Lecture 05 Machine Learning II

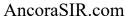
AncoraSIR.com

[Please refer to the course website for copyright credits]

ME336 Collaborative Robot Learning

Lecture 05 Machine Learning II

Statistical Binary Classification



Automotive and Technology

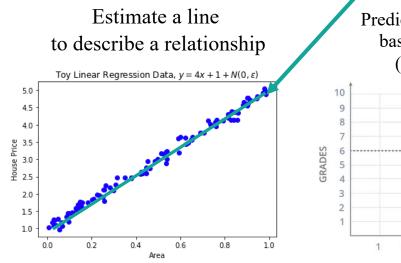
ME336 Collaborative Robot Learning

Lecture 05 Machine Learning II

Statistical Binary Classification

To categorize new probabilistic observations into two predefined categories

- Linear Regression
 - A basic linear model for line-fitting
 - $\hat{y} = f_{WeightedSum}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$



• What if the problem becomes more complex?

AncoraSIR.com

e onship $+1+N(0,\varepsilon)$ (08) 10 Predict University Acceptance based on Test and Grades (only two categories) (08) 10 Predict University Acceptance based on Test and Grades (only two categories)

- $\hat{y} = g_{Activation}(s)$ $= \begin{cases} 1 & if \ s \ge 0 \\ 0 & if \ s < 0 \end{cases}$
- Information lost about the distance to the cutoff value

Input image

• Linear Classification

• Vectorized weights for two or multiple classes

Is this picture a cat, a dog, or a ship?

(*Can we make a decision based on the results on the right?*)

2.0

0.0

-0.3

56

231

24

2

 $\mathbf{s} = f_{WeightedSum}(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$

Stretch pixels into column

-0.5

1.3

0.25

W

0.1

2.1

0.2

0.2

1.5

0

• Uncertain about the final decision

1.1

3.2

-1.2

b

=

+

Cat score

Dog score

Ship score

-96.8

437.9

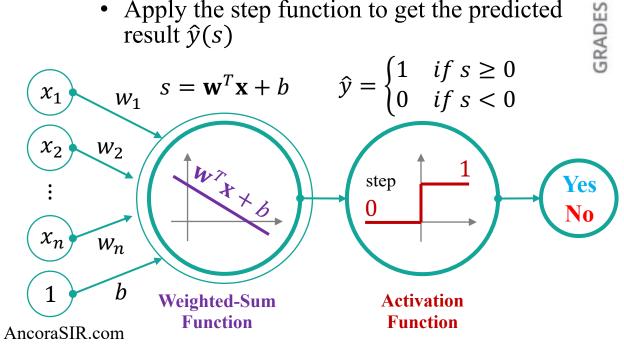
61.95

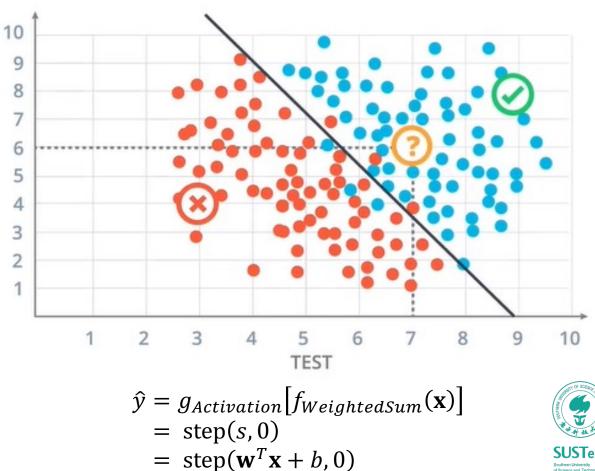
10

Perceptron with an Activation Function

Non-linear extraction of information from the data to help making a decision

- An Artificial Neuron with two nodes
 - Weighted-sum node
 - Calculate a linear equation s(x) with inputs on the weights plus bias
 - Activation node
 - Apply the step function to get the predicted result $\hat{y}(s)$





An example of acceptance at a University

Perceptron Algorithm

How to get the weights?

- Start with the all-zeroes weight vector $\mathbf{w}_1 = \mathbf{0}$ and initialize *t* to 1.
 - Let's automatically scale all examples **x** to have (Euclidean) length 1, since this doesn't affect which side of the plane they are on.
- Given an example **x**, predict positive if and only if $\mathbf{w}_t \cdot \mathbf{x} > 0$.
 - One may consider the bias term *b* as a weight w_0 for $x_0 = 1$
- On a mistake, update as follows until convergence criteria reached:
 - If mistake on a positive **x**, then $\mathbf{w}_t + \mathbf{1} \leftarrow \mathbf{w}_t + \mathbf{x}$,
 - So $\mathbf{w}_{t+1} \cdot \mathbf{x} = (\mathbf{w}_t + \mathbf{x}) \cdot \mathbf{x} = \mathbf{w}_t \cdot \mathbf{x} + 1$,
 - *We move closer by 1 to the value we wanted.*
 - If mistake on a negative **x**, then $\mathbf{w}_t + 1 \leftarrow \mathbf{w}_t \mathbf{x}$,
 - So $\mathbf{w}_{t+1} \cdot \mathbf{x} = (\mathbf{w}_t \mathbf{x}) \cdot \mathbf{x} = \mathbf{w}_t \cdot \mathbf{x} 1$,
 - We move closer by 1 to the value we wanted.

• $t \leftarrow t+1$.

If data is separable by a large margin, then Perceptron is a good algorithm to use.

What if the boundary line is non-linear?

AncoraSIR.com

By what chances will I get accepted to a University?

Based on my Test and Grade scores ...

• Weighted-sum node

 W_1

 W_2

 W_n

• Unchanged as the input data remains the same

Wr ¥×b

Weighted-Sum

Function

• Activation node

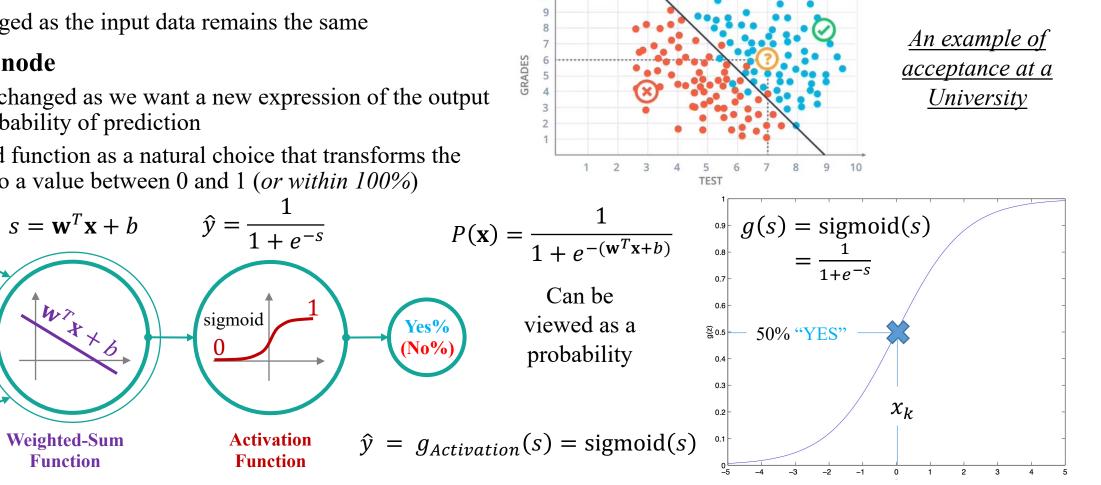
 χ_1

 x_2

 x_n

AncoraSIR.com

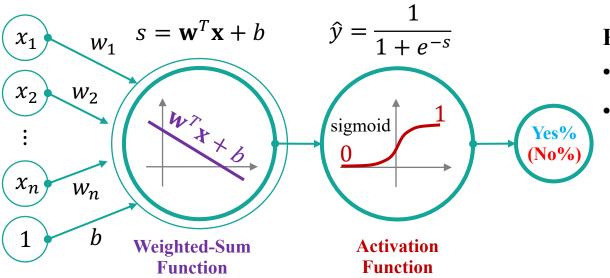
- Can be changed as we want a new expression of the output as a probability of prediction
- Sigmoid function as a natural choice that transforms the output to a value between 0 and 1 (or within 100%)



b

Logistic Regression

$$\hat{y} = g_{Activation} [f_{WeightedSum}(\mathbf{x})] = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + b)$$



• Hypothesis Function: $h_w(x) = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + b)$

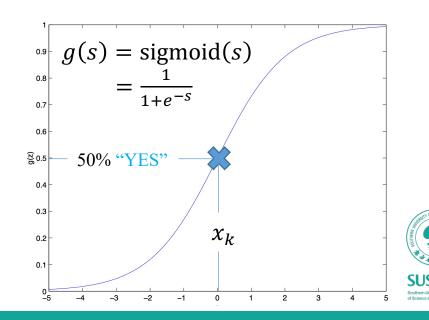
- Model output with a probability: $P(y \mid x; w) = [h_w(x)]^y [1 h_w(x)]^{1-y}$
 - Yes%: $P(y = 1 | x; w) = h_w(x)$
 - No%: $P(y = 0 | x; w) = 1 h_w(x)$

AncoraSIR.com

Lecture 05 Machine Learning II

Problem statement

- Assume $\hat{y} = g_{Activation} [f_{WeightedSum}(\mathbf{x})] = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$
- How to minimize the **prediction error/loss** on a single training sample (with a maximum likelihood set of **w**)?



Loss Function for Logistic Regression

It measures how well you are doing on a single training example

- Assume that *m* training examples were generated independently $h_w(x) = \operatorname{sigmoid}(\mathbf{w}^T \mathbf{x} + b)$
- We can write the likelihood of the parameters

$$L(w) = p(\vec{y} | X; w)$$

= $\prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; w)$
= $\prod_{i=1}^{m} [h_w(x^{(i)})]^{y^{(i)}} [1 - h_w(x^{(i)})]^{1-y^{(i)}}$

- Take the log expression, we have the **loss function**
 - $\ell(w) = \log L(w)$ = $\sum_{i=1}^{m} y^{(i)} \log h_w(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_w(x^{(i)}))$
 - Usually take a "—" sign to indicate loss

$$_{W}(x^{(i)})) \checkmark$$

 $g'_{activation}(s) = \frac{d}{ds} \frac{1}{1+e^{-s}}$ $= \frac{1}{(1+e^{-s})^2} \cdot e^{-s}$

 $=\frac{1}{(1+e^{-s})^2}\cdot\left(1-\frac{1}{1+e^{-s}}\right)$

 $= g(s) \cdot (1 - g(s))$

Stochastic Gradient Descent

Finding the maximum likelihood of estimation

- Rewrite the weight parameters in vectorized form
 - $w \coloneqq w + \alpha \cdot \nabla_w \cdot \ell(w)$
 - + sign here to **maximize** likelihood
- When working with a single training example (x, y),

•
$$\frac{\partial}{\partial w_j} \ell(w) = \left(y \frac{1}{g(w^T x)} - (1 - y) \frac{1}{1 - g(w^T x)} \right) \frac{\partial}{\partial w_j} g(w^T x) = \left(y - h_w(x) \right) x_j$$

• Therefore, we can derive the stochastic gradient ascent rule

•
$$w_j \coloneqq w_j + \alpha \left(y^{(i)} - h_w(x^{(i)}) \right) x_j^{(i)}$$

Cost Function

It measures how well you are doing on an entire training set

- We want the loss/error function to be as small as possible
 - If $y^{(i)} = 1$, then
 - LossFunc $(\hat{y}, y) = -\left[y^{(i)}\log h_w(x^{(i)}) + (1 y^{(i)})\log(1 h_w(x^{(i)}))\right] = -\log h_w(x^{(i)}) = -\log \hat{y}$
 - It means that we want $\log \hat{y}$ to be as big as possible, but remember that it is bounded by 1
 - If $y^{(i)} = 0$, then
 - LossFunc $(\hat{y}, y) = -\left[y^{(i)}\log h_w(x^{(i)}) + (1 y^{(i)})\log(1 h_w(x^{(i)}))\right] = -\log(1 \hat{y})$
 - It means that we want $\log \hat{y}$ to be as small as possible, or close to 0
- Cost Function
 - The average of the loss functions of the entire training set, which is to be minimized

$$J(w,b) = -\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right]$$

Summary

	Linear Regression	Perceptron	Logistic Regression	
Problem	Value Prediction	Binary Classification with a threshold	Binary Classification with a probability	
Weighted-Sum	$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b$	$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b$	$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b$	
Activation FunctionNAPrediction OutputsContinuous Value		Step Function	Sigmoid Function	
		Discrete Value {0, 1}	Continuous Probability (0, 1)	
Loss	Squared Loss	Hinge Loss	Log-Loss	

Multi-class Classification

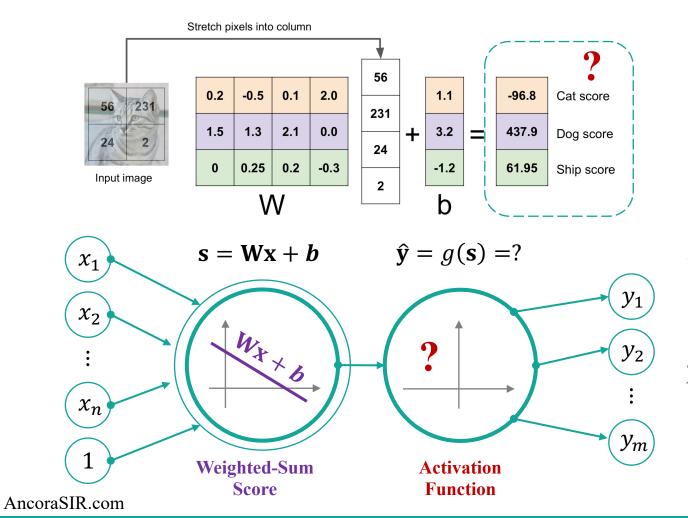
Subtraction and Technology

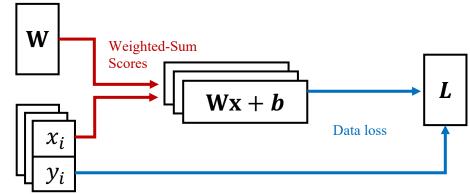
ME336 Collaborative Robot Learning

Lecture 05 Machine Learning II

Multi-class Classification

 $\hat{\mathbf{y}} = g_{Activation} | f_{WeightedSum}(\mathbf{x}) | = g_{Activation}(\mathbf{W}\mathbf{x} + \mathbf{b})$





1. Define a loss function that quantifies our unhappiness with the scores across the training data.

Come up with a way of efficiently finding the parameters that minimize the loss function. *(optimiz,ation)*

Define a Loss Function

Quantify how good our current classifier is 3 training samples $\{(x_i, y_i)\}_{i=1}^3$ Ground x_i image Truth y_i Labelled \widehat{y}_i label 3.2 1.3 2.2 Cat 3 classes 2.5 5.1 4.9 Car 2.0 -3.1 Frog -1.7 s_{y_i} s_j

Loss over the dataset is a sum of loss over examples

$$L = \frac{1}{N} \sum_{i} L_i(\hat{y}_i, y_i)$$

Denote Weighted-Sum score vector as $\mathbf{s} = f_{WeightedSum}(\mathbf{x})$

Let's try with the hinge loss:

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$
SUSTech

AncoraSIR.com

Define a Loss Function

Quantify how good our current classifier is 3 training samples $\{(x_i, y_i)\}_{i=1}^3$ Ground Truth Labelled Prediction 3.2 1.3 2.2 Cat 3 classes 5.1 2.5 Car 4.9 -1.7 2.0 -3.1 Frog L 12.9 2.9 0 Loss AncoraSIR.com

 $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \ge s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$

$$L_1 = \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

= max(0, 2.9) + max(0, - 3.9)
= 2.9 + 0 = 2.9

$$L_2 = \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$$

= max(0, -2.6) + max(0, -1.9)
= 0 + 0 = 0

$$L_3 = \max(0, 2.2 + 3.1 - 1) + \max(0, 2.5 + 3.1 - 1)$$

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6 = 12.9

ME336 Collaborative Robot Learning

Define a Loss Function

3 training samples $\{(x_i, y_i)\}_{i=1}^3$ Ground Truth Labelled Prediction 3.2 1.3 2.2 Cat 5.1 2.5 Car 4.9 -1.7Frog 2.0 -3.1 12.9 Loss 2.9 ()

Quantify how good our current classifier is

 $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$

Loss over full dataset is average: $L = \frac{1}{N} \sum_{i} L_{i}(\hat{y}_{i}, y_{i})$ = $\frac{1}{3} (2.9 + 0 + 12.9)$ = 5.27

Recall that our goal is to find a set of W with minimum loss over full dataset, i.e. the cost = 0

- Suppose that we found a W such that L = 0. Is this W unique?
 - L is still 0 with 2W

• Let's try regularization

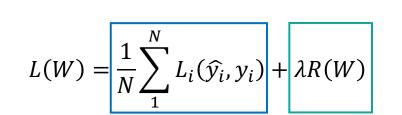
• How do we choose between W and 2W?

AncoraSIR.com

3 classes

Regularization

Prevent the model from doing too well on training data

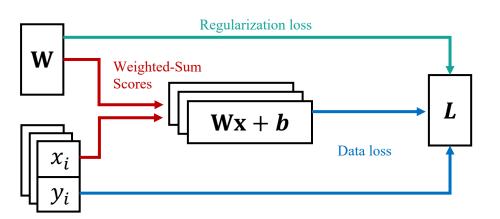


 λ as strength of Regularization (*hyperparameter*)

Data loss Model predictions should match training data

Regularization

Prevent the model from doing too well on training data



Simple examples

L2 regularization: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout Batch normalization Stochastic depth, fractional pooling, etc

Why regularize?

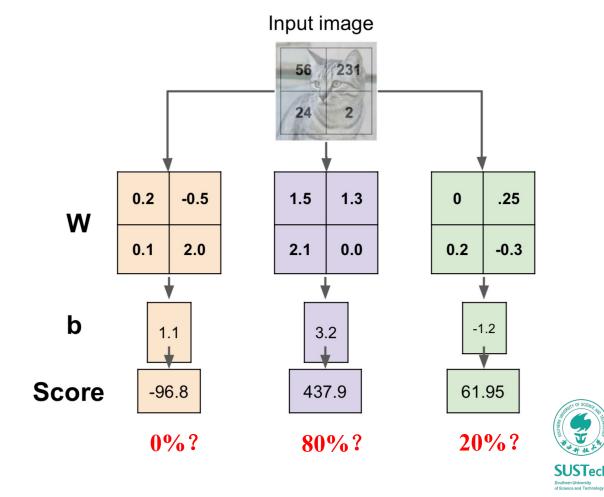
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Softmax Operation

Interpret the outputs of our model as probabilities

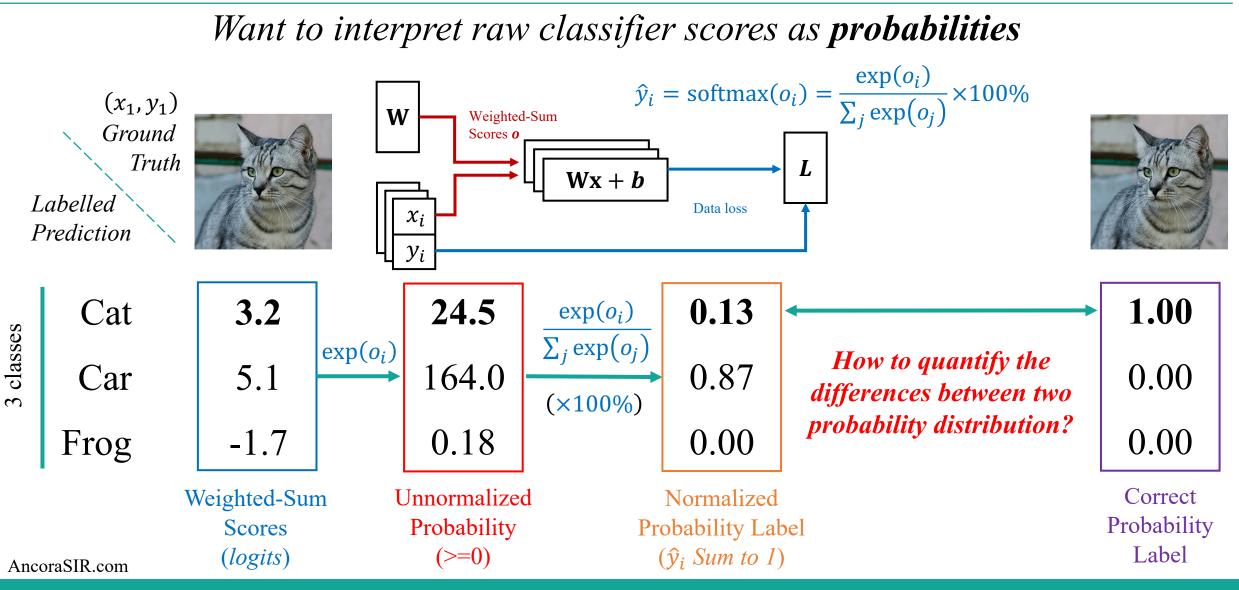
 $\hat{y}_i = \operatorname{softmax}(o_i) = \frac{\exp(o_i)}{\sum_j \exp(o_j)} \times 100\%$

- One can interpret outputs \hat{y}_i as the probability that a given item belongs to class *i*.
- Then we can choose the class with the largest output value as our prediction
 - Why using o_i directly, instead of a probability?
 - What if the sum of probability is not 100%?
 - What if when *o_i* becomes negative?



AncoraSIR.com

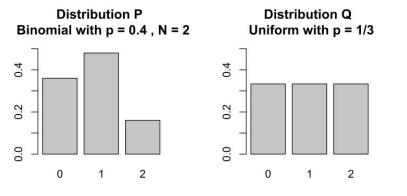
Softmax Classifier



ME336 Collaborative Robot Learning

Kullback–Leibler Divergence

How to quantify the differences between two probability distribution?



x	0	1	2
Distribution P(x)	0.36	0.48	0.16
Distribution Q(x)	0.333	0.333	0.333

 $= 0.36 \ln \left(rac{0.36}{0.333}
ight) + 0.48 \ln \left(rac{0.48}{0.333}
ight) + 0.16 \ln \left(rac{0.16}{0.333}
ight)$

$$D_{KL}(P \parallel Q) = \sum_{y \in \mathcal{Y}} P(y) \log \frac{P(y)}{Q(y)}$$
$$= \sum_{y \in \mathcal{Y}} P(y) \log P(y) - \sum_{y \in \mathcal{Y}} P(y) \log Q(y)$$
$$= \left[-\sum_{y \in \mathcal{Y}} P(y) \log Q(y) \right] - \left[-\sum_{y \in \mathcal{Y}} P(y) \log P(y) \right]$$
$$= H(P, Q) - H(P)$$

A good candidate of loss function for softmax Can be minimized to update the weights

$$H(P,Q) = -\sum_{y \in \mathcal{Y}} P(y) \log Q(y) \quad H(P) = -\sum_{y \in \mathcal{Y}} P(y) \log P(y)$$

the cross-entropy of *P* with itself (or the entropy of *P*)

AncoraSIR.com

 $D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{V}} P(x) \ln \left(rac{P(x)}{Q(x)}
ight)$

= 0.0852996

the cross-entropy of P and Q

Loss Function

Log-Likelihood expressed in cross-entropy

• The **likelihood** of the actual classes according to our model is

$$P(Y \mid X) = \prod_{i=1}^{n} P(y^{(i)} \mid x^{(i)}) \qquad -\log P(Y \mid X) = \sum_{i=1}^{n} -\log P(y^{(i)} \mid x^{(i)})$$

- Maximizing the likelihood is equivalent to minimizing the log-likelihood.
- **Cross-entropy** loss for a single example (dropped superscript *i*)

$$l = -\log P(y \mid x) = -\sum_{j} y_j \log \hat{y}_j$$

• As \hat{y} is a discrete probability distribution and y is a one-hot vector, the sum over all j vanishes for all but one term.

Cross-Entropy Loss and its Derivative

Also called softmax loss

• Plugging **o** into the definition of the cross-entropy loss, we obtain:

$$l = -\sum_{j} y_j \log \hat{y}_j = \sum_{j} y_j \log \sum_{k} \exp(o_k) - \sum_{j} y_j o_j = \log \sum_{k} \exp(o_k) - \sum_{j} y_j o_j$$

• The derivative with respect to **o** is

$$\partial_{o_j} l = \frac{\exp(o_j)}{\sum_k \exp(o_k)} - y_j = \operatorname{softmax}(\mathbf{0})_j - y_j = P(y = j \mid x) - y_j$$

- The gradient is $P(y = j | x) y_j$
 - The difference between the probability predicted by our model P(y = j | x) and the true label y.
- Similar to regression where the gradient is $\hat{y} y$
 - The difference between the true label y and the estimation \hat{y}

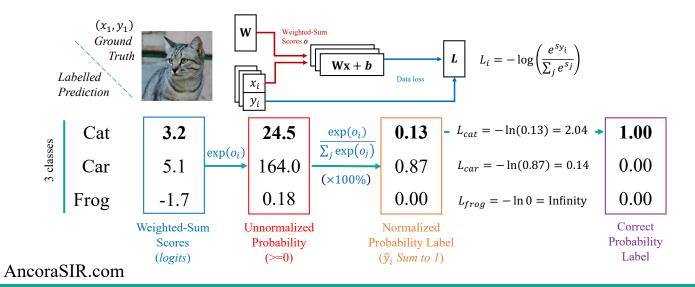
AncoraSIR.com

Vectorization for Minibatches

We typically carry out vector calculations for minibatches of data for efficiency

$$\hat{y}_i = \operatorname{softmax}(o_i) = \frac{\exp(o_i)}{\sum_j \exp(o_j)} \times 100\%$$

$$\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{o}) \text{ where } \hat{y}_i = \frac{\exp(o_i)}{\sum_j \exp(o_j)} \times 100\%$$



minibatch features **X** are in $\mathbb{R}^{n \times d}$, weights $\mathbf{W} \in \mathbb{R}^{d \times q}$, and the bias satisfies $\mathbf{b} \in \mathbb{R}^{q}$

 $\hat{\mathbf{O}} = \mathbf{X}\mathbf{W} + \mathbf{b},$ $\hat{\mathbf{Y}} = \operatorname{softmax}(\mathbf{O})$

A minibatch **X** of examples

• dimensionality *d* and batch size *n* Assume that we have *q* categories (outputs)

More efficient matrix-matrix computation XW Exponentiating all entries in **O** then sum

ME336 Collaborative Robot Learning

Understanding of Softmax Regression

• When there are two classes, softmax regression reduces to logistic regression.

SoftmaxBinary ClassesLogistic
$$\hat{y}_j = \frac{\exp(o_j)}{\sum_j \exp(o_j)}$$
Activation $\hat{y} = \frac{\exp(o)}{\exp(o) + 1}$ • Softmax when $j=2$ $\hat{y}_0 = \frac{\exp(o_0)}{\sum_j \exp(o_j)}$ Activation $\hat{y} = \frac{\exp(o)}{\exp(o) + 1}$ $\hat{y}_0 = \frac{\exp(o_0)}{\exp(o_0) + \exp(o_1)}$ $\frac{1}{2}\sum_{i=1}^n y_i \log(\hat{y}_i) + (1 - y_i)\log(1 - \hat{y}_i)$ Loss $-\sum_{i=1}^n \sum_j y_j^{(i)} \log \hat{y}_j^{(i)}$ $= \frac{\exp(o_0 - o_1)}{\exp(o_0 - o_1) + 1}$

- The cross-entropy classification can be thought in two ways
 - 1. As maximizing the likelihood of the observed data.
 - 2. As minimizing out surprise required to communicate the labels.

Summary & Comparison

Linear Neural Network

	Linear Regression	Perceptron	Logistic Regression	Softmax Regression
Problem	Value Prediction	Binary Classification	Binary Classification	Multi-Class Classification
Weights	wx + b	wx + b	wx + b	Wx + B
Activation Function	NA	Step Function	Sigmoid Function	Softmax
Prediction Outputs	Continuous Value	Discrete Value 0, 1	Continuous Probability in (0,1)	A vector of Continuous Probabilities
Loss	Squared Loss	Hinge Loss	Log Loss (Binary cross entropy)	Cross Entropy
Decision Boundary			Linear	

ME336 Collaborative Robot Learning

Room 606 7 Innovation Park 南科创园7栋606室

Thank you~

songcy@sustech.edu.cn

AncoraSIR.com

Southern University of Science and Technology

ME336 Collaborative Robot Learning