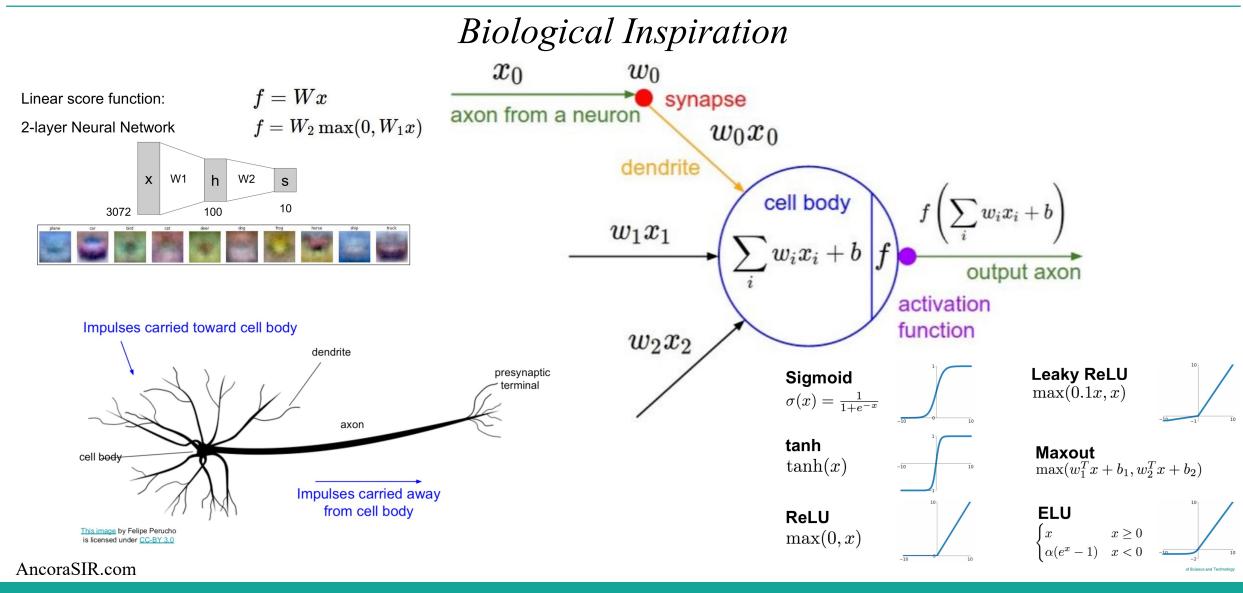
From biological inspiration to mathematical modeling



ME336 Collaborative Robot Learning

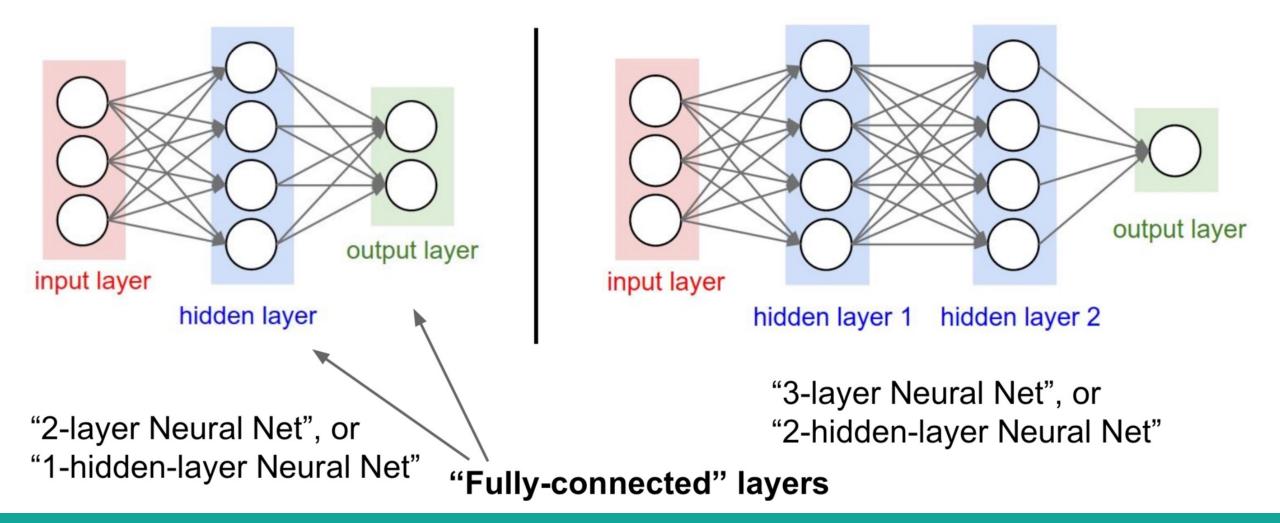
SUSTech

A Perceptron as an Artificial Neuron



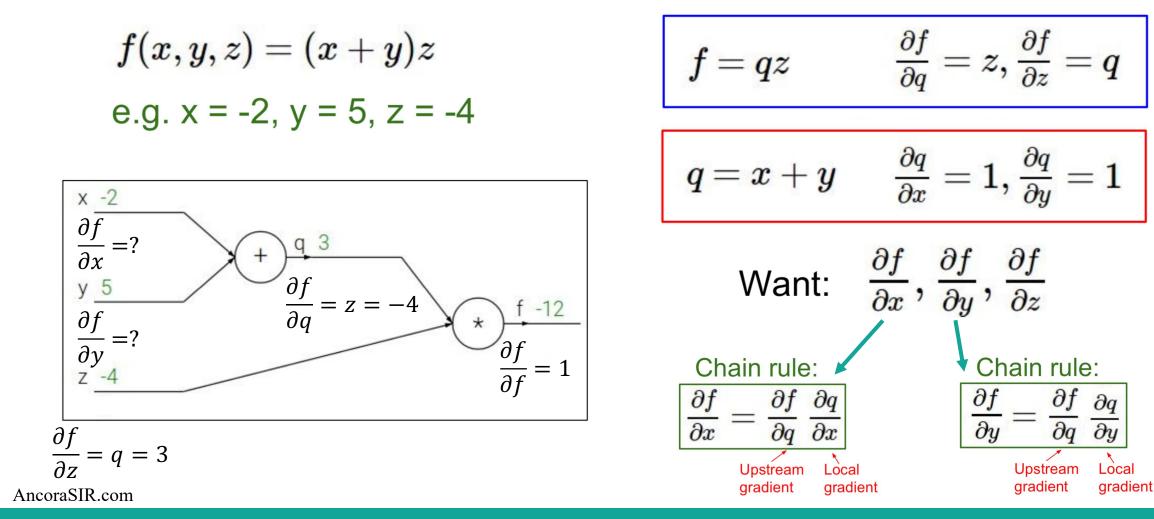
Multi-Layer Perceptrons

Artificial Neural Networks



Computation Graph

A simple example with backpropagation

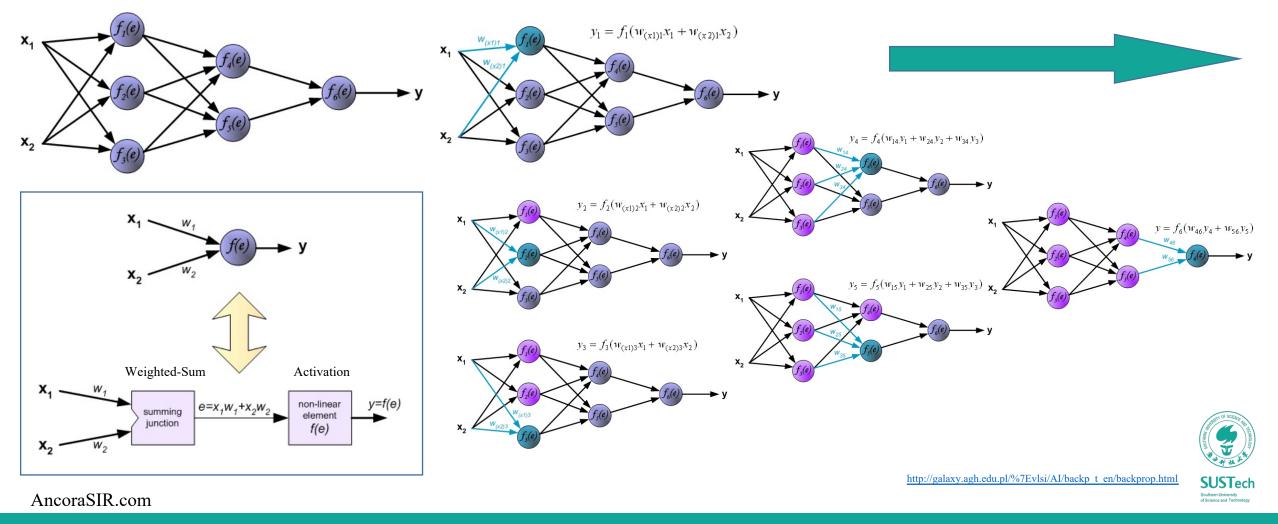


ME336 Collaborative Robot Learning

SUSTech

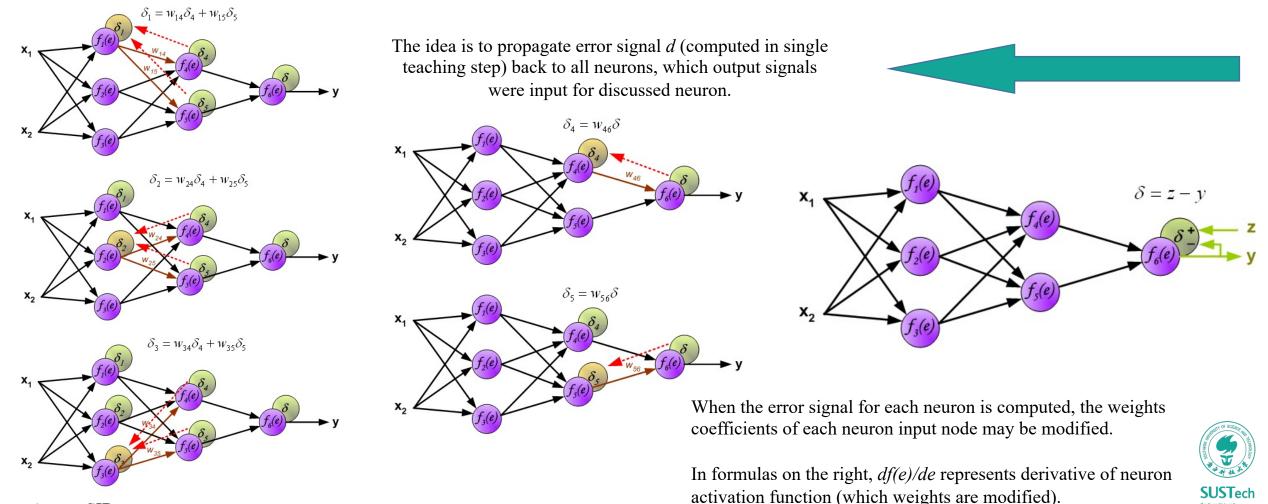
Forward Propogation

Accept inputs to train a Multi-layer Neural Network



Backward Propogation

Calculate the prediction error node-by-node



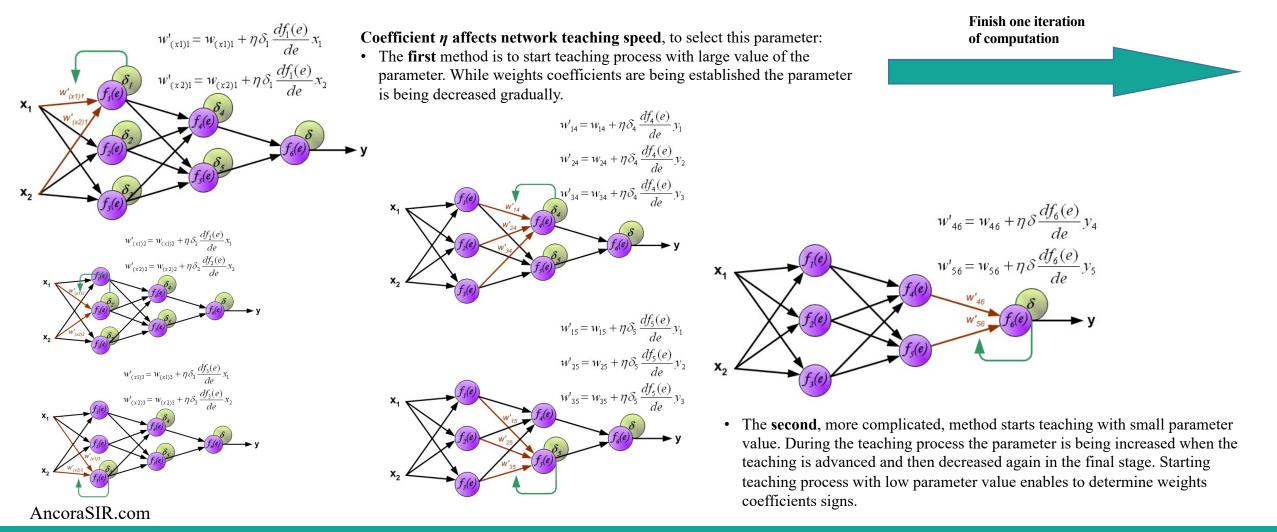
AncoraSIR.com

ME336 Collaborative Robot Learning

Lecture 06 Deep Networks I

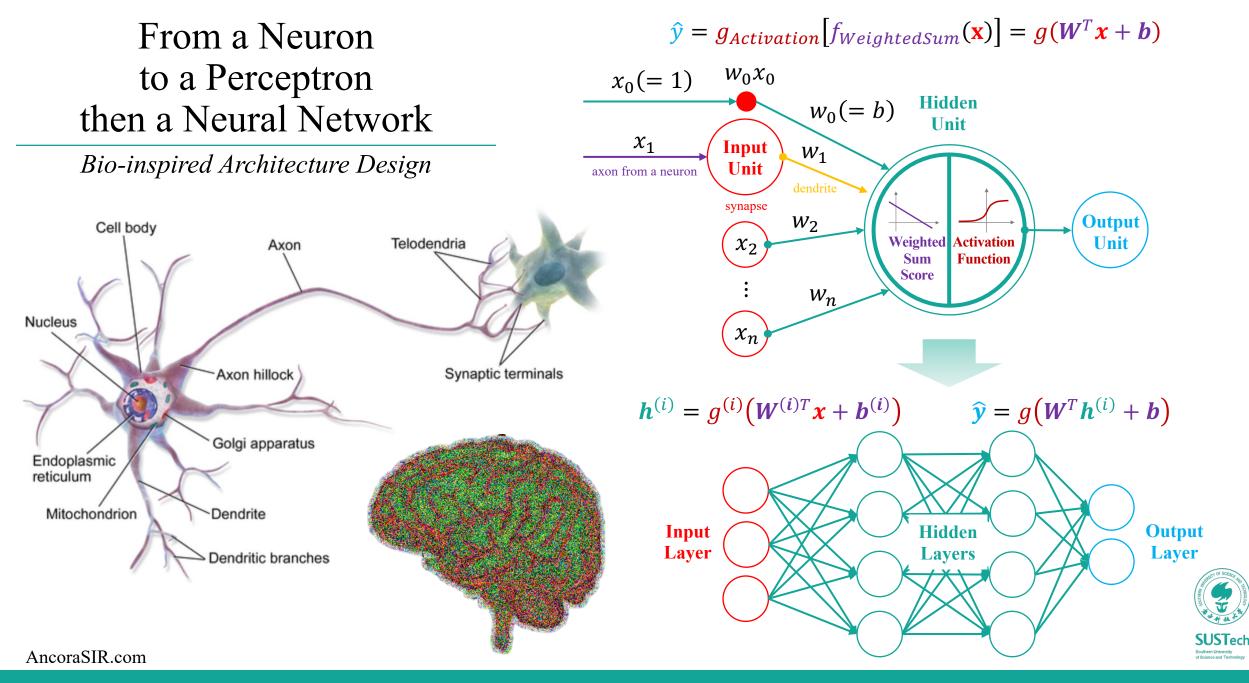
Weight Update

Update the weights to finish one iteration of computation, then repeat.



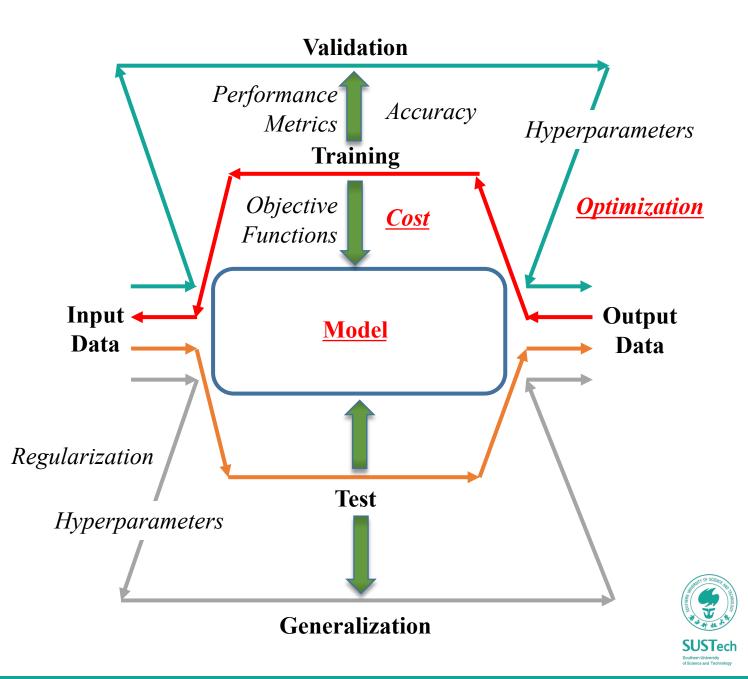
ME336 Collaborative Robot Learning

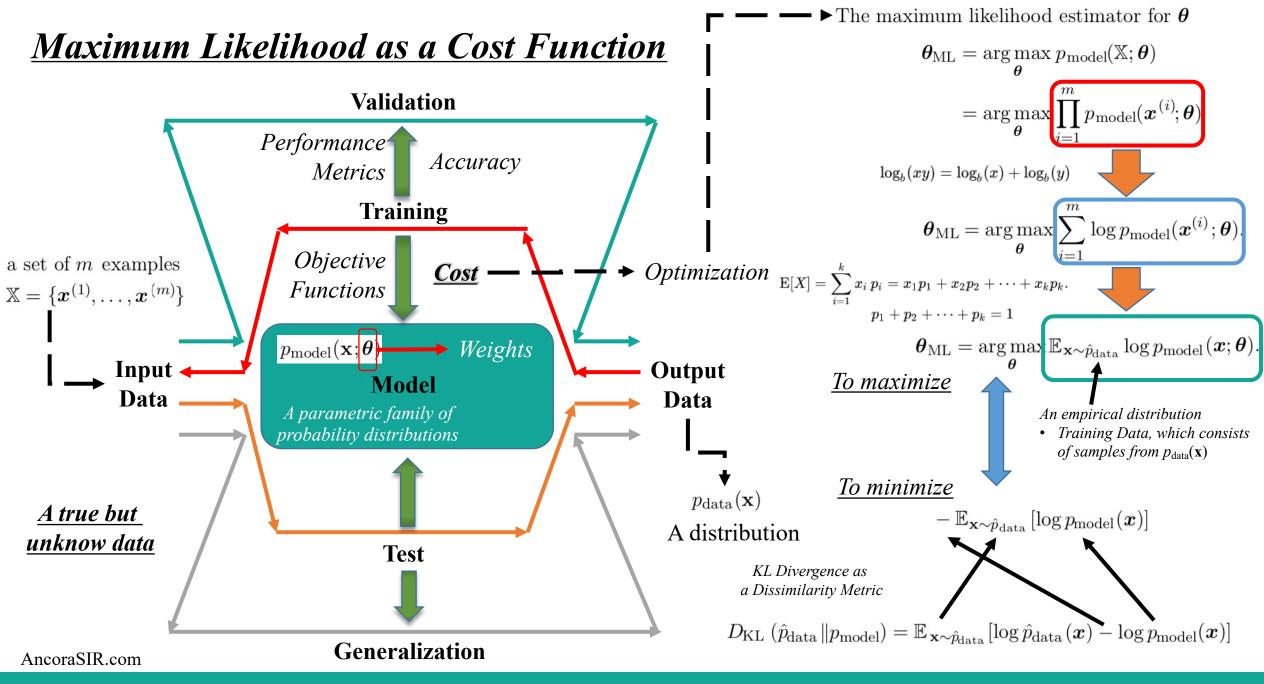
Deep Forward Networks

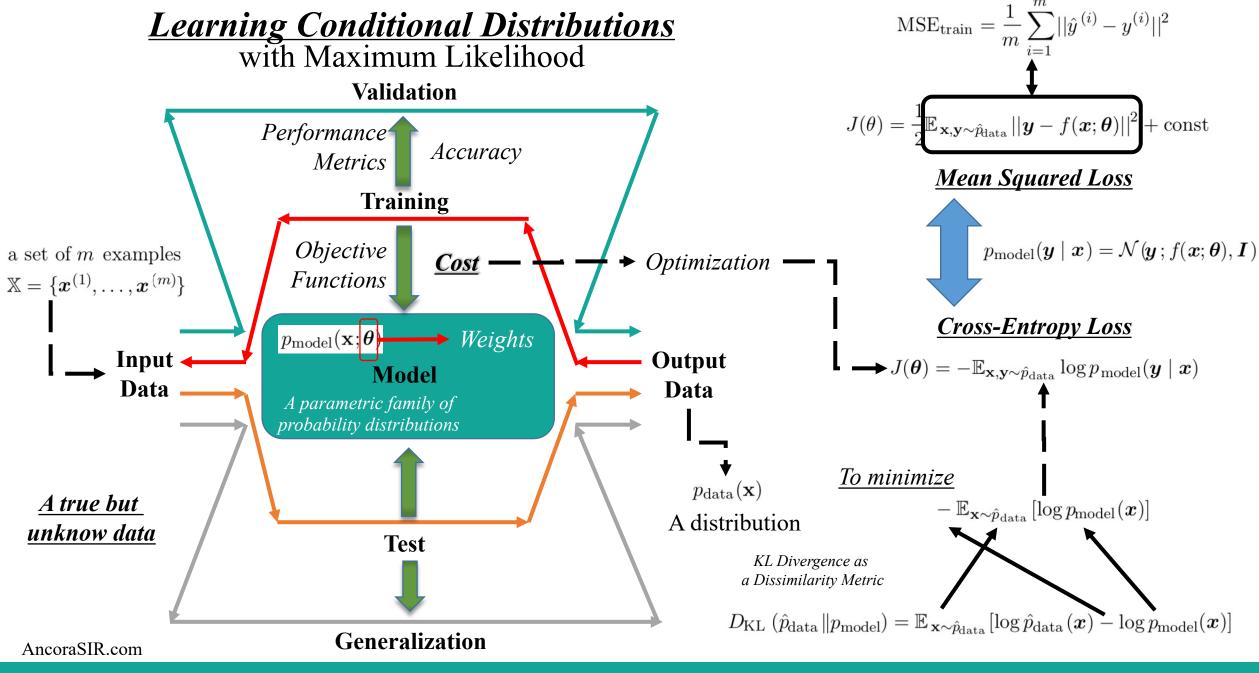


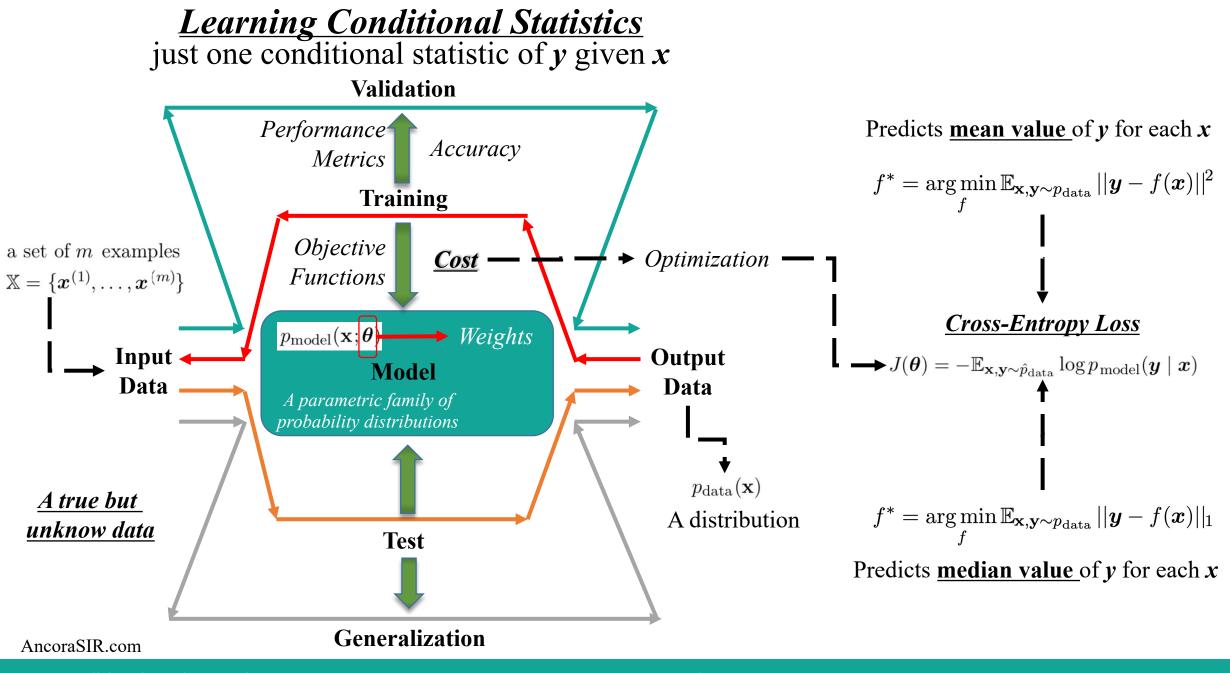
Gradient-based Learning ML vs NN

- For supervised learning
 - NN can be viewed as ML with *gradient descent*
 - an **optimization** procedure
 - a <u>cost</u> function
 - a **model** family
- Difference
 - The *nonlinearity* of a neural network causes most interesting loss functions to become *non-convex*
 - Neural networks are usually trained by using *iterative, gradient-based optimizers* that merely drive the cost function to a very low value
- Next Steps
 - Choose a cost function
 - Choose model output



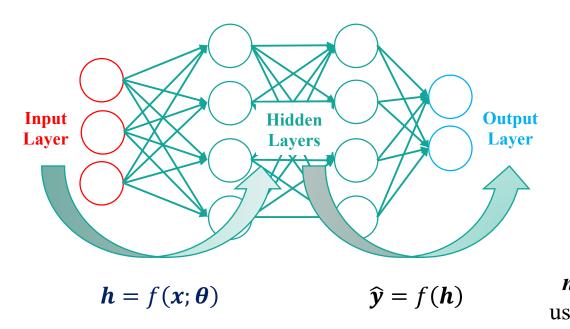


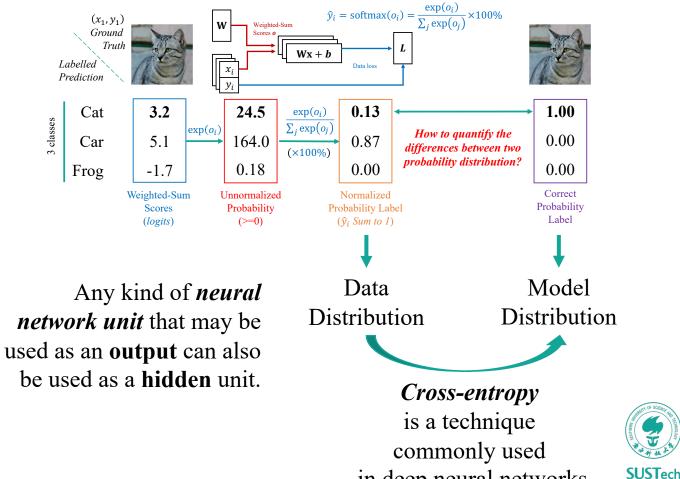




Outputs Units from Hidden Layers

Features (Inputs) of the Output Units provided by the Hidden Layers





in deep neural networks

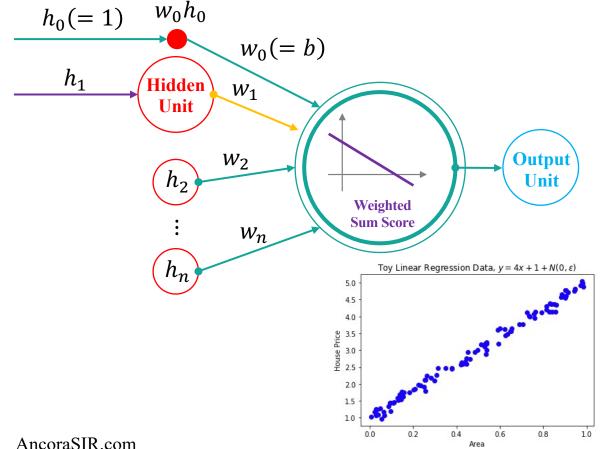
AncoraSIR.com

outhern University Science and Technok

Gaussian Output Distributions

Multiple Linear Regression as $\hat{y} = W^T h + b$

$$\hat{\mathbf{y}} = f_{WeightedSum}(\mathbf{h}) = \mathbf{W}^T \mathbf{h} + \mathbf{b}$$



Linear Unit outputs the mean of a conditional Gaussian distribution
p(y|x) = N(y; ŷ, I)

- Cost Function
 - Loss function as the mean squared error

$$\frac{1}{2} \sum_{i=1}^{n} (y - \hat{y})^2$$

• Maxmizing the log-likelihood

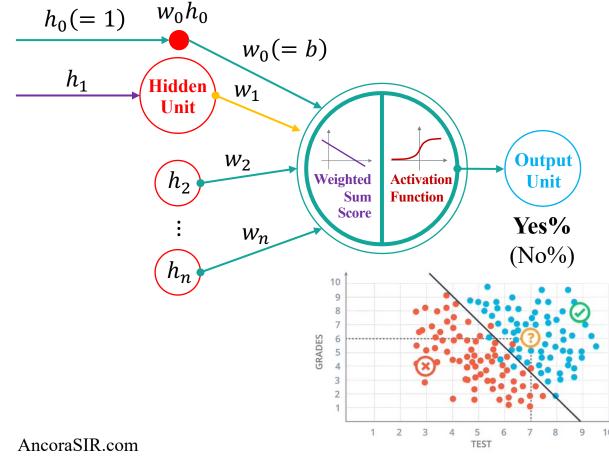
$$-\log p(y|x) = \frac{1}{2} \sum_{i=1}^{n} \left[\log(2\pi\sigma^2) + \frac{1}{\sigma^2} (y - \hat{y})^2 \right]$$

SUSTec

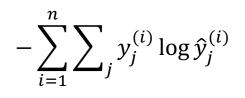
Bernoulli Output Distributions

Statistical Binary Classification as $\hat{y} = \text{sigmoid}(w^T h + b)$

 $\hat{y} = g_{Activation}[f_{WeightedSum}(h)] = sigmoid(w^T h + b) \bullet$ Outputs a Bernoulli distribution



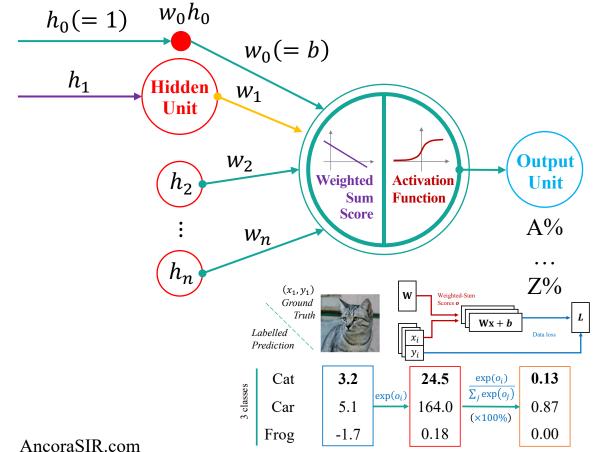
- Controlled by a sigmoidal transformation of the weighted-sum
- $P(y) = \text{sigmoid}[(2y 1)(w^Th + b)]$
- Cost Function
 - Maxmizing the log-likelihood



Multinoulli Output Distributions

Statistical Multi-class Classification as $\hat{y} = \text{softmax}(W^T h + b)$

 $\hat{y} = g_{Activation}[f_{WeightedSum}(h)] = \text{softmax}(W^T h + b) \bullet \text{Outputs a Multinoulli distribution}$



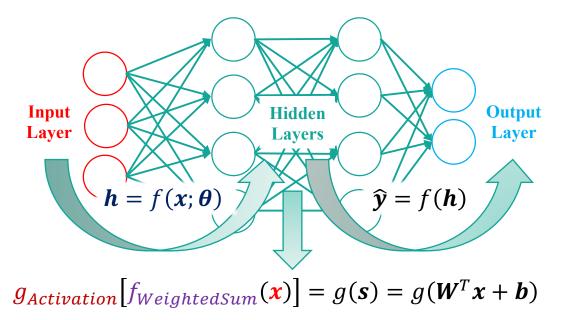
- Controlled by normalized exponentials of the weighted-sums
- $\widehat{y} = \operatorname{softmax}(W^T h + b)$
- Cost Function
 - Averaged cross-entropy loss

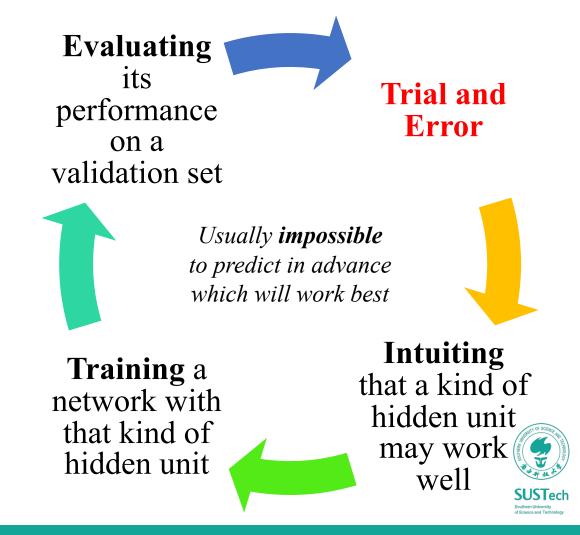
$$-\frac{1}{n}\sum_{i=1}^{n}y_i log(\widehat{y_i}) + (1-y_i)log(1-\widehat{y_i})$$

Hidden Units within the Hidden Layers

A problem unique to deep neural networks (as they have hidden layers)

- The activation design of hidden units
 - An extremely active area of research
 - Does not yet have many definitive guiding theoretical principles.

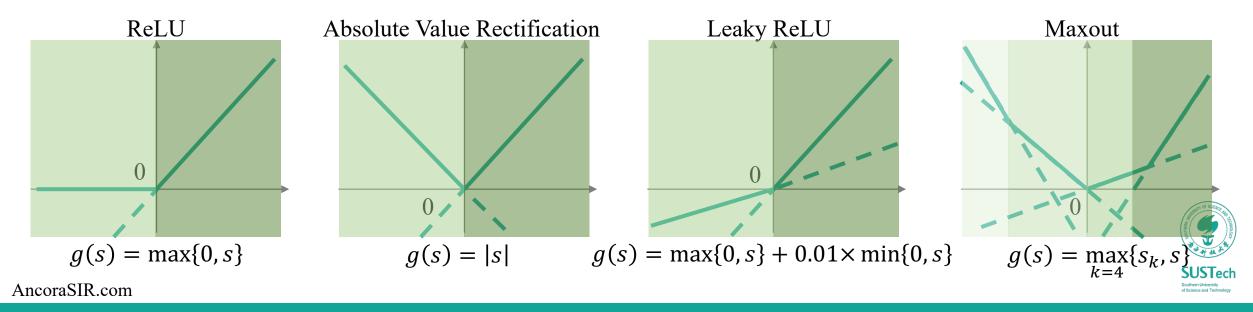




Rectified Linear Units and Their Generalizations

 $g(s) = \max\{0, s\} \& g(s, \alpha) = \max\{0, s\} + \alpha \min\{0, s\}$

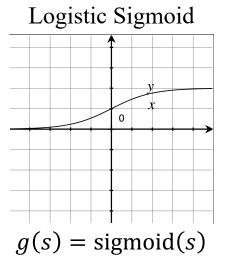
- Like a linear unit, easy to optimize
 - Output zero across half its domain => Large derivative whenever the unit is active
 - The 1st derivative is 1 whenever the unit is active
 - The 2nd derivative is 0 *almost* everywhere (not differentiable at z = 0)
 - A good practice to initialize the parameters with a small bias, such as 0.01



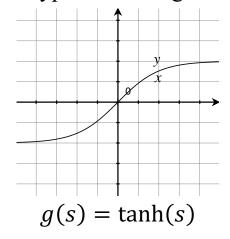
Logistic Sigmoid & Hyperbolic Tangent

$g(s) = \text{sigmoid}(s) \& g(s) = \tanh(s)$

- Popular before rectified linear units, used to predict classification probability
 - Closely related as $tanh(s) = 2 \operatorname{sigmoid}(2s) 1$
- Widespread saturation
 - Approaching 1 when very positive, or approaching 0/-1 when very negative
 - Difficult for gradient-based learning
 - Discouraged for as hidden units for feedforward network
 - Accceptable as output unit with appropriate cost function



Hyperbolic Tangent



- Typically performs better than the logistic sigmoid
- Resembles the identity function more closely

• tanh(0) = 0

- Resembles a linear model
 more closely
 - Nearly linear with small activations

Room 606 7 Innovation Park 南科创园7栋606室

Thank you~

songcy@sustech.edu.cn

