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Neural Network
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What is a Neural Network?
From biological inspiration to mathematical modeling
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Neural Network Abstraction
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A Perceptron as an Artificial Neuron
Biological Inspiration
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Multi-Layer Perceptrons
Artificial Neural Networks
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Computation Graph
A simple example with backpropagation
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Forward Propogation
Accept inputs to train a Multi-layer Neural Network
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http://galaxy.agh.edu.pl/%7Evlsi/AI/backp_t_en/backprop.html

ActivationWeighted-Sum

http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
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Backward Propogation
Calculate the prediction error node-by-node
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The idea is to propagate error signal d (computed in single 
teaching step) back to all neurons, which output signals 

were input for discussed neuron. 

When the error signal for each neuron is computed, the weights 
coefficients of each neuron input node may be modified. 

In formulas on the right, df(e)/de represents derivative of neuron 
activation function (which weights are modified). 
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Weight Update
Update the weights to finish one iteration of computation, then repeat.
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• The second, more complicated, method starts teaching with small parameter 
value. During the teaching process the parameter is being increased when the 
teaching is advanced and then decreased again in the final stage. Starting 
teaching process with low parameter value enables to determine weights 
coefficients signs. 

Finish one iteration 
of computationCoefficient η affects network teaching speed, to select this parameter:

• The first method is to start teaching process with large value of the 
parameter. While weights coefficients are being established the parameter 
is being decreased gradually. 
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Deep Forward Networks
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From a Neuron 
to a Perceptron

then a Neural Network
Bio-inspired Architecture Design
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Gradient-based Learning

• For supervised learning
• NN can be viewed as ML with gradient descent
• an optimization procedure
• a cost function
• a model family

• Difference
• The nonlinearity of a neural network causes most 

interesting loss functions to become non-convex
• Neural networks are usually trained by using 

iterative, gradient-based optimizers that merely 
drive the cost function to a very low value

• Next Steps
• Choose a cost function
• Choose model output

ML vs NN
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A true but 
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A parametric family of 
probability distributions

A distribution

An empirical distribution
• Training Data, which consists 

of samples from pdata(x)

KL Divergence as 
a Dissimilarity Metric

To maximize

To minimize

Maximum Likelihood as a Cost Function
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KL Divergence as 

a Dissimilarity Metric

To minimize

Cross-Entropy Loss

Mean Squared Loss

Learning Conditional Distributions 
with Maximum Likelihood
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Cross-Entropy Loss

Learning Conditional Statistics 
just one conditional statistic of y given x

Predicts median value of y for each x

Predicts mean value of y for each x
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Outputs Units from Hidden Layers
Features (Inputs) of the Output Units provided by the Hidden Layers
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Gaussian Output Distributions

• Linear Unit outputs the mean of a 
conditional Gaussian distribution
• 𝑝 𝒚|𝒙 = 𝒩 𝒚; (𝒚, 𝑰

• Cost Function
• Loss function as the mean squared error

• Maxmizing the log-likelihood

Multiple Linear Regression as !𝒚 = 𝑾!𝒉 + 𝒃
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Bernoulli Output Distributions
Statistical Binary Classification as (𝑦 = sigmoid 𝒘!𝒉 + 𝑏
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Multinoulli Output Distributions
Statistical Multi-class Classification as !𝒚 = softmax 𝑾!𝒉 + 𝒃
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• Outputs a Multinoulli distribution 
• Controlled by normalized exponentials of 

the weighted-sums
• (𝒚 = softmax 𝑾K𝒉 + 𝒃

• Cost Function
• Averaged cross-entropy loss
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Hidden Units within the Hidden Layers

• The activation design of hidden units 
• An extremely active area of research 
• Does not yet have many definitive guiding 

theoretical principles.

A problem unique to deep neural networks (as they have hidden layers)
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𝒉 = 𝑓 𝒙; 𝜽 8𝒚 = 𝑓 𝒉
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Rectified Linear Units and Their Generalizations

• Like a linear unit, easy to optimize
• Output zero across half its domain => Large derivative whenever the unit is active
• The 1st derivative is 1 whenever the unit is active
• The 2nd derivative is 0 almost everywhere (not differentiable at 𝑧 = 0)
• A good practice to initialize the parameters with a small bias, such as 0.01

𝑔 𝑠 = max 0, 𝑠 & 𝑔 𝑠, 𝛼 = max 0, 𝑠 + 𝛼 min 0, 𝑠
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0

𝑔 𝑠 = max 0, 𝑠

ReLU Absolute Value Rectification

𝑔 𝑠 = 𝑠

Leaky ReLU Maxout

𝑔 𝑠 = max 0, 𝑠 + 0.01×min 0, 𝑠 𝑔 𝑠 = max
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Logistic Sigmoid & Hyperbolic Tangent

• Popular before rectified linear units, used to predict classification probability 
• Closely related as tanh 𝑠 = 2 sigmoid 2𝑠 − 1

• Widespread saturation 
• Approaching 1 when very positive, or approaching 0/-1 when very negative

𝑔 𝑠 = sigmoid 𝑠 & 𝑔 𝑠 = tanh 𝑠
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Logistic Sigmoid

𝑔 𝑠 = sigmoid 𝑠

Hyperbolic Tangent

𝑔 𝑠 = tanh 𝑠

0 0

• Difficult for gradient-based 
learning

• Discouraged for as hidden 
units for feedforward 
network

• Accceptable as output unit 
with appropriate cost 
function

• Typically performs better 
than the logistic sigmoid

• Resembles the identity 
function more closely
• tanh 0 = 0

• Resembles a linear model 
more closely
• Nearly linear with 

small activations
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Thank you~
songcy@sustech.edu.cn

Bionic Design & Learning Lab
@ SIR Group !"#$%&'()*

Room 606
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