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Abstract—This paper presents an object classification strategy
using an adaptive tactile soft finger with multi-channel optical
fibers, which is under the theme of waste classification and
sustainable development. We further integrated such fingers in a
gripper design with two fingers. Machine learning methods are
used to train a model for object identification using the tactile
data collected. Detailed experimental results are also included to
further validate the proposed method for enhanced classification
accuracy. Video: https://youtu.be/JVlRleaBBMI

Index Terms—soft robotics, classification, tactile sensing, opti-
cal fiber

I. INTRODUCTION

WASTE classification is an important part of sustainable
development [1]. With the promotion of waste sorting,

the traditional manual sorting, which is a highly labor-intensive
process, needs improvement [2][3]. Automation becomes a
perfect solution [4]. In early waste classification, visual ap-
proaches are used widely based on previous computer vision
work [5][6][7]. However, waste classification focus on the
material of the waste [5], which could not be represented
well through its appearance [7]. Therefore, tactile object
recognition is introduced into this problem [8]. Through tactile
sensing, the material and shape information is perceived in a
different way than visual method [9][10], providing a more
physical view of the surface, which provide more precise
classification results.

This paper proposes an object classification strategy, as
shown in Fig. 1, using tactile sensing data collected from
the optoelectronically tactile soft finger, which establishing
the relationship between the material behavior and the pattern
change of light flux through machine learning.

A. Tactile Sensing

The importance of tactile sensing was first suggested by
researchers in the 1980s. So far there have been several
approaches to realize tactile sensing. The state-of-the-art ap-
proach through electronic design is based on piezoresistive
materials and conductive thread electrodes [11]. The design
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Fig. 1: Overview of the proposed system design with optoelectroni-
cally adaptive tactile fingers for object classification. Left shows the
system integration of a gripper with the proposed tactile fingers on
a Aubo i5 robot. Right shows the workflow of the proposed object
classification strategy.

has simpler complexity and maintains enough sample fre-
quency compared with previous work [12]. The other common
approach is optoelectric design. Such designs are based on a
light source, a transduction medium, and a photodetector. The
tactile information is passed as the contact force affects the
transduction medium, causing changes in light intensity. This
approach has been widely used in designing soft sensors [9].
The gripper proposed in this paper is also based on the idea.

B. Object Classification through Tactile Information

The object classification through tactile information focuses
on the material information. However, the key characteristics
of the material are different in previous work. Most results
are produced based on learning of the deformation behavior
of different materials [13][14]. There are also some works
that proposed examples of using texture features [11] or a
combination of multiple features [15].

C. Proposed Method and Contributions

This paper is a continuation of our earlier work with the
omni-adaptive soft finger for rigid-soft interaction learning
[13], rigid-soft tactile grasping [10], and optical fiber-based
grasp sensing [9]. In this paper, we continue to use the
sensorized design [10] of the omni-adaptive soft finger using
multiple optical fibers embedded with friction enhanced soft
surface. Tactile data, in the form of light flux signals, can



be learned to achieve object classification with enhanced
robustness. The contributions of this paper are listed as the
following:

1) Proposed a gripper design using the omni-adaptive soft
finger with enhanced finger surface and multi-channel
optical fiber for proprioceptive, tactile sensing.

2) Achieved sensing of shapes of different objects with
proposed design.

3) Realized and compared the object recognition ability of
different machine learning methods in this scene.

In the rest of this paper, Section II explains the problem for-
mulation of tactile object classification and proposed method.
Section Experimental results and discussion are enclosed in
sections III and IV. Conclusion are enclosed in Section V.

II. METHOD

A. Problem Formulation

In this paper, we would mainly deal with three kinds of
object: plastic bottles, aluminum cans, and hard cans. These
three categories show a large difference in material behavior
and this is the main feature we would be using in the
classification. However, the sizes of the object that is made
by these materials are usually different. To avoid side effects
caused by the difference in target size, we used the same
grasp depth in different targets. Also, the grasp speed is also
the same as to control variable. For the mechanical part, we
are using the optoelectronically innervated tactile finger as the
gripper. Each finger is loaded with a circuit board. Also, each
finger is driven by one motor. Considering the robot arm and
the camera, we are having four different modules, in total 6
components in our system. Therefore, control integration is
necessary to lower the complexity in actual practice.

B. Optoelectronically Soft Tactile Finger

The finger used in this paper is a recent work [16]. We
utilize the structural space in the early finger design and
achieve the tactile perception of finite object classification
by introducing optical fiber into the soft structure. With the
latest finger, we’ve vastly improved sensor reliability, tactile
capability, and grip robustness. The reasons to use the latest
version of the finger are: it increases the contact friction of the
finger surface while maintaining its full adaptability; Integrated
design to enhance tactile perception; improve manufacturing
processes to reduce cost and complexity; maintain compatibil-
ity with changes in the unstructured environment.

In this new type of finger design, five optical fibers are
evenly arranged on the surface of the finger with increased
surface friction and the soft finger structure to form a sensor
array, which is used to measure the deformation of the finger
during grasping, as shown in Fig. 2 (b) shown. Due to the
loss of luminous flux and the degree of bending of the soft
finger, we choose the optical fiber to obtain the soft finger
deformation. There are 5 LEDs at the transmitting end of each
optical fiber as the light source transmitter, and at the same
time, there are 5 photoresistors at the receiving end of the
optical fiber to obtain the luminous intensity. To reduce the

Fig. 2: The design and fabrication process of the optoelectronically
soft tactile finger: (a) finger frame; (b) finger frame with the fibers
(orange transparent material is used instead to visualize the trans-
parent fibers clearly in the figures); (c) finger frame with silica gel
skin; (d) we pull out the optic fiber to leave a cavity in the middle
of finger; (e) fabrication process of the black silica gel skin; (f) the
cavity in the sensitive area.

influence of light in the surrounding environment and ensure
that we can obtain sufficient luminous flux, we chose 520-
525NM led and 520-550NM photoresistors. The wavelength
bands of these two kinds of light are more concentrated and
matched.

In addition, we covered a layer of skin made of black silica
gel outside the five rays to isolate it from the environment,
which resulted in an increase in the signal-to-noise ratio in
Fig. 2 (c). We further leave a cavity in the middle of the
contact surface to improve the sensitivity of the fiber [9]. As
shown in Fig. 2 (d)(f), each of the five optical fibers is cut into
two sections and stopped at the cavity section position shown
in Fig. 2 (f).

The fiber we use is a soft PMMA commercial fiber produced
by Everheng Fiber. The black skin is made of Smooth-On
EcoflexTM 00-30 silicone, its strength meets our requirements.
However, this silica gel was originally a milky white translu-
cent liquid and was later mixed with black pigment at a ratio
of 20:1, effectively blocking the surrounding light. In addition,
we use silica gel to build the finger skin at 3mm on the outer
surface of the finger to increase the texture of the finger surface
and enhance the grip effect. Fig. 2 (e) shows the details of the
manufacturing process of the black silicone skin.

Let I0 denotes the baseline luminous intensity without any
deformation. With the current output luminous intensity I , the
luminous flux loss in decibels through the optical fiber is then
described as

α = 10log10(I0/I) (1)

According to this definition, the output loss α is 0 with-
out deformation, and less than 0 when interacting with the
environment.



C. Gripper Design of Two Fingers

To ensure the convenience of collecting our experimental
data set and the simplicity of the end effector, we designed
a two-finger gripper, as shown in Fig. 3. Each finger has one
degree of freedom, that is, one ROBOTIS Dynamixel MX-
64 is used to drive the opening and closing of the finger.
Dynamixel SDK provides us with a high-level Python API.
This API can immediately communicate between the grabbing
hardware and the host and can provide information such as
current position, target position, torque limit for adjusting the
stiffness of the finger, etc.

Fig. 3: (a) is the CAD model of the two-finger gripper design and
(b) shows the gripper on the Aubo i5 Robot.

As shown in Fig. 3, the holder presents a two-finger
configuration: the two fingers are arranged symmetrically, so
that the proximal axis of the joint is located in the middle of
the other fingers, facilitating more precise grasping. Based on
the required distance range of the experiment part, the holder
we designed is the simplest device after the experiment can
be carried out normally, and the cost is reduced. The simple
structure makes it convenient for fast installation and part
replacement. At the same time, because the gripper is made
of soft material, the holder can adapt to various geometric
characteristics of target objects with various typical structures,
providing high adaptivity and safety.

D. Object Classification with Gripper

To classify the material of the picked garbage with the
provided soft gripper, we are going to implement commonly-
used models and by comparison, find the most suitable one and
further optimize the accuracy and speed via configuring data
prepossessing, feature extraction, hyper parameters in selected
models.

The general procedure of the classification via machine
learning techniques is shown in Fig. 4.

Where in data preprocessing, certain noise reduction and
filtering methods are applied to improve the quality of the
data. In feature extraction, normally based on needs and expe-
rience, some good features are selected for further discussion.
And then, using the selected models to train with part of
the processed data. Based on the problem, classification or
regression models could be chosen and then using the test set

Fig. 4: General procedure of machine learning techniques.

to evaluate the generated model. If the performance reached
the expectation, this model could be used in real applications.

To be more specific, the raw data provided would be differ-
ent channels of time-sequenced values. In data prepossessing,
we will use common denoise filters and Kalman filters to
get clean data. For feature extraction, we will try to focus
on the time-dependent data given by the continuous grasping.
For classification algorithms, we are going to implement both
supervised learning and deep learning methods to compare and
find the most suitable algorithms for our task. The evaluation
will be based on the classification accuracy and processing
speed of the algorithms. We chose several supervised learning
algorithms and discussed the possibility of utilizing LSTM on
this problem.

1) Supervised Learning: Supervised learning is the ma-
chine learning task of learning a function that maps an input
to an output based on example input-output pairs. It infers
a function from labeled training data consisting of a set of
training examples. In supervised learning, each example is
a pair consisting of an input object (typically a vector) and
the desired output value (also called the supervisory signal).
A supervised learning algorithm analyzes the training data
and produces an inferred function, which can be used for
mapping new examples. An optimal scenario will allow for
the algorithm to correctly determine the class labels for unseen
instances. This requires the learning algorithm to generalize
from the training data to unseen situations in a "reasonable"
way (see inductive bias). This statistical quality of an algo-
rithm is measured through the so-called generalization error.

The learning algorithms we are going to implement include:
Support-vector machines; Logistic regression; AdaBoost; Ran-
dom Forest; Gaussian Naive Bayes; Decision Trees; K-nearest
neighbor algorithm; Neural networks (Multi-layer perceptron).
We will only introduce the 3 methods below in detail for their
significance.

K-nearest neighbor is a non-parametric method proposed
by Thomas Cover used for classification and regression. The
principle of which is straightforward. Vote by the target’s
nearest neighbors. To illustrate, take Fig. 5 (a) as an example.
The green dot is the target waiting to be classified. The blue
squares and red triangles are 2 categories. K-nearest-neighbor
simply means the green dot would "ask" its nearest neighbors,
for example, those in the solid circle, for advice, if most of
them belong to a certain category, the green dot would follow
the majority. In this case, the green dot would be a red triangle.

There are several key parameters. First is k, which means



how many neighbors should green dot ask. In the afore-
mentioned example, k is 3. When k is increased to 5, the
dashed circle would represent the situation. Another one is the
distance calculation method. Commonly used are Manhattan,
Euclidean, Chebychev, and Minkowski. There is also the
weight for the distance which means that the smaller distance
would count more. In other words, the green dot would take
the advice from his nearest neighbors more seriously than
those far away. Another thing to mention that using K-nearest-
neighbor needs to normalize the input data to have a good
result since it relies on distances.

Support Vector Machine (SVM) was first proposed by
Cortes and Vapnik in 1995. It has many unique advantages in
solving small sample, nonlinear and high-dimensional pattern
recognition, and can be extended to function fitting and
other Machine learning problem. The support vector machine
method is based on the VC dimension theory of statistical
learning theory and the principle of structural risk minimiza-
tion. According to the limited information, the complexity of
the model (that is, the accuracy of the specific training sample,
Accuracy) and the learning ability (ie The ability to identify
any sample without error) seeks the best compromise to
obtain the best generalization ability (or generalization ability).
Linear classifier (in a sense, it can also be called perceptron)
is the simplest and most effective form of classifier. In a linear
classifier, you can see the idea of SVM formation and get in
touch with many core concepts of SVM.

Take a classification problem with only two types of samples
in a two-dimensional space as a small example, as shown
in Fig. 5 (b). C1 and C2 are the two categories to be
distinguished. Their samples in the two-dimensional plane are
shown in the Figure 4 above. The straight line in the middle
is a classification function, which can completely separate
the two types of samples. Generally, if a linear function can
completely separate the samples correctly, the data is said
to be linearly separable, otherwise it is called non-linearly
separable.What is a linear function? It is a point in one-
dimensional space, a straight line in two-dimensional space,
and a plane in three-dimensional space. It can be imagined
like this. If you don’t pay attention to the dimension of space,
this linear function has a unified name—— Hyper Plane.

A linear function is a real-valued function (that is, the value
of the function is a continuous real number), and our clas-
sification problem (such as the binary classification problem
here-answering the question of whether a sample belongs to a
category or not) requires Discrete output value. For example,
use 1 to indicate that a sample belongs to category C1, and
use 0 to indicate that it does not belong (not belonging to
C1 means belonging to C2). At this time, you only need to
simply add a threshold to the real-valued function. That is,
the category attribution is determined by whether the value
obtained when the classification function is executed is greater
than or less than this threshold. And that is the core idea of
SVM.

Random forests or random decision forests are an ensemble
learning method for classification, regression and other tasks

that operates by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the
classes (classification) or mean/average prediction (regression)
of the individual trees. Random decision forests correct for
decision trees’ habit of overfitting to their training set. Random
forests generally outperform decision trees, but their accuracy
is lower than gradient boosted trees. However, data character-
istics can affect their performance.

Fig. 5: (a) shows the k-nearest neighbor (KNN), (b) shows the support
vector machine (SVM), and (c) shows the random forest.

The training algorithm for random forests applies the gen-
eral technique of bootstrap aggregating, or bagging, to tree
learners. Given a training set X = x1, ..., xn with responses Y
= y1, ..., yn, bagging repeatedly (B times) selects a random
sample with replacement of the training set and fits trees to
these samples: For b = 1, ..., B:

1) Sample, with replacement, n training examples from X,
Y; call these Xb, Yb.

2) Train a classification or regression tree fb on Xb, Yb.
After training, predictions for unseen samples x’ can be

made by averaging the predictions from all the individual
regression trees on x’:

f̂ =
1

B

B∑
b=1

fb (x
′) (2)

This bootstrapping procedure leads to better model perfor-
mance because it decreases the variance of the model, without
increasing the bias. This means that while the predictions of
a single tree are highly sensitive to noise in its training set,
the average of many trees is not, as long as the trees are not
correlated. Simply training many trees on a single training
set would give strongly correlated trees (or even the same
tree many times, if the training algorithm is deterministic);



bootstrap sampling is a way of de-correlating the trees by
showing them different training sets.

Additionally, an estimate of the uncertainty of the prediction
can be made as the standard deviation of the predictions from
all the individual regression trees on x’:

σ =

√√√√∑B
b=1

(
fb (x′)− f̂

)2
B − 1

(3)

The number of samples/trees, B, is a free parameter. Typ-
ically, a few hundred to several thousand trees are used,
depending on the size and nature of the training set. An
optimal number of trees B can be found using cross-validation,
or by observing the out-of-bag error: the mean prediction error
on each training sample xi, using only the trees that did not
have xi in their bootstrap sample. The training and test error
tends to level off after some numbers of trees have been fit.

The above procedure describes the original bagging al-
gorithm for trees. Random forests differ in only one way
from this general scheme: they use a modified tree learning
algorithm that selects, at each candidate split in the learning
process, a random subset of the features. This process is some-
times called "feature bagging". The reason for doing this is the
correlation of the trees in an ordinary bootstrap sample: if one
or a few features are very strong predictors for the response
variable (target output), these features will be selected in many
of the B trees, causing them to become correlated. An analysis
of how bagging and random subspace projection contribute to
accuracy gains under different conditions is given by Ho.

Typically, for a classification problem with p features,
√
p

(rounded down) features are used in each split. For regression
problems the inventors recommend p/3 (rounded down) with
a minimum node size of 5 as the default. In practice the best
values for these parameters will depend on the problem, and
they should be treated as tuning parameters.

2) Deep Learning: In addition to machine learning models,
we also tried to use deep learning models to process a larger
amount of data. Due to time series data, we planned to try two
models: recurrent neural network (RNN) and Long Short-Term
Memory (LSTM).

Fig. 6: (a) shows the structure of the Recurrent Neural Network
(RNN) and (b) shows that of the Long Short-Term Memory (LSTM).

Recurrent Neural Network (RNN) is a neural network used
to process sequence data. Compared with a general neural
network, it can process data that changes in sequence and
allow the information to persist. The main form of a general
RNN is shown in Fig. 6 (a).

In LSTM, x is the input data in the current node state, and
h represents the input data received from the previous node.
y is the output in the current node state, and h’ is the output
data passed to the next node.

Besides, in order to solve the problem of gradient disappear-
ance and gradient explosion during long sequence training,
and to make the model perform better in longer sequences,
we planned to try to use a special RNN: Long Short-Term
Memory (LSTM).

Compared with ordinary RNN, the main difference of
LSTM is shown in Fig. 6 (b).

Compared with RNN which has only one transfer state,
LSTM has two transfer states, ct (cell state) and ht (hidden
state).

There are three main stages inside LSTM:
1) "Forget". This stage is mainly to selectively forget the

input from the previous node. To put it simply: "forget
the unimportant and remember the important".

2) "Select to memory". This stage selectively "memorizes"
the input of this stage. The main purpose is to select and
memorize the input xt.

3) "Output". This stage will determine which will be re-
garded as the output of the current state.

Similar to the ordinary RNN, the output yt is often finally
obtained through the change of ht.

III. EXPERIMENT

A. Data Collection
We selected four different types of the garbage when

collecting data, which are plastic bottles, cans, paper boxes,
and hard bottles. Hard bottles are rubbish like glass bottles.
We collect data from five kinds of plastic bottles, two kinds
of pop cans, one kind of paper boxes and two kinds of hard
bottles.

When collecting data, we only use half of the gripper to
make measurements. We put the hanging gripper horizontally,
put the garbage directly under the paw so that the garbage is
aligned with the gripping position of the paw. Let the paws
repeatedly press the fixed distance from the fixed height to
collect data in the paw fiber feedback. The height of the half
gripper relative to the workbench represents the width of the
entire gripper when it is open. The paw moves down to the
performance of a grab. Since the gripper are symmetrical, the
data generated by two fingers is also symmetrical, so we can
collect data with only one finger. We collect data in this way
because it’s much faster.

The movement of the gripper is accomplished by controlling
the Dynamixel MX-64 servo. By setting the movement speed
and target position of the servo in the MATLAB program,
we can make the gripper move according to our expected
trajectory. After the finger is deformed, which means it is in
contact with the bottle, we then read the data of the five optical
fiber channels in the finger through the Python program to
realize the data collection.

For each of the above bottles, we collected data 100 times.
For the axial and radial shapes that have a relatively large



(a) AHHA Plastic Bottle (b) MaiDong Plastic Bottle

(c) Metal Bottle (d) JiaDuoBao Can

Fig. 7: Raw data for four kind of objects.

change bottle, we measure multi-group data by changing the
grab position. It will eventually get the data when the bottle
is in different positions. Selected data are shown in Figure 7.
The total Data set include 10 kinds of objects, for each one
of them grasps are conducted 100 times.

B. Object Classification

In this section, we experimented with 7 kinds of different
models, as mentioned in the Methods. First, in order to use
the raw data collected in the last section, we have to cut
the 100 grasps into 100 parts for each data. The cut is done
based on the assumption that each grasp takes the same time,
which corresponds to 6 sample points. Then, for each grasp,
there exist 5 channels. The raw values of the 5 channels are
flattened and connected in series. After this procedure, Each
grasp of each object contains 5*6=30 numbers. This could
be shown in Figure 8. It can be seen that the difference of
different kinds of the object could be easily distinguished,
implying a great potential to be processed by machine learning
methods. However, even though Figure 8a and 8b are both
plastic bottles, the traits of these 2, look kind of different. It
might mean that the shape of the object may influence more.

To testify the effectiveness of classification via gripper,
we designed 4 kinds of experiments. In experiment 1, we

used 5 kinds of plastics bottles as the data set, to testify
the performance to classify plastic bottles. Among which, 80
percent are taken as train set and the rest are used as test set.
The evaluation of the classification results can be seen in Table
I. Almost all models reached accuracy of 1.0.

In experiment 2, we used 10 kinds of objects as the data
set, which include 5 kinds of plastic bottles used in the former
experiment, 2 kinds of rigid bottles, 2 kinds of aluminum cans
and one kind of paper box, to see how good it can classify
different objects of shapes and textures. Among which, 80
percent are taken as train set and the rest are used as test
set. The evaluation results can be seen in Table I. Almost all
models reached accuracy of 1.0. Implying that, the models
could handle much different objects.

In experiment 3, we used 3 kinds of objects as the data
set, which include 1 kind of plastic bottles, 1 kinds of rigid
bottles, 1 kinds of aluminum cans. Noted that, all 3 objects
have the same diameters. This experiment was conducted to
prove whether the model could classify objects in the absence
of shape, but only through the softness of the object. Among
which, 80 percent are taken as train set and the rest are used as
test set. The evaluation results can be seen in Table I. Almost
all models reached accuracy of 1.0. This implies the softness
conception was as expected.



(a) AHHA Plastic Bottle (b) MaiDong Plastic Bottle

(c) Metal Bottle (d) JiaDuoBao Can

Fig. 8: Processed data for four kind of objects.

TABLE I: Accuracy and field test results of different models.

Algorithms Experiment 1 Experiment 2 Experiment 3 Experiment 4 Field Test
Gaussian Naïve Bayesian 1 0.96 1 0.0037 F
Decision Tree: 1 1 0.983 0.32962 T
AdaBoost 1 0.82 1 0.00742 T
K-nearest neighbor 1 1 1 0.09259 F
Random Forest 1 1 1 0.32962 F
Logistic Regression 1 1 1 0.23333 F
NN (MLP) 0.99 0.995 1 0 F

In experiment 4, we used the same data as training data.
However, in test data, we introduced 3 brand new kinds
of object belonging to plastic, rigid bottles and cans. This
experiment was conducted to check the performance of the
model when faced with untrained samples, to see how well
it could handle new situations. The evaluation results can
be seen in Table I. Almost all models have accuracy of 0.
This implies that when faced with untrained object, the model
behaves poorly.

Finally, to testify the model, we conducted a field test on
the platform. The gripper grasps an "AHHA" plastic bottle
via 2d location based on YOLOv5. The gripper transfer the
data back to the computer to classify the grasped object. The
results of the field test is shown in Table I. Decision Trees
and AdaBoost classify it perfectly. We believe these 2 models

might have the greatest potential. However, more experiments
and validation could be future conducted to reveal more details
of these models.

All the experiments conducted in this section revealed some
interesting traits of the models, implying great potential of
classifying obejcts via the soft gripper proposed in this work.
More in depth analysis is given in the next section.

IV. DISCUSSION

A. Data Collection

In the literature [10], the data obtained by the flexible
gripper is discrete. All the data is collected by the optical
fiber sensor after the gripper grasps the target. In this article,
our experimental data is time-series. During the downward
movement of the gripper, our optical fiber sensor feeds back



information at a fixed frequency. Intensity of the transmitted
light (a1,a2,a3,a4,a5) was gathered in this process. Save the
data collected by the five optical fibers

In terms of results, our gripper was sensitive to the data
obtained when grasping objects of different shapes and ma-
terials. If we take Maidong Bottle as an example, it was
at the middle sampling point when the gripper grasped the
deepest. The amount of change in the polyline shown in Fig. 8
would become significantly larger. It means that it represented
a larger shape variable. It corresponded to the shape of the
bottle. Since the data measured is on the condition that the
plane of the side of the bottle is facing upwards, the finger first
touches the entire plane when grasping, and then continues to
deform and wrap around the side. Therefore, when the gripper
contacted with the bottle, the deformation of the second and
fourth sampling points was small, and the deformation of the
third sampling point was significantly increased.

B. Object Classification
In this paper, we tried seven learning algorithms to realize

the object classification, which are Gaussian Naive Bayesian,
Decision Tree, AdaBoost, K-nearest Neighbor, Random For-
est, Logistic Regression, and Neural Network. When the
dimension of the object is kept consistent, the classification
accuracy is still very high, which proves that we can success-
fully recognize the softness information of the object.

Besides, in the experiments, the algorithms all have good
performance for the learned samples, but poor performance
for the unlearned samples, which shows that the generalization
performance of the model is still relatively low. It also should
be noted that, in the field test, Decision Tree and AdaBoost
behaves better. Therefore, in the future, we will use the gripper
to collect more data in different configurations to realize data
augmentation while improve the generalization ability of the
model. Meanwhile, we will also add visual aids to increase
the accuracy of object classification.

V. CONCLUSION

In conclusion, this paper proposed a learning-based object
classification strategy, using tactile sensing data collected by
optpelectronically adaptive finger to identify different objects.
This strategy has been well validated in the experiment. The
results show that it can distinguish different materials to some
extent, which provides a new idea for object recognition and
garbage classification.

This work is a preliminary practice of the tactile sensing
method based on optical fiber in the application of item
classification. In future research, we will expand the types of
data collection, optimize the methods of data collection, and
improve the generalization ability and accuracy of the model.
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