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Abstract— As collaborative robots share workspaces with
people, security concerns are growing.In this paper, we study
the robot environment perception in garbage sorting pro-
cess.The camera is used to recognize the human body around
the surrounding manipulator, and the operating speed of the
manipulator is adjusted in real time according to the result of
recognition.For human body detection, SSD and YOLO algo-
rithms are tested, and the two algorithms are compared.When
the human body is identified, the distance information of
the human body region is calculated, and the speed of the
manipulator is adjusted with this reference.In addition, we also
collect and label different kinds of garbage data to help the
robot achieve better sorting effect.

Index Terms— Ambient Intelligence, Garbage Sorting, Coop-
erative robot
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I. INTRODUCTION

In traditional industrial robot systems, the working spaces
between workers and robots are separated from each other.
In recent years, the robotics industry has gradually shifted to
collaborative robot systems. This system has a collaborative
working space where robots and humans can work in op-
eration at the same time. However, in a collaborative robot
system, due to the collaborative work of humans and robots,
safety accidents may occur due to accidental collisions. Many
papers have proposed safety systems in collaborative robot
systems and methods for estimating worker positions for
configuring safety systems. According to the international
standard ISO/TS 15066 for collaborative robot systems, it
is necessary to know the position and speed of workers
to ensure their safety when working together. As shown
in Figure 1, the entire system includes a waste sorting
production line consisting of a conveyor belt and a robotic
arm, and a camera for monitoring the working environment
of the robotic arm. In this project, we use the camera to
detect the working space of the robot. When the human
body is detected, the operating speed of the robotic arm will
be adjusted in real time according to the distance from the
human body to the robot. In addition, we applied this system
to a real garbage sorting scene to test its safety perception
ability in the sorting process.

Fig. 1: Schematic diagram of system architecture

A. Related Work

There are some papers on collaborative robot environment
perception. In some papers, a monocular camera is used to
recognize the human body, and then the distance of the hu-
man body is judged according to the parameter matrix of the



camera and the size of the human body. The accuracy of this
brief method of measuring distance is low, and the algorithm
is more complicated. There are also researchers who use lidar
to scan the surrounding environment. This method can accu-
rately know the surrounding three-dimensional environment
information. However, the cost of lidar is high, and there is
no way to distinguish the types of surrounding objects. In this
project, we use a depth camera to calculate the distance based
on the surrounding point cloud information after recognizing
the human body. This method can not only identify people
but also get the distance accurately with minimal cost.
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II. METHOD

A. Algorithm Solution

In this chapter, a human detection method by using yolov5
is developed. Safety helmet wearing detect dataset (SHWD)
and yolov5s model are applied for the training.

1) Dataset introduction: SHWD provides the dataset used
for both safety helmet wearing and human head detection.
It includes 7581 images with 9044 human safety helmet
wearing objects (positive) and 111514 normal head objects
(not wearing or negative). The positive objects got from
Google or Baidu, and are manually labeled with LabelImg.
Some of the negative objects got from SCUT-HEAD.

2) Training procedure: (i) Prepare the environment of
yolov5. (ii) Create the dataset configuration file, which the
class is set as “person”, “head”, and “helmet”. (iii) Create a
label file for each image. The file includes the information
of bounding boxes. (iv) Make sure all the files are placed
correct. (v) Choose yolov5s model and modify the class
number to 3. (vi) Start the training.

3) Interface design: Due to the fact, that the original code
in yolov5 has no interface for the function call, it is required
to design a function to call detect.py. Function input: source
images/ videos and some format with yolov5 input. Function
output: ifhelmet: True for helmet exists and false for helmet
absents; rectangles: locations of bounding boxes of helmets
or humans, with the format (x1, y1, x2, y2); centers: center
locations of helmets or humans, with the format (x, y). In
order to test the interface, use an image to get its result as the
following figure and the running time to detect one image is
average of 0.03 second.

4) SSD Introduction: The SSD model regards the output
bounding boxes as a group of boxes of different scales and
sizes, and sets a series of default boxes of different sizes
on the feature maps of different scales.The implementation
steps of the specific method are as follows:

(i)Input a picture and input it into the pre-trained classifi-
cation network to obtain feature mappings of different sizes;

Fig. 2: Source image

Fig. 3: Result image

(ii)Six layers of feature maps in different size mappings
were extracted, and then six bounding boxes of different
scales were constructed at each point above these feature map
layers, and then multiple bounding boxes were generated
through detection and classification.

(iii)The bounding boxes obtained from different feature
maps were combined and some overlapping or incorrect
bounding boxes were suppressed through non-maximum
suppression method to generate the final bounding box set,
so as to obtain the detection results.

Fig. 4: The learning result

Compared with YOLO, SSD uses CNN to conduct de-
tection directly, instead of testing after the full connection
layer like YOLO.In addition, SSD extracts feature maps of
different scales for detection. Large scale feature maps (the
first feature map) can be used to detect small objects, while
small scale feature maps (the second feature map) can be
used to detect large objects.At the same time, SSD also uses
a priori frame of different scales and aspect ratios.The dis-
advantage of YOLO algorithm is that it is difficult to detect
small targets and inaccurate positioning, but these important
improvements enable SSD to overcome these shortcomings
to a certain extent.



B. Data solution

1) Data collection: Data collection is the process of
gathering information from existing sources. In order to use
the data we collect to develop practical artificial intelligence
and machine learning solutions, it must be collected and
stored in a way that makes sense for the problem at course.
In this project, we collected the data set about the rubbish
and wanted to make the camera could classify the kinds of
rubbish with the data. Predictive models are only as good as
the data from which they are built, so good data collection
practices are crucial to developing high-performing models.

2) Data collection in this project: In this project, we need
to divide the garbage into four categories: plastic bottles,
cans, paper boxes and glass bottles. However, considering
the small number of glass bottles, they are not usable, so
the image data of plastic bottles, cans and paper boxes are
finally needed.

Fig. 5: Can

Fig. 6: Paper box

The program we use to collect the image data is pro-
vided by the course, which is ME336-2021Spring/deepclaw
/utils/ImageDataCollection.py. This program collected the
color, depth and infrared information of the rubbish by using
the Intel RealSense camera. In the process of data collection,
we randomly (including the space and orientation) placed the
rubbish on the running convey belt. After collecting all the
rubbish we have, we got the files with the image data.

3) Data augmentation: The quality of the taken picture
is largely suffering corruptions from lighting conditions,
weather, obstacles, motion distortions etc. In this condition,

Fig. 7: Bottle

using data augmentation to simulate the above distortion to
expand the data set can effectively improve the recognition
accuracy. Considering about the type of collecting data, we
use Gaussian noise injection, horizontal blurred, horizontal
flipping and vertical flipping to extend the data set. For
example, we got this image for the color folder, and the
augmentation results are showing below.

Fig. 8: Original image

Fig. 9: Gaussian noise

Fig. 10: Horizontal flipping

4) Data labeling: Data labeling is an essential part of data
preparation, with simply tagging assigns labels to a set of raw
data to make it easier to identify for predictive analysis ,and



Fig. 11: Vertical flipping

Fig. 12: Horizontal blurred

the label will show the kind of a image. In this project, we
firstly want to use the automatic labeling provided by the
course, but there were lots of problems occurring when we
were trying to use the program. So, we decided to use the
software LabelImg to label the data manually. The results of
our labeling will be shown in the experiment result parts.

Fig. 13: The user interface of LabelImg

C. Software solution

1) Object detection: we will implemented object detectors
on a depth camera using some popular pre-trained model
such as YoloV3, SSD and so on. The code is written in C++
because the Intel realsense series are supported strongly by
this language. Beside object detection task, The camera also
give us the depth information of the object with quite high
accuracy. There are three primary object detection methods
that we will likely encounter: Faster R-CNNs (Girshick et al.,
2015); You Only Look Once (YOLO) (Redmon and Farhadi,
2015); Single Shot Detectors (SSDs) (Liu et al., 2015).

Faster R-CNNs are likely the most heard of method for
object detection using deep learning; however, the technique
can be difficult to understand (especially for beginners in
deep learning), hard to implement, and challenging to train.
Furthermore, even with the faster implementation R-CNNs
(where the R stands for Region Proposal) the algorithm can
be quite slow, on the order of 7 FPS. If we are looking for
pure speed then we tend to use YOLO as this algorithm
is much faster. The problem with YOLO is that it leaves
much accuracy to be desired. SSDs, originally developed by
Google, are a balance between the former two methods. The
algorithm is more straightforward than Faster R-CNNs. We
can also enjoy a fast FPS at 22-46 FPS depending on which
variant of the network we use. SSDs also tend to be more
accurate than YOLO. Because of the advantage of SSDs, we
will use SSDs method to detect object.

2) Object grasping: The object grasping is to realize 2D
grasping with manipulator. The 2D hand-eye calibration of
the robotic arm and the camera is to obtain a perspective
transformation matrix that can convert a point (u, v) in the
camera’s pixel space into a point on a plane in the base
coordinate system of the robotic arm (x , y), at this time
z is usually fixed, such as the height of a fixed horizontal
desktop, (x, y) is the coordinate value of a certain point on
the desktop relative to the base of the robot arm. We use the
built-in function "cv2.getPerspectiveTransform(pts1, pts2)"
provided in OpenCV to obtain the perspective transformation
matrix M. The perspective transformation can be expressed
by the following equation. Then we collect 4 sets of (u,
v) and the corresponding (x, y), and get the perspective
transformation matrix M by solving the equation. The color
image obtained by the sensor and the visual recognition
algorithm are used to calculate the grasping point, and the
manipulator is controlled to reach the grasping point to
complete grasping. In this experiment, the latest YOLO5
object detection algorithm was used to obtain the object
Bounding Box, and the grabbing point was the center of
the object Bounding Box.

Fig. 14: Coordinate transformation



D. Design solution

III. EXPERIMENT RESULTS

A. Design Experiment

The camera bracket is designed based on the structure of
Realsense Camera D435. Adjust the camera and aluminum
frame according to the desktop working area. The basic
data of the camera is: the minimum depth distance is 10cm;
Depth Z error is less than 2 percent and range is 2m; Depth
image resolution 1280×720 (30fps); The field of view Angle
is 86°×57°, equivalent to the camera’s 24mm×40mm focal
section.

Fig. 15: Camera support

We designed three generations of models. The first gener-
ation model is an independent three-wheel bracket, which
is easy to move and capture images by the camera. But
the disadvantage is that the camera field of vision is too
narrow, the field of vision is not broad enough, so it can
not be used. The second generation is fixed on the side of
the computer desk upright bracket, the advantage is a good
vision, convenient disassembly; Disadvantage is easy to be
encountered by the operator, the safety is poor.

Fig. 16: Camera support1

Finally, we chose to directly fix the camera on the other
side of the robot arm image capture system, which not only
saves cost, is simple and beautiful, but also has good security,
and the field of vision has been maximized.

Fig. 17: Camera support2

Fig. 18: Camera support3

B. Data Experiment

For a machine learning project that includes classification
problems, data set is undoubtedly a very important part. The
experimental part of data set in this project mainly includes:

1. Data collection: Collect the data of metal litter, plastic
litter, and paper litter. The collection method is continuous
photo collection, that is, place the litter on a moving conveyor
belt one by one, and run the image data collection code
so that the RealSense camera will record this process at a
certain frame rate to get the data. The final result is each
frame of image in the recording process. There are three



types of images recorded in this procedure, including: color
image, depth image, and infrared image. Only color images
are used in our project. The complete file structure of the
data is shown in the figure 2 below.

Fig. 19: Structure of collected data

2. Data labelling: Label the collected color image data.
The labeling method can be divided into manual labeling
method and automatic labeling method. Probably due to the
problem of python virtual environment, the program will
report an error when we run the automatic labeling code, so
with the help of the LabelImg software, we manually label
our collected data.

The experimental equipment used in this part includes:
RealSense camera, conveyor belt, personal computer, metal
litter (various styles of cans), plastic litter (various styles of
plastic bottles), paper litter (various styles of cartons)

The experimental process of this part is as follows:
1. Data collection:
Before the data collection experiment starts, we need to

prepare the objects to be collected and create a folder to store
the data. For these three types of litter, we collect their data
in three times, each time collecting one type of litter’s data,
so we put the same type of litter into a box, and place the
box next to the beginning of the conveyor belt so that the
rubbish can be placed on the conveyor belt in a convenient
way, and then place an empty box at the end of the conveyor
belt to collect the litter that fall from the conveyor belt after
collecting the data. Then, we created three folders named
"metal", "plastic" and "paper" under the specific directory
location of the project folder to store the collected data.

Next, we open the "ImageDataCollection.py" code in the
project file in Pycharm, and set the path in the code using
the path of the previously created folder to store a certain
type of litter data. Then, we turn on the conveyor belt by
using the conveyor belt controller, set the conveyor belt speed
at 40 percent (0.2m/s), and turn on the lighting in the fill
light controller to adjust the brightness to the appropriate
level. Finally, we run "ImageDataCollection.py" code, after
the camera view appears on the monitor, we take out the
litter from the box and place them on the conveyor belt one
by one, with a certain distance between each litter, until all
the litter in the box is placed, we end the process.

2. Data labelling:

As mentioned earlier, after the data collection process, we
got three kinds of images, and in this step, we only use color
images. First, we create a label folder in a specific location
under the previously created folder for storing various types
of litter data to store label files. Since LabelImg software
provides function of exporting label file as different formats,
including formats such as YOLO and PASCALVOC, as a re-
sult we correspondingly create two label folders "dabiaoyolo"
and "dabiaopascal" to store both formats, for the convenience
of algorithm and software engineers.

Then, we run the LabelImg software, open the folder
of color images of a certain type of litter collected in the
previous step, and mark the images in the folder: we open
an image and manually draw a rectangle to select the litter
part in the image, and then select the corresponding label,
then we perform the same operation on all litter in this image,
and after completing these steps, we export the label file of
this image. Because the camera recording frame rate is very
high, we don’t need to label every image in the data folder,
instead we just select a few images, which can totally cover
every litter used. Figure 3 shows the process of labelling one
image.

Fig. 20: Labelling collected color image

C. Software Experiment
In this experiment, a Realsense D435 camera was placed

above the robotic arm. After the camera obtains the image
and depth information. First, we use the human detection
algorithm based on SSD to identify the person. By calculat-
ing the average depth value of the frame of the recognized
person, we can get the depth distance between the D435
camera and the person. So we can get the distance between
the human and the robotic arm. Then we need to grab the
garbage and place it in the garbage basket. Here we use 2d
picking method. Use the object detection algorithm based
on YOLO, identify the garbage and get the coordinate value
of the garbage. The movement trajectory of the robotic arm
is planned by using the move-p instruction to realize the
operation of the robotic arm to grab garbage and place it in
the garbage basket.

Finally, according to the distance between the person and
the D435 camera obtained before, the speed of the robotic



Fig. 21: The main process

arm is adjusted in real time. After we get the distance of
the person closest to the camera, we will make a judgment
based on this distance, as shown in figure. There are three
situations, the distance greater than 2.5m, the distance less
than 1.5m, and the distance between 1.5m and 2.5m. We will
set the speed of the robotic arm in stages according to these
three situations. If this distance is greater than 2.5m, then
this situation is considered a safe situation. When setting
the speed, the speed of the robotic arm remains unchanged.
If this distance is less than 1.5m, then this situation is
considered a dangerous situation. When setting the speed
later, the speed of the robotic arm will become very slow.
The speed of the robotic arm is set to 20% of the initial speed.
If the distance is less than 2.5m but greater than 1.5m. Then
when setting the speed of the robot arm, the speed of the
robot arm is 50% of the initial speed.

Fig. 22: Distance between human and camera

In the process of real-time setting of the robot arm speed,
we used two methods. The first method is to recognize the
person and set the speed before each move-p instruction of
the robot arm. We use the human detection algorithm based
on SSD, the recognition speed is fast, and the average time
of processing a frame is 0.06s. Therefore, the control effect
of this method is very smooth. The second method is to use
multi-threading. Multi-threading is the ability of a central
processing unit to provide multiple threads of execution
concurrently. During the movement of the robotic arm, the
speed of the robot arm is controlled in real time. At the
same time, due to the characteristics of multi-threading, we
can also get a visual window for observing the result of the

human detection. And the final control result is also very
smooth.

Fig. 23: Multi-thread process

D. Algorithm Experiment

In the experimental process, we used YOLOV5 algorithm
for identification, and compared the effect with the SSD
algorithm which was finally used. First, we determined
the head, body and helmet as the recognition objects of
the model. Since the original YOLOv5 had no interface,
we wrote a programming interface to run through the
main function’s big loop. During the training, we used
the Safety Wearing-Dataset, an official Dataset found on
GitHub. YOLOv5 is divided into V5S, V5L, V5M and
V5X. Through comparative experiments, we chose V5S with
faster computing speed, whose recognition speed for a single
image is about 0.03s. However, the recognition effect of
V5S is poor for people who are far away from the camera,
and objects beyond 2.5m may also be misidentified. The
training results are as follows: After training, the mAP of

Fig. 24: The learning result

the overall model can reach 0.9. Since the program we wrote
identifies heads, helmets and people in a series cycle, the
final calculation time is the superposition of three recognition
times, and the final calculation time is about 0.07-0.09s.
At the same time, since YOLOV5 has poor recognition
ability for people from 2.5 meters away, we finally try
to use SSD algorithm for recognition, and only the whole
person is identified. The time required for SSD algorithm
to recognize a single image is about 0.04s-0.06s, which
better meets the efficiency requirements of the program and
ensures the accuracy of remote character recognition. At the
same time, small objects will not appear the phenomenon
of misidentification. Finally, the SSD algorithm was used to
identify people within 4m with good results.



Fig. 25: The identification result

E. System Experiment

First, we tested the system’s ability to recognize people.
We measured 6 sets of data, namely the actual calculated
distance and the camera display distance. It can be seen
from the figure 21 below that the error of the human body
recognition and ranging function is about 6 percent, which
meets the requirements of system operation.
Then we tested the system as a whole, and the test video
can be seen in the presentation of the report. During the
test, the robotic arm realized the function of speed regulation
according to the distance from the human body.

Fig. 26: The main process

IV. SUMMARY

In general, our group realized the perception of the sur-
rounding environment during the process of robotic arms
grabbing garbage. Allows the robotic arm to adjust its
running speed according to the surrounding environment. In
this course project. We have completed the installation and
debugging of the pneumatic gripper. The SSD and YOLO
algorithms are used for human body recognition, and the
two models are evaluated and compared. The collection of
different types of garbage data has been completed, and the
tasks of environment perception and garbage capture have
been completed using multi-threading. However, our team
still has certain shortcomings in its work. Because of the
limited amount of data, we have not been able to classify
the garbage; and there is blockage during the operation of

the robot arm, and the phenomenon of jamming may occur
during the operation.
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