
Learning from Demonstration for Waste Picking*

Qiu Nuofan1#, Xiao Yang1#, Hu Bowen1#, Liu Xin1#, Li Yifei1#, Xu Ronghan1#, Dong Yujian1#,
Xiang Yanzhen1#, Guo Shangkun1#, Dr. Wan Fang2#, Prof. Song Chaoyang2#

Abstract— In the context of robotics and automation, learning
from demonstration(LfD) is the paradigm in which robots ac-
quire new skills by learning to imitate an expert. In this article,
we will show our work to attempt Learning from demonstration
by passive observation, including data collection, trajectory
reproducing in both real and simulation environments and using
ML-Agent to build the framework of learning.

Index Terms— learning from demonstration(LfD), passive
observation, simulation

CONTENTS

I Introduction 1

II System Design 2
II-A Data Collection 2

II-A.1 Platform introduction . . . 2
II-A.2 Collecting data 2
II-A.3 Shortcoming 2

II-B Data processing and Trajectory Repro-
ducing 2
II-B.1 Data processing 2
II-B.2 The coordinate transforma-

tion from the data collec-
tion platform to the robotic
arm 3

II-B.3 Trajectory planning 3
II-C Construction of simulation environment 3

II-C.1 Simulation soft-
ware——Unity 3

II-C.2 Simulation model
construction 3

II-C.3 Simulation model
construction 3

II-C.4 Simulation model
construction 4

II-D Reproduction and Exploration in Sim-
ulation 4

*This work was supported by Southern University of Science and
Technology and AncoraSpring Inc. for the ME336 Collaborative Robot
Learning (me336.ancorasir.com) under the supervision of Prof.
Song Chaoyang songcy@ieee.org

#Equal contribution as co-first authors.
1All authors1# are with Department of Mechanical and Energy Engineer-

ing, Southern University of Science and Technology, Shenzhen, Guangdong
518055, China. 11713013, 11811019, 11811406,
11710913, 11812814, 11810502, 11811403,
11811417, 11810904@mail.sustech.edu.cn

2Author Dr.Wan Fang is with SUSTech Institute of Robotics, Southern
University of Science and Technology, Shenzhen, Guangdong 518055,
China. wanf@mail.sustech.edu.cn

II-D.1 Task 1: Control of Arm in
Joint Space 4

II-D.2 Task 2: Control of Arm in
Workspace 4

II-D.3 Task 3: Finding an
Improved Relationship
Between Testee’s
Workspace in Data
Sampling and Workspace
of Robotic Arm, Using
Results of Simulation . . . 5

II-E Imitation Learning 5
II-E.1 Principle 5
II-E.2 Imitation Learning tool . . 5
II-E.3 Demonstration record . . . 6
II-E.4 Imitation Learning config . 6
II-E.5 Result 6

III Final Remark 6

IV Contribution 6

I. INTRODUCTION

Decision making in robotics often involves computing
an optimal action for a given state, where the space of
actions under consideration can potentially be large and state
dependent. It is also very common for humans to make
decisions for different situations and humans are good at
making decisions. So learning from human demonstrations
is a powerful approach to reduce the space of actions to help
robotics to make decisions.

In the context of robotics and automation, learning from
demonstration is the paradigm in which robots acquire new
skills by learning to imitate an expert. According to the
technique by which demonstrations will be performed, learn-
ing from demonstration can be divided into three categories:
kinesthetic teaching, teleoperation,and passive observation[1].
In this project, we chose to use passive observation, which
means that we performed tasks using our own body with a
pair of modified kitchen tongs. Learning from demonstration
by passive observation is easy for demonstrator, requiring
almost no training to perform.

In this report, we will introduce our work about learning
from demonstration for generating trajectory to approach a
target, including data collection, reproducing trajectory in
both real and simulation environment.

II. SYSTEM DESIGN

A. Data Collection

1) Platform introduction : In this project, we directly
use Wang Haokun ’s data collection platform, DeepClaw
2.0. It consists of a visual sensor, Intel RealSense D435i
and a working platform. The camera is fixed on a frame
above the working platform. The working platform contains
a calibration grid for localization, a pair of modified kitchen
tongs for demonstrations and objects to be manipulated. In
this platform a human teacher operates kitchen tongs to
perform object manipulation. On each tip of tong, there
is a soft finger network attached to it, which can be used
to detect the force application during grabbing by visual
method, while in this course we didn’t use this function.
Fig. 1

2) Collecting data: In working, Intel RealSense D435i
will take color and depth images at 30fps. These raw sensor
data are sequential images recorded with times. Everything in
the working platform is marked by AprilTags. By analysing
each recorded images with the AprilTag detector in ViSP,
we can estimate their 6D positions. These pose data will be
further used to extract action by taking their time derivatives.
Using this kind of data, we can simulate the movement of
each one in the Unity and direct the robot arm to grab
the bos in the reality. The final goal of our group is to
use the data to do the deep learning and direct the robot
arm to move more like human. During this course, we use
the camera to video each teammates grabbing the box with
marker in 16 different positions. The working platform is
divided into 4×4 blocks. Every position randomly distributes
on these blocks and the object to be grabbed also has random
pose. These preparations are to imitate the unpredictable
conditions in real work. When the demonstration begins, the
experimenter moves the tongs starting from an initial point
into the working platform and slowly forward the object until
grabbing it. Then one collecting period ends. All the data will
be collected and position of whole tongs will be replaced by
the center point calculating from the position of two sides
of tongs. Fig. 2

3) Shortcoming: One limitation is the performance of the
camera used (Intel RealSense D435i). During the process
of collecting the data, the frame has high delay. For the
better recording, systems such as Photoneo MotionX could
be a potential alternative. Future work of this study could be
aimed at a more comprehensive system design towards a low-
cost, open-sourced platform for robot manipulation learning
research, recommended by Wang Haokun. What’s more,
recent research by the Berkley Open Arm project proposed
a promising design paradigm in this direction for robot
hardware that "enables useful automation in unconstrained
real-world human environments at low cost."

B. Data processing and Trajectory Reproducing

1) Data processing: Preliminary analysis of data: The
collected data file contains the time stamp, each frame of
RGB-D image, 6D posture information of the AprilTag

on the gripper fingers and objects, and some information
calculated from the data set, like the distance between the
left and right gripper fingers.The part of data we will mainly
use in trajectory reproduction is the 6D posture information
of the center of the gripper tool during the entire grasping
process. However, these data sets have some problems and
cannot be used directly, so we need data cleaning to make
these data usable. If our final project has a longer period, we
will make full use of the data collected. Through RGB-D
images and finger distance data, it’s possible to control the
robotic arm to throw the object to a certain area with it’s
gripper opening for a certain distance, which can be realized
through machine learning.

Data cleaning: There are mainly two problems with the
data sets we collected. The first is that some of the data
collecting processes have already started before the gripper
enters the view field of the RealSense camera yet, which
results in the 6D gripper posture information corresponding
to some early moments in the data set being empty. In
order to ensure that the trajectory of the robotic arm is
continuous, we decided to delete those lines whose 6D
posture information of the tool center is empty in the data
set which means the kitchen tongs haven’t started the task.

The second is that while we are collecting the data, when
the gripper moves to a position close to the vertical state,
the QR code on the gripper fingers will have the problem of
coordinate axis recognition error affected by indoor lighting.
As a result, the three-dimensional posture information of the
gripper in the data will have some sign errors. At the same
time, when collecting data, due to the low frame rate of
our depth camera, we have to slow down the speed of hand
movement in order to ensure that the point interval is as
small as possible, which also caused a sudden change in the
collected jaw posture information. Fig. 18

We set a threshold artificially according to the actual
situation, and deal with the points where the change exceeds
the threshold. The left picture above is the scatter plot
before processing, the right picture is the scatter plot after
processing, and the following is the data after processing
by 5th degree polynomial fitting. Fig. 4 The data after these
two steps can be used to reproduce the trajectory.

Visualization of data collected: In order to observe the
effect of data cleaning, we decided to visualize the data using
the plotting tools in matplot library of Python. Fig. 5

Advantages of data: By comparing the visual image
of the collected data with the trajectory video during the
collection, we found that their feature similarity is relatively
high, which means that the data we collected can well
restore and represent the actual movement posture of the
person while picking the target object using gripper.

Shortcomings of data: The density of the data points we
collected is low, and the distance between two points is a
little far.The trajectories fluctuate relatively greatly.

Data points are not uniform, the middle part is sparse
and both ends are dense. Because in the whole process of
gripping the target, the speed is slow at the beginning of
moving the gripper and finally gripping the object, while the
speed is faster when the middle gripper moves towards the
target.

The initial position of the gripper we specified starts from
the desktop plane and ends when the object is clamped.
This means that the end point of the trajectory is usually
higher than the starting point. In the actual robotic arm
trajectory reproduction, the position of robotic arm will be
close to the desk plane, which might lead to collisions with
the desk while the robotic arm is moving.

Thinking and solutions: If we were to do the project
again, we would replace the RealSense D435i camera with
one with higher FPS, so that we can grip the target object
with a more natural posture and speed. And we would
specify a higher starting position to prevent the robotic
arm from colliding with the desktop during the process of
reproducing the trajectory. In this experiment, in order to
overcome the above shortcomings in the data as much as
possible, we decided to use the combination of polynomial
fitting and interpolation method for trajectory planning to
make the trajectory of robotic arm smoother and denser,
which will be talked about in the trajectory planning part in
detail.

2) The coordinate transformation from the data collection
platform to the robotic arm: In order to make the reproduced
trajectory and the gripped trajectory as similar as possible,
we hope that the ratio of the two trajectories is equal. So
we set a ruler on the data acquisition platform and compare
it with the actual data to determine the scaling factor of
the coordinate transformation matrix. And also, we set the
first point of each trajectory as the origin point. To ensure
the robotic arm grip the target on the horizontal tabletop
smoothly, and make the entire trajectory in the middle part
of the base under the condition that the robot arm can move
normally, we offset the data coordinates according to the
actual situation.

3) Trajectory planning: In order to realize the multi-
point path planning of the robotic arm, we need to ensure
that the motion trajectory is smooth enough and write the
trajectory in the form of a parametric equation to facilitate the
subsequent programming of the robotic arm motion control
interface.

We first use the polyfit function in python’s numpy
toolkit to fit the 6D coordinates of the collected scattered
points by polynomial. In the specific operation, we fit the
xyz three-axis coordinates of the collected data to the corre-
sponding picture frame number n, and then use the polyval
function of the numpy toolkit to output the corresponding
equation, and integrate the results of the three-axis fitting
to get The parameter equation corresponding to the frame
number n (that is, time) of the entire motion track. And

later, the parameter equation is derived to plan the speed
and acceleration curve of the reproduced trajectory of the
manipulator.

We use the matplot toolkit again to visualize the trajec-
tory. By connecting the scatter plots of the data in sequence
and plot the fitted curve in the same picture, we analyze the
effect of curve fitting by comparison. In the whole curve
fitting process, we tried to use the 2nd- order polynomial to
the 6th-order polynomial for fitting. Through comparison and
trade-offs, we believe that the 5th-order polynomial has a bet-
ter fit for 3D position. The fitting of polynomials below 5th-
order will result in lacking some information in the collected
data set, and some characteristics of the motion of human
hand will miss. Those polynomials above 5th-order will lead
to the entire trajectory to be not smooth enough, which is
not only due to slowing down the movement while collecting
data, but also not good for the motors of the robotic arm. In
the final analysis, the fifth-order polynomial trajectory fitting
is a balance of our evaluation of the performance of the data
collection platform and the actual operation of the robotic
arm system as shown in the following figures. Fig. 6

Regarding how to implement our trajectory planning pro-
gram on the control code of the robotic arm, we read some
control example C/C++ programs in Franka FCI library,
and also inquired about some related robotic arm control
blogs, but we found it beyond our ability. After that, we
asked our teaching assistant to help write the interface of
Franka’s multi-point planning. In actual use, the speed and
acceleration are not continuous errors. Under the instruction
of the teaching assistant, we thought that the speed in
the trajectory planning might exceed the upper limit of
the speed of the robotic arm, so we tried to make the
entire robotic arm finish the trajectory longer by changing
the timestamp frequency corresponding to the interpolation,
thereby reducing the speed of robotic arm. However, there are
still discontinuous speed and acceleration errors. Due to the
time relationship, we gave up and used the move_p() single-
point motion function to test our trajectory reproduction.

C. Construction of simulation environment

1) Simulation software——Unity: Unity is a real-time 3D
interactive content creation and operation platform with rich
community resources. The simulation of our project requires
3D rendering, model motion control, model and trajectory-
based learning process, and the Unity community provides
rich resources for this, so we use Unity software to build the
simulation and learning environment.

2) Simulation model construction: Robotic arm model
We first need to complete the reproduction of the Franka
manipulator in the simulation environment. We hope to
construct it through the connection of joints, and control
its movement by setting the joint angle or solving inverse
kinematics. Fig. 7

3) Simulation model construction: Conveyor model
We need to add collision and friction properties to the

conveyor belt and apply a translation script to it, which can

Online Reproduction Offline Reproduction

Pros Easy to ensure
real-time control

Data exchange between
real and simulation can be easily

realized by file IO
operations

Cons
Hard to implement

communication between real
and simulation

Hard to ensure
real-time control

TABLE I: Pros Cons of Online Reproduction and Offline Repro-
duction

bring the animal block to move when its surface is in contact
with the block. Fig. 8

4) Simulation model construction: Other models Models
used to support and enrich the environment, such as robotic
arm support bases, tables, shelves, cameras, etc. The overall
environment is shown in the figure below.

D. Reproduction and Exploration in Simulation

Basically there are three tasks to conduct in simulation:
Task 1: To realize control of the arm in simulation in joint

space: To input a certain trajectory containing position and
velocity information at every time step, and find out how
accurate can the arm track the trajectory.

Task 2: To realize control of the arm in simulation in
workspace: A certain trajectory in workspace is given, and
joint positions at every time step are calculated using Inverse
Kinematics(IK) of the arm. The calculated joint positions are
input to the arm.

Task 3: To find a certain area in which the IK results
are relatively accurate, and use this area as the target area
to which the sampled trajectories of human are transformed
(This transformation should be improved compared to previ-
ous coordinate transformation because avoidance of large IK
errors is taken into consideration), and thus finding a proper
way to transform the sampled data into the data of trajectory
which the robot arm should traverse.

Prior to all of these, we should choose between online
reproduction and offline reproduction. Both of them have
their own pros and cons(Table I). Considering our practical
situation, offline production is chosen.

1) Task 1: Control of Arm in Joint Space: A test trajectory
is input into the joint space of the robot arm: q2 = q4 =
90−45cos(0.8count) where q2 and q4 are respectively joint
positions of joint 2 and joint 4, and count is the number of
counts in the program loop, which is positively proportional
to time.

Note that the derivative of the trajectory above, which are
the joint velocities of the arm are:

q̇2 = q̇4 = 36sin(0.8count)

where q̇2 and q̇4 are respectively joint velocities of joint 2
and joint 4. So not only the joint positions but also joint
velocities are both in the shape of the sine wave. If the arm
can nicely track such a trajectory, it means that the position
control and velocity control of the arm in simulation in joint
space can be realized.

Write IK code
from scratch

Using IK function
provided by the

simulation Franka
model

Using MATLAB
API of IK

of Franka arm

Pros
Easy to extend
to robotic arms

of different kinds

The result is
more accurate

Easy to realize
offline control

Cons

Difficult and
too time-

consuming to
implement

Hard to
realize offline

IK solving

The result
is less accurate
because of the

shortcoming of the
numerical optimal

method applied
in the API

TABLE II

Setting the maximum joint velocity of the arm to 40 rad/s
and the updating frequency to 100 Hz in Unity and running
the simulation of this trajectory, the result is obtained as is
shown in Fig. 10. The figure shows that the actual trajectory
is quite close to the expected trajectory except for some
special cases(e.g. When the simulation has not started for
long, the arm needs time to run to the expected position
or velocity. And joint 4 reaches its joint limits when its
position is close to the lowest of the theoretical position,
and it cannot exceed its limit.) This indicates that the arm
simulation behaves well in position and velocity control in
joint space.

2) Task 2: Control of Arm in Workspace: This task
involves the IK solution of the arm. Since each joint of the
arm has its own position limits, the optimization algorithm
with constraints are applied to find the optiamal joint position
solution at every time step:

min ||x− x̂||
s.t. x = f(q)

qimin ≤ qi ≤ qimax, i = 1, 2, ..., 7

where
x = [x, y, z, yaw, pit, rol]T

is the actual position and attitude of the end effector. And
x̂ is the theoretical position and attitude. Since the end
effector seldom rotates in the process, for simplification its
3D attitude is set to fix (yaw = 180o, pit = −30o, rol = 0o).
The joint position at each time step is calculated and then
stored into a file.

To solve the IK problems, basically there are 3
choices, and each choice has its own pros and cons(Table
II).Considering our practical situation, we choose to use
MATAB API of IK.

For test, we input a certain trajectory in workspace into IK
to calculate the trajectory in joint space and save the results
in the file. Then the results are input into Unity simulation,
and the actual end effector position of the arm in simulation
are recorded. Fig. 11 left part shows the expected and actual
trajectory, and Fig. 11 right part shows the error of the end
effector’s cartesian coordinate at every time step.

It is shown that the maximum tracking error will be no
more than 0.1m, indicating the tracking of such a trajectory

is relatively good. However, not every trajectory has such
low tracking error. In task 3 the area where tracking error is
relatively small will be found out.

3) Task 3: Finding an Improved Relationship Between
Testee’s Workspace in Data Sampling and Workspace of
Robotic Arm, Using Results of Simulation: In order to find
out an area where the IK error is relatively small, a series of
points in the arm’s workspace are generated (points seperate
each other 0.1m away, either in x, y or z direction.). Using
IK and input its results into Unity, the error at each point is
calculated, which is depicted in Fig.12

It is shown that in the area not far above the conveyor
and moderately far away from the arm’s base the errors
are relatively small, while in the area near the margin of
the workspace or very close to the arm’s base the errors
are relatively large. Based on this, a cuboid area which can
contain the normalized sampled trajectory and has relatively
low IK error can be found.

To find this area, the mean trajectories of each person
picking the object at the same position are calculated (since
totally there are 16 different positions of the target object,
there are totally 16 mean trajectories). This is shown in
Fig.13.Also, the standard derivations on each direction are
calculated (Before calculating standard derivation, the trajec-
tories are all trimmed to the same starting point to eliminate
the influence of discrepancy in starting points. Also, splining
is applied to ensure the moving speeds of different testees are
all the same). The maximum standard derivations for each of
16 target positions are shown in Fig.Fig.14 It is shown that
the maximum standard derivations on x-axis and z-axis are
all very small, while those on y-axis vary much. To further
find out some patterns of maximum standard derivations on
y-axis, the bar chart(Fig.18) is plotted((1,1) is position 1,
(1,2) is position 2, (1,3) is position 3, ..., (2,1) is position 5,
..., (4,4) is position 16).

It is shown that the trajectories targeting at position 1-
4 and 13-16 have relatively low standard derivation, while
those targeting at position 5-12 have relatively high one.
This is consistent with common sense: In picking based on
human’s own intuition and when the target is too close or
too far, usually there are not many only ways to reach the
target object. But when the target is neither very close nor
far, usually there are multiple ways to reach the target.

Referencing to Fig.15 and taking the standard derivations
into account, finally a cuboid area whose length and width
are both 0.6m and whose height is 0.05m is chosen as the
target working area of the robotic arm to which the sampled
trajectories are transformed to. By referencing to Fig.15, the
target working area of the robotic arm is finally chose: [0.1,
0.7] in x, [-0.7, -0.1] in y and [0.1, 0.15] in z. This is the
area with relatively small error in IK solution which contains
almost all of the sampled trajectories considering mean and
standard derivation.

Plus, to tackle the problem of different heights of the
testees, the positions of the sampled trajectories in z-direction
should be normalized into the chosen area. Thus, either the
sampled data of a very tall adult testee or a young kid testee

can be properly mapped to the chosen working area of the
robotic arm. The mapping can be expressed as:

xnew = x− 0.7 + 0.1

2
= x− 0.4

ynew = y − −0.7 + (−0.1)
2

= y + 0.4

znew = (z − 0.1 + 0.15

2
)

0.15− 0.1

zmax − zmin

= (z − 0.125)
0.05

zmax − zmin

E. Imitation Learning

1) Principle: It is often more intuitive to simply demon-
strate the behavior we want an agent to perform, rather
than attempting to have it learn via trial-and-error methods.
Imitation learning can either be used alone or in conjunction
with reinforcement learning. If used alone it can provide a
mechanism for learning a specific type of behavior (i.e. a
specific style of solving the task). If used in conjunction
with reinforcement learning it can dramatically reduce the
time the agent takes to solve the environment.

GAIL (Generative Adversarial Imitation Learning):
GAIL, or Generative Adversarial Imitation Learning, uses
an adversarial approach to reward your Agent for behaving
similar to a set of demonstrations. GAIL can be used with or
without environment rewards, and works well when there are
a limited number of demonstrations. In this framework, a sec-
ond neural network, the discriminator, is taught to distinguish
whether an observation/action is from a demonstration or
produced by the agent. This discriminator can then examine
a new observation/action and provide it a reward based on
how close it believes this new observation/action is to the
provided demonstrations.

At each training step, the agent tries to learn how to max-
imize this reward. Then, the discriminator is trained to better
distinguish between demonstrations and agent state/actions.
In this way, while the agent gets better and better at mim-
icking the demonstrations, the discriminator keeps getting
stricter and stricter and the agent must try harder to "fool"
it.

This approach learns a policy that produces states and
actions similar to the demonstrations, requiring fewer demon-
strations than direct cloning of the actions. In addition to
learning purely from demonstrations, the GAIL reward signal
can be mixed with an extrinsic reward signal to guide the
learning process.

Behavioral Cloning (BC): BC trains the Agent’s policy to
exactly mimic the actions shown in a set of demonstrations.
The BC feature can be enabled on the PPO or SAC trainers.
As BC cannot generalize past the examples shown in the
demonstrations, BC tends to work best when there exists
demonstrations for nearly all of the states that the agent can
experience, or in conjunction with GAIL and/or an extrinsic
reward.

2) Imitation Learning tool: For silmulation and imitation
learning tool, we choose Unity and it’s ML-Agtnts package.
The Unity Machine Learning Agents Toolkit (ML-Agents) is

an open-source project that enables games and simulations
to serve as environments for training intelligent agents.It
provide implementations (based on PyTorch) of state-of-the-
art algorithms to easily train intelligent agents for 2D, 3D.
Researchers can also use the provided simple-to-use Python
API to train Agents using reinforcement learning, imitation
learning, neuroevolution, or any other methods. Especially,
it supports for learning from demonstrations through two
Imitation Learning algorithms (BC and GAIL) and Deep
Reinforcement Learning algorithms (PPO, SAC, MA-POCA,
self-play).

Last but not least, ML-Agents package provides a very
detailed hand-on documentation with 18+ examples. It’s
more friendly for a fresh man in Machine Learning and
Unity. Fig. 16

3) Demonstration record: In unity, it’s easy to record
actions and state of an agent. We only need to add a record
component, and choose the observer vector. In this project,
we add a scripts to record the actions and state of Franka
Panda. Fig. 17

4) Imitation Learning config: Set-up:A panda robot agent
with seven free joints in working environment with a target
cube and convey platform obstrcal. Goal:The end-effector of
panda robot reaches the position of target cube. Agents: The
environment contains one agent. Agent Reward Function:

- 0.01 for previous distance larger than current distance.
+1.0 of the end effector reaches the target cube’s position.
- 2.0 for collision happends(episode ends)
Behavior Parameters:
Vector Observation space:14 variables corresponding to 7

joints state of panda robot, position of end-effector, position
of target cube, distance between cube and end-effector.

Actions: 7 continuous actions, with the value increasing
or decreasing of 7 joints value within -1 to 1.

5) Result: We build a physics simulation environment
and find a good tool for training our robot arm reach
a point with learning from demonstration. We also figure
out suitable config for our training, such as agent, action,
reward, observation. However, these are still at basic and
low level of imitation learning. Besides, there are still some
problems in our learning environment. For example, the
simulation of forward kinematic and inverse kinematic is not
fluent, which affects our training process. These problems
are mainly because of the controller code of Franka Panda,
it uses velocity and position controller, which needs a lot
of computation resources. If we do this project again, we
will build a robot arm model by ourselves, and use position
controlor code directly, which will save lots of computation
resources and the simulation will be more fluent.

III. FINAL REMARK

In this project, we have collected data form learning from
demonstration by passive observation, reproduced trajectory
in both real and simulation environments and explored the
potential of ML-Agent to do learning from demonstration.
Although using the data collection platform producing by

Haokun Wang makes it easier to collect task trajectories per-
formed by demonstrators and avoid mapping human’s joints
to robot joints, there are still some unsolved problems in
this project. For example, reproducing trajectories in Franka
Arm smoothly and producing learning from demonstration
in simulation environment.

Our work also shows the potential to make learning from
demonstration easier by mapping the end of modified kitchen
tongs to the end effector of robot arm and transfer the result
trajectories produced in simulation environment to real robot
arm.

IV. CONTRIBUTION

Here are our group division in this project:
• Collecting data: Xiao Yang & Guo Shangkun
• Data processing trajectory reproducing in Franka: Xu

Ronghan, Hu Bowen & Qiu Nuofan
• Construction of simulation environment: Dong Yujian
• Reproduction and exploration in simulation: Xiang

Yanzhen
• Imitation learning in simulation: Liu Xin & Li Yifei
And they respectively wrote their own part in this essay.

REFERENCES

[1]Ravichandar, Harish and Polydoros, Athanasios S. and
Chernova, Sonia and Billard, Aude, "Recent Advances in
Robot Learning from Demonstration" in Annual Review
of Control, Robotics, and Autonomous Systems volume
3, 2020, pp.297-330,doi = 10.1146/annurev-control-100819-
063206

[2]Ratliff, Nathan and Bagnell, J. Andrew and Srini-
vasa, Siddhartha S., "Imitation learning for locomo-
tion and manipulation," in 2007 7th IEEE-RAS Inter-
national Conference on Humanoid Robots, pp.392-397,
doi.10.1109/ICHR.2007.4813899

[3]Juliani, A., Berges, V., Teng, E., Cohen, A., Harper, J.,
Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., Lange,
D. (2020). Unity: A General Platform for Intelligent Agents.
arXiv preprint arXiv:1809.02627. https://github.com/Unity-
Technologies/ml-agents

Fig. 1: Platform

Fig. 2: Data collection

(a) Before cleaning (b) After cleaning

Fig. 3: Data cleaning Process

Fig. 4: 5th polynomial fitting pose data

Fig. 5: Data visualization by Matplot

(a) 4th polynomial (b) 5th polynomial

Fig. 6: Polynimial fitting

Fig. 7: Robotic arm model

Fig. 8: Conveyor model

Fig. 9: Other models

Fig. 10: Control of Arm in Joint Space

Fig. 11: Control of Arm in Workspace

Fig. 12: Errors on Each Points in Workspace

Fig. 13: Mean Sampled Trajectories

Fig. 14: Max Standard Derivation on Each Direction at Each of 16
Targeting Positions

Fig. 15: Maximum Standard Derivation on y-axis Direction at Each
of 16 Targeting Positions

Fig. 16: ML-agent pipeline

Fig. 17: Demonstration record

(a) Initial State (b) Reward State

Fig. 18: Inmitation Learning config

	Introduction
	System Design
	Data Collection
	Platform introduction
	Collecting data
	Shortcoming

	Data processing and Trajectory Reproducing
	Data processing
	The coordinate transformation from the data collection platform to the robotic arm
	Trajectory planning

	Construction of simulation environment
	Simulation software——Unity
	Simulation model construction
	Simulation model construction
	Simulation model construction

	Reproduction and Exploration in Simulation
	Task 1: Control of Arm in Joint Space
	Task 2: Control of Arm in Workspace
	Task 3: Finding an Improved Relationship Between Testee's Workspace in Data Sampling and Workspace of Robotic Arm, Using Results of Simulation

	Imitation Learning
	Principle
	Imitation Learning tool
	Demonstration record
	Imitation Learning config
	Result

	Final Remark
	Contribution

