
AncoraSIR.com

Lecture 05
Machine Learning II

ME336 Collaborative Robot Learning Lecture 05 Machine Learning II 1

[Please refer to the course website for copyright credits]



AncoraSIR.com

Statistical Binary Classification
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Statistical Binary Classification

• Linear Regression
• A basic linear model for line-fitting
• !𝑦 = 𝑓!"#$%&"'()* 𝐱 = 𝐰+𝐱 + 𝑏

• Linear Classification
• Vectorized weights for two or multiple classes
• 𝐬 = 𝑓!"#$%&"'()* 𝐱 = 𝐖𝐱 + 𝐛

To categorize new probabilistic observations into two predefined categories
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Predict University Acceptance 
based on Test and Grades

(only two categories)

Estimate a line 
to describe a relationship

Is this picture a cat, a dog, or a ship?
(Can we make a decision based on the results on the right?)

• !𝑦 = 𝑔!"#$%&#$'( 𝑠

• !𝐲 = '1 𝑖𝑓 𝑠 ≥ 0
0 𝑖𝑓 𝑠 < 0

• Information lost about the 
distance to the cutoff value

• Uncertain about 
the final decision

• What if the problem becomes 
more complex?
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Perceptron with an Activation Function
Non-linear extraction of information from the data to help making a decision
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• An Artificial Neuron with two nodes
• Weighted-sum node

• Calculate a linear equation 𝑠(𝑥) with 
inputs on the weights plus bias

• Activation node
• Apply the step function to get the predicted 

result %𝑦(𝑠)

An example of acceptance at a University

• !𝑦 = 𝑔!"#$%&#$'( 𝑓)*$+,#*-./0 𝐱
• !𝑦 = step 𝑠, 0
• !𝑦 = step 𝐰1𝐱 + 𝑏, 0

Yes
No

𝑠 = 𝐰1𝐱 + 𝑏

⋮

𝑥2

𝑥3

𝑥(

1

𝑤2

𝑤3

𝑤(

𝑏

𝐰 1𝐱 + 𝑏

Weighted-Sum
Function

!𝑦 = '1 𝑖𝑓 𝑠 ≥ 0
0 𝑖𝑓 𝑠 < 0

0
1

Activation
Function

step
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Perceptron Algorithm

• Start with the all-zeroes weight vector 𝐰! = 𝟎 and initialize 𝑡 to 1. 
• Let’s automatically scale all examples 𝐱 to have (Euclidean) length 

1, since this doesn’t affect which side of the plane they are on. 
• Given an example 𝐱, predict positive if and only if 𝐰" · 𝐱 > 0.

• One may consider the bias term 𝑏 as a weight 𝑤# for 𝑥# = 1
• On a mistake, update as follows until convergence criteria reached: 

• If mistake on a positive 𝐱, then 𝐰" + 1 ← 𝐰" + 𝐱, 
• So 𝐰"$! · 𝐱 = (𝐰" + 𝐱) · 𝐱 = 𝐰" · 𝐱 + 1, 
• We move closer by 1 to the value we wanted.

• If mistake on a negative 𝐱, then 𝐰" + 1 ← 𝐰" − 𝐱,
• So 𝐰"$! · 𝐱 = 𝐰" − 𝐱 · 𝐱 = 𝐰" · 𝐱 − 1, 
• We move closer by 1 to the value we wanted.

• 𝑡 ← 𝑡 + 1.

How to get the weights?
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What if the boundary line is non-linear?

If data is separable by a large margin, then 
Perceptron is a good algorithm to use.
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By what chances will I get accepted to a University?

• Weighted-sum node
• Unchanged as the input data remains the same

• Activation node
• Can be changed as we want a new expression of the output 

as a probability of prediction
• Sigmoid function as a natural choice that transforms the 

output to a value between 0 and 1 (or within 100%)

Based on my Test and Grade scores …
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𝑠 = 𝐰1𝐱 + 𝑏

⋮

𝑥2

𝑥3

𝑥(

1

𝑤2

𝑤3

𝑤(

𝑏

𝐰 1𝐱 + 𝑏 0
1

Yes%
(No%)

Weighted-Sum
Function

Activation
Function

An example of 
acceptance at a 

University

!𝑦 =
1

1 + 𝑒45

sigmoid

• 𝑔 𝑠 = sigmoid 𝑠
• 𝑔 𝑧 = 2

26*!"

50% “YES”

𝑥7

𝑃 𝐱 =
1

1 + 𝑒4(𝐰#𝐱6;)

Can be 
viewed as a 
probability

!𝑦 = 𝑔!"#$%&#$'( 𝑠 = sigmoid 𝑠
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Logistic Regression

• Hypothesis Function: ℎ= 𝑥 = sigmoid 𝐰1𝐱 + 𝑏
• Model output with a probability: 𝑃 𝑦 | 𝑥;𝑤 = ℎ= 𝑥 > 1 − ℎ= 𝑥 24>

• Yes%: 𝑃 𝑦 = 1 | 𝑥;𝑤 = ℎ= 𝑥
• No%: 𝑃 𝑦 = 0 | 𝑥;𝑤 = 1 − ℎ= 𝑥

!𝑦 = 𝑔56789:78;< 𝑓=>8?@7>ABCD 𝐱 = sigmoid 𝐰E𝐱 + 𝑏
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𝑠 = 𝐰1𝐱 + 𝑏

⋮

𝑥2

𝑥3

𝑥(

1

𝑤2

𝑤3

𝑤(

𝑏

𝐰 1𝐱 + 𝑏 0
1

Yes%
(No%)

Weighted-Sum
Function

Activation
Function

!𝑦 =
1

1 + 𝑒45

sigmoid

• 𝑔 𝑠 = sigmoid 𝑠
• 𝑔 𝑧 = 2

26*!"

50% “YES”

𝑥7

Problem statement
• Assume !𝑦 = 𝑔!"#$%&#$'( 𝑓)*$+,#*-./0 𝐱 = 2

26*!(𝐰#𝐱'()

• How to minimize the prediction error/loss on a single 
training sample (with a maximum likelihood set of 𝐰) ?
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Loss Function for Logistic Regression

• Assume that 𝑚 training examples were generated independently
• We can write the likelihood of the parameters

• 𝐿 𝑤 = 𝑝 �⃑� | 𝑋;𝑤
• 𝐿 𝑤 = ∏#,-

* 𝑝 𝑦(#)| 𝑥(#); 𝑤

• 𝐿 𝑤 = ∏#,-
* ℎ0 𝑥(#) 1(") 1 − ℎ0 𝑥(#) -21(")

• Take the log expression, we have the loss function
• ℓ 𝑤 = log 𝐿 𝑤
• ℓ 𝑤 = ∑#,-* 𝑦 # log ℎ0 𝑥 # + 1 − 𝑦 # log 1 − ℎ0 𝑥(#)

• Usually take a “−” sign to indicate loss

It measures how well you are doing on a single training example 
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• 𝑔&"#$%&#$'(? 𝑠 = -
-5

2
26*!"

• 𝑔&"#$%&#$'(? 𝑠 = 2
26*!" * F 𝑒45

• 𝑔&"#$%&#$'(? 𝑠 = 2
26*!" * F 1 − 2

26*!"

• 𝑔&"#$%&#$'(? 𝑠 = 𝑔 𝑠 F 1 − 𝑔 𝑠

ℎ= 𝑥 = sigmoid 𝐰1𝐱 + 𝑏
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Stochastic Gradient Descent

• Rewrite the weight parameters in vectorized form
• 𝑤 ≔ 𝑤 + 𝛼 & ∇G & ℓ 𝑤
• + sign here to maximize likelihood

• When working with a single training example 𝑥, 𝑦 , 
• H
HG%

ℓ 𝑤 = 𝑦 I
J G&K

− 1 − 𝑦 I
ILJ G&K

H
HG%

𝑔 𝑤M𝑥 = 𝑦 − ℎG 𝑥 𝑥N

• Therefore, we can derive the stochastic gradient ascent rule
• 𝑤N ≔ 𝑤N + 𝛼 𝑦 O − ℎG 𝑥(O) 𝑥N

O

Finding the maximum likelihood of estimation
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Cost Function

• We want the loss/error function to be as small as possible
• If 𝑦 # = 1, then

• LossFunc !𝑦, 𝑦 = − 𝑦 $ log ℎ= 𝑥 $ + 1 − 𝑦 $ log 1 − ℎ= 𝑥 $ = − log ℎ= 𝑥 $ = − log !𝑦
• It means that we want log !𝑦 to be as big as possible, but remember that it is bounded by 1

• If 𝑦 # = 0, then
• LossFunc !𝑦, 𝑦 = − 𝑦 $ log ℎ= 𝑥 $ + 1 − 𝑦 $ log 1 − ℎ= 𝑥 $ = − log 1 − !𝑦
• It means that we want log !𝑦 to be as small as possible, or close to 0

• Cost Function 
• The average of the loss functions of the entire training set, which is to be minimized 

It measures how well you are doing on an entire training set 
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𝐽 𝑤, 𝑏 = −
1
𝑚Z

$@2

0

ℒ !𝑦 $ , 𝑦 $ = −
1
𝑚Z

$@2

0

𝑦 $ log !𝑦 $ + 1 − 𝑦 $ log 1 − !𝑦 $
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Summary 
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Linear Regression Perceptron Logistic Regression

Problem Value Prediction Binary Classification 
with a threshold

Binary Classification 
with a probability

Weighted-Sum 𝐰\𝐱 + 𝑏 𝐰\𝐱 + 𝑏 𝐰\𝐱 + 𝑏

Activation 
Function NA Step Function Sigmoid Function

Prediction 
Outputs Continuous Value Discrete Value 

0, 1
Continuous Probability

0, 1

Loss Squared Loss Hinge Loss Log-Loss 
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Multi-class Classification
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Multi-class Classification

1. Define a loss function that 
quantifies our unhappiness with 
the scores across the training data.

2. Come up with a way of efficiently 
finding the parameters that 
minimize the loss function. 
(optimization)

$𝐲 = 𝑔>?@ABC@ADE 𝑓FGAHI@GJKLM 𝐱 = 𝑔>?@ABC@ADE 𝐖𝐱+ 𝐛
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𝐬 = 𝐖𝐱 + 𝒃

⋮

𝑥2

𝑥3

𝑥(

1

𝐖𝐱 + 𝒃

Weighted-Sum
Score

Activation
Function

!𝐲 = 𝑔 𝐬 =?

?
⋮

𝑦2

𝑦3

𝑦0

𝐖

𝐖𝐱 + 𝒃𝐖𝐱 + 𝒃𝐖𝐱 + 𝒃 𝐖𝑳

𝐖 Weighted-Sum 
Scores

𝑥$ Data loss

𝑦$

?
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Define a Loss Function
Quantify how good our current classifier is
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Cat

Car

Frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Labelled 
Prediction

Ground 
Truth

3 training samples

3 
cl

as
se

s 

𝑥$ , 𝑦$ $@2
A

𝑥$
image

b𝑦$
𝑦$

label
𝐿 =

1
𝑁
Z
$

𝐿$ b𝑦$ , 𝑦$

Loss over the dataset is 
a sum of loss over examples

Let’s try with the hinge loss:

Denote Weighted-Sum score vector 
as 𝒔 = 𝑓!"#$%&"'()* 𝐱
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Define a Loss Function
Quantify how good our current classifier is

ME336 Collaborative Robot Learning Lecture 05 Machine Learning II 15

Cat

Car

Frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Labelled 
Prediction

Ground 
Truth

3 training samples

3 
cl

as
se

s 

𝑥$ , 𝑦$ $@2
A

Loss 2.9 0 12.9

• 𝐿2 = max 0, 5.1 − 3.2 + 1 + max 0,− 1.7 − 3.2 + 1
• 𝐿2 = max 0, 2.9 + max 0,− 3.9
• 𝐿2 = 2.9 + 0 = 2.9

• 𝐿3 = max 0, 1.3 − 4.9 + 1 + max 0, 2.0 − 4.9 + 1
• 𝐿3 = max 0, − 2.6 + max 0,− 1.9
• 𝐿3 = 0 + 0 = 0

• 𝐿A = max 0, 2.2 + 3.1 − 1 + max 0, 2.5 + 3.1 − 1
• 𝐿A = max 0, 6.3 + max 0, 6.6
• 𝐿A = 6.3 + 6.6 = 12.9
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Define a Loss Function
Quantify how good our current classifier is
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Cat

Car

Frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Labelled 
Prediction

Ground 
Truth

3 training samples

3 
cl

as
se

s 

𝑥$ , 𝑦$ $@2
A

Loss 2.9 0 12.9

Loss over full 
dataset is 
average: 

• 𝐿 = 2
B
∑$ 𝐿$ b𝑦$ , 𝑦$

• 𝐿 = 2
A
2.9 + 0 + 12.9

• 𝐿 = 5.27

Recall that our goal is to find a set of W with 
minimum loss over full dataset, i.e. the cost = 0

• Suppose that we found a W such that L = 0. Is this 
W unique?
• L is still 0 with 2W

• How do we choose between W and 2W?
• Let’s try regularization
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Regularization
Prevent the model from doing too well on training data
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𝐖

𝐖𝐱 + 𝒃𝐖𝐱 + 𝒃𝐖𝐱 + 𝒃 𝐖𝑳

𝐖 Weighted-Sum 
Scores

𝑥$ Data loss

𝑦$

Regularization loss

𝐿 𝑊 =
1
𝑁Z

2

B

𝐿$ b𝑦$ , 𝑦$ + 𝜆𝑅 𝑊

Data loss
Model predictions should 

match training data

Regularization
Prevent the model from doing 
too well on training data

𝜆 as strength of 
Regularization
(hyperparameter)

Why regularize?
• Express preferences over weights
• Make the model simple so it works on test data
• Improve optimization by adding curvature
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Softmax Operation

• One can interpret outputs !𝑦# as the probability that a 
given item belongs to class i. 

• Then we can choose the class with the largest output 
value as our prediction

Interpret the outputs of our model as probabilities
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80%! 20%!0%!

• Why using oi directly, instead of a probability?
• What if the sum of probability is not 100%?
• What if when oi becomes negative?

!𝑦$ = softmax 𝑜$ =
exp 𝑜$
∑C exp 𝑜C

×100%
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𝑳

Softmax Classifier
Want to interpret raw classifier scores as probabilities
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Cat

Car

Frog

3.2

5.1

-1.7

Labelled 
Prediction

Ground 
Truth

3 
cl

as
se

s 

𝑥2, 𝑦2 𝐖

𝐖𝐱 + 𝒃𝐖𝐱 + 𝒃𝐖𝐱 + 𝒃

𝐖 Weighted-Sum 
Scores 𝒐

𝑥$ Data loss

𝑦$

!𝑦$ = softmax 𝑜$ =
exp 𝑜$
∑C exp 𝑜C

×100%

24.5

164.0

0.18

0.13

0.87

0.00

1.00

0.00

0.00
Weighted-Sum 

Scores
(logits)

Unnormalized 
Probability 

(>=0)

Normalized 
Probability Label

( !𝑦$ Sum to 1)

Correct 
Probability 

Label

exp 𝑜$
∑C exp 𝑜Cexp 𝑜$

×100%

How to quantify the 
differences between two 
probability distribution?
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Kullback–Leibler Divergence
How to quantify the differences between two probability distribution?
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𝐷DE 𝑃 ∥ 𝑄 = Z
>∈𝒴

𝑃 𝑦 log
𝑃 𝑦
𝑄 𝑦

𝐷DE 𝑃 ∥ 𝑄 = Z
>∈𝒴

𝑃 𝑦 log𝑃 𝑦 − Z
>∈𝒴

𝑃 𝑦 log𝑄 𝑦

𝐷DE 𝑃 ∥ 𝑄 = −Z
>∈𝒴

𝑃 𝑦 log𝑄 𝑦 − −Z
>∈𝒴

𝑃 𝑦 log𝑃 𝑦

𝐷DE 𝑃 ∥ 𝑄 = H 𝑃, 𝑄 − H 𝑃

H 𝑃, 𝑄 = −Z
>∈𝒴

𝑃 𝑦 log𝑄 𝑦

the cross-entropy of P and Q

H 𝑃 = −Z
>∈𝒴

𝑃 𝑦 log𝑃 𝑦

the cross-entropy of P with 
itself (or the entropy of P)

A good candidate of loss function for softmax
Can be minimized to update the weights
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Loss Function

• The likelihood of the actual classes according to our model is

• Maximizing the likelihood is equivalent to minimizing the log-likelihood.

• Cross-entropy loss for a single example (dropped superscript i) 

• As 5𝑦 is a discrete probability distribution and 𝑦 is a one-hot vector, the sum over all j
vanishes for all but one term.

Log-Likelihood expressed in cross-entropy
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Cross-Entropy Loss and its Derivative

• Plugging o into the definition of the cross-entropy loss, we obtain:

• The derivative with respect to o is

• The gradient is 𝑃 𝑦 = 𝑗 | 𝑥 − 𝑦N
• The difference between the probability predicted by our model 𝑃 𝑦 = 𝑗 | 𝑥 and the true label 𝑦.

• Similar to regression where the gradient is 5𝑦 − 𝑦
• The difference between the true label 𝑦 and the estimation !𝑦

Also called softmax loss
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Vectorization for Minibatches
We typically carry out vector calculations for minibatches of data for efficiency
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A minibatch X of examples
• dimensionality d and batch size n
Assume that we have q categories (outputs)

More efficient matrix-matrix computation XW
Exponentiating all entries in O then sum

!𝑦$ = softmax 𝑜$ =
exp 𝑜$
∑C exp 𝑜C

×100%

!𝐲 = softmax 𝐨 𝑤ℎ𝑒𝑟𝑒 !𝑦$ =
exp 𝑜$
∑C exp 𝑜C

×100%

Cat

Car

Frog

3.2

5.1

-1.7

Labelled 
Prediction

Ground 
Truth

3 
cl

as
se

s 

!!, #! $
$% + '$% + '$% + ' $(

$ Weighted-Sum 
Scores !

!" Data loss

#"

24.5

164.0

0.18

0.13

0.87

0.00

1.00

0.00

0.00

)" = − log /#"#
∑ /#$$

Weighted-Sum 
Scores
(logits)

Unnormalized 
Probability 

(>=0)

Normalized 
Probability Label

(#1" Sum to 1)

Correct
Probability

Label

exp 5"
∑ exp 5$$exp 5"

)%&' = − ln 0.13 = 2.04

)%&( = − ln 0.87 = 0.14

))(*+ = − ln 0 = In@inity
×100%
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Understanding of Softmax Regression
• When there are two classes, softmax regression reduces to logistic regression.

• The cross-entropy classification can be thought in two ways
1. As maximizing the likelihood of the observed data.
2. As minimizing out surprise required to communicate the labels.
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• Softmax when	j=2

!𝑦3 =
exp(𝑜3)

exp 𝑜3 + exp(𝑜-)

= }~�(�'L�()
}~� �'L�( �I

Softmax LogisticBinary Classes

Activation

Loss

!𝑦C =
exp(𝑜C)
∑C exp 𝑜C

!𝑦 =
exp(𝑜)

exp 𝑜 + 1

−
1
𝑛Z
$@2

(

𝑦$𝑙𝑜𝑔 b𝑦$ + (1 − 𝑦$)𝑙𝑜𝑔 1 − b𝑦$ −Z
$@2

(

Z
C
𝑦C
($) log !𝑦C

($)



AncoraSIR.com

Summary & Comparison

ME336 Collaborative Robot Learning Lecture 05 Machine Learning II 25

Linear Regression Perceptron Logistic Regression Softmax Regression

Problem Value Prediction Binary 
Classification Binary Classification Multi-Class 

Classification

Weights 𝒘𝒙 + 𝑏 𝒘𝒙 + 𝑏 𝒘𝒙 + 𝑏 𝑊𝒙 + 𝐵

Activation 
Function NA Step Function Sigmoid Function Softmax

Prediction 
Outputs Continuous Value Discrete Value 0, 1 Continuous 

Probability in (0,1)
A vector of Continuous 

Probabilities  

Loss Squared Loss Hinge Loss Log Loss 
(Binary cross entropy) Cross Entropy

Decision 
Boundary Linear

Linear Neural Network
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Thank you~
songcy@sustech.edu.cn

ME336 Collaborative Robot Learning Lecture 05 Machine Learning II 26

Bionic Design & Learning Lab
@ SIR Group !"#$%&'()*

Room 606
7 Innovation Park
+,-.7/606*

mailto:songcy@sustech.edu.cn

