Lab 12 Learning Picking

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

Common Setups of Vision-based Robotic Grasping

From academic research to industrial applications

Challenges in Setting Up A Robotic Cell for Learning

Shareability and Reproducibility

- Hardware: still expensive
 - Arm: AUBO (~90K), UR5/Franka (~180K), UR10 (~400K)
 - Camera: Photoneo (~120K)
 - Gripper: Robotiq 3F (~250K)/2F (~50K), OnRobot (~50K)
 - Cheaper Alternatives:
 - Open Arms (~?), Realsense (~1.5K), Suction Cup (~1K)
- Software: steep learning curve & expensive
 - ROS, manufacturer specific, RoboDK, ...
- Integration: time consuming to setup right (~H+S)
 - Cost of data per sample
 - Total Cost (H+S+I) / Cycle Time (~5-10sec): not negligible, yet

5/10/19

A relatively cheap version in an ideal setup

- Robot System (when everything is well-planned):
 - AUBO i5 + Suction Cup + Realsense + Mechanical + Man Hour
 - $90K+1K+1.5K+5K+5K \le 100K$ per cell
- Yearly operation time per robot: ~3840 h/year (in motion)
 - 2 shifts of high use or three shifts of moderate use with moderate demands (a portion of the robot's motions with full load, a portion with tool only)
- Cost per robot cell on an hourly basis: ~ \ge 26 cell/hour
 - Assume 10 sec per grasp
 - 1 hour usage = 60min/h * 60sec/min / 10sec/grasp = 360 grasp/h
- Cost per cell per grasp: $\sim \pm 0.07$ /grasp
 - Disregard electricity and maintenance, and assume every grasp counts
- To generate a dataset of 100K samples
 - 1 robot cell: 100K sample/dataset * $\stackrel{?}{\downarrow}$ 0.07/grasp = $\stackrel{?}{\downarrow}$ 7K/dataset
 - Cost of Time/Cell?: 100K sample/dataset / 360 grasp/h ~ 277h ~ 1mth \otimes

A series and technology

A relatively cheap version in an ideal setup

- Robot System (when everything is well-planned):
 - AUBO i5 + Suction Cup + Realsense + Mechanical + Man Hour
 - 90K+1K+1.5K+5K +5K < ¥100K per cell

What if

- A different robot arm is needed?
- A different end-effector is needed?
- A different camera system is needed?
 - A new sensor is needed?

For example:

UR5 (*2) + OnRobot RG2 (*50) + OnRobot FT (+50K) + Photoneo M (*80) + Man Hour (*2)

• 90K*2+1K*50+(50K)+1.5K*80+5K+5K*2~415K (>100K*4)

What if it is the case of an industrial arm?

Which part could possibly be remain unchanged?

5/10/19

Southern University of Science and Techr

A relatively cheap version in an ideal setup

- Robot System (when everything is well-planned):
 - AUBO i5 + Suction Cup + Realsense + Mechanical + Man Hour
 - 90K+1K+1.5K+5K +5K <¥100K per cell
- Yearly operation time per robot: ~3840 h/year (in motion)
 - 2 shifts of high use or three shifts of moderate use with moderate demands (a portion of the robot's motions with full load, a portion with tool only)

Daily Checks:

- Clean sensors and optics within the robot cell and visually check component parts for damage before daily operation
- Check Mechanical Unit for grease/oil leakage or exudation

First 1-month (320 hours) Checks:

 Ventilation of the robot controller' cooling fans – keep these clean for efficient • air flow

First 3-month (960 hours) Checks:

- Check Mechanical Unit Cables free from severe kinks, pinch points, cuts or tears in the wire insulation, check for secure terminations
- Retighten external main mounting bolts
- Clean chips and debris from Mechanical Unit
- Check the end effector or end of arm tool and its' mounting bolts or screws, tighten appropriately
- Check robot connection cables (T.P. Cable, EE Cable, Vision Cables) free from severe kinks, pinch points, cuts or tears in the wire insulation, check for

secure terminations

Robots don't ask for benefits, but still need maintenance

• Grease balancer housing (if so equipped)

1.5-year (5,760 hours) Checks:

1-year (3,840 hours) Checks:

• Replace batteries in the mechanical unit (these are backup batteries to maintain the robot's factory alignments – don't let these batteries die or you may be in for some unpleasant work to re-zero your robot)

3-year (11,520 hours) Checks:

• Replace the grease of each axis. This is not an idle warning – use only the grease recommended by your robot's manufacturer – the robot controls are sensitive and grease can affect robot motion and operation.

4-year (15,360 hours) Checks:

- Replace the Mechanical Unit cables
- Replace the lithium battery in the CPU

https://motioncontrolsrobotics.co m/how-often-do-robots-needpreventative-maintenance/

Southern University of Science and Technology

A relatively cheap version in an ideal setup

- Robot System (when everything is well-planned):
 - AUBO i5 + Suction Cup + Realsense + Mechanical + Man Hour
 - 90K+1K+1.5K+5K+5K-100K per cell
- Yearly operation time per robot: ~3840 h/year (in motion)
 - 2 shifts of high use or three shifts of moderate use with moderate demands (a portion of the robot's motions with full load, a portion with tool only)
- Cost per robot cell on an hourly basis: ~ \ge 26 cell/hour
 - Assume 10 sec per grasp
 - 1 hour usage = 60min/h * 60sec/min / 10sec/grasp = 360 grasp/h

Cost per robot cell on an hourly basis: ~ \pm 26(*4) cell/hour

Cycle time is task-specific, and may require advanced control

- Advanced motion planning (additional cost, like mujin)
- Waiting for other machines to finish workflow (convey belt, CNC machines, ...)
 - In short, most robotic cells waits longer to execute each grasp

AncoraSIR.com

5/10/19

Southern University of Science and Techn

A relatively cheap version in an ideal setup

- Robot System (when everything is well-planned):
 - AUBO i5 + Suction Cup + Realsense + Mechanical + Man Hour
 - 90K+1K+1.5K+5K+5K-100K per cell
- Yearly operation time per robot: ~3840 h/year (in motion)
 - 2 shifts of high use or three shifts of moderate use with moderate demands (a portion of the robot's motions with full load, a portion with tool only)
- Cost per robot cell on an hourly basis: ~ \ge 26 cell/hour
 - Assume 10 sec per grasp
 - 1 hour usage = 60min/h * 60sec/min / 10sec/grasp = 360 grasp/h
- Cost per cell per grasp: $\sim \pm 0.07/grasp$
 - Disregard electricity and maintenance, and assume every grasp counts

Cost per cell per grasp: ~ \pm 0.07/grasp	
• • • • • • • • • • • • • • • • • • •	
• Or *4*?	
AncoraSIR.com	of Science and Technology

A relatively cheap version in an ideal setup

- Robot System (when everything is well-planned):
 - AUBO i5 + Suction Cup + Realsense + Mechanical + Man Hour
 - $90K+1K+1.5K+5K+5K \le 100K$ per cell
- Yearly operation time per robot: ~3840 h/year (in motion)
 - 2 shifts of high use or three shifts of moderate use with moderate demands (a portion of the robot's motions with full load, a portion with tool only)
- Cost per robot cell on an hourly basis: ~ \pm 26 cell/hour
 - Assume 10 sec per grasp
 - 1 hour usage = 60min/h * 60sec/min / 10sec/grasp = 360 grasp/h
- Cost per cell per grasp: \sim ¥ 0.07/grasp
 - Disregard electricity and maintenance, and assume every grasp counts

Probably cost more than ¥ 7K/dataset of 100 K samples per robot cell, And takes longer than 1mth in practice ... ⊗⊗⊗

- To generate a dataset of 100K samples
 - 1 robot cell: 100K sample/dataset * $\neq 0.07$ /grasp = $\neq 7$ K/dataset
 - Cost of Time/Cell?: 100K sample/dataset / 360 grasp/h ~ 277h ~ 1mth ⊗

Suban Unitary Bandward Angel

The Arcade Claw Machine Game

Structured grasping controlled by human player for a reward.

- Insert coins (cost per grasp), countdown starts (~30 sec)
- All planning done by human player
 - Eyes as vision sensor, observe from multiple angles to calibrate
 - Brain as the processing unit, weighing between probability of grasp against value of the prize
 - Hand on joystick to plan claw motion in x-y plane
 - Hand on button to execute the grasp
- Pick execution by the machine, dropping claw in z-axis
- Return the claw to drop coordinate, claws open and toys will drop if grasp success

Advantages of the ACM

Accessibility and Flexibility towards Shareability and Reproducibility

	Arcade Claw	Robotic Cell
Accessibility	Everyone	Professionals
Arm	Cartesian (3D)	Serial (6D)
Gripper	3 Finger (loose)	End-effectors
Vision	Human Eye	Camera
Control	Joystick	Controller
Decision	Human	Algorithms
Object	Almost anything	

Object Relocation

- Handling object from one location to another
- Pick & Place | Machine Tending | Packing and Palletizing
- Material Releasing
 - Releasing material from the robot to the target location
 - Gluing | Dispensing | Welding | Screwdriving

• Material Removal

- Removing material from the target object using the robot
- Polishing | Grinding | Deburring

• Information Gathering

- Collecting information using sensors attached to the robot
- Quality Inspection

Robot Movement

- Fixed
- Patterned
- Continuous
- Changing
- Random

Critical Components

- End-Effector
- Vision System
- I/O Interfacing
- Conveyor Tracking
- Force-Torque Sensor
- External Jig
- Protective Suit

5/10/19

_ monocular RGB camera

_ 7 DoF robotic manipulator

2-finger gripper

_ object bin

DeepClaw Setup

Task Decomposition

- Start
 - Preliminary Preparation
 - Safety Check
 - From Idle Position (x_idle, y_idle, z_idle=0, theta_idle, open)
- Operation
 - Blind Grips (~5k in 1 week)
 - Blind Learning with all Blind Grips attempted in 1 week
 - Daily Grips (~1k in 1 day)
 - Daily Learning with all Daily Grips attempted in 1 day
 - Repeat Daily Grips Daily Learning for 8 weeks
- End
 - Back to Idle Position (x_idle, y_idle, z_idle=0, theta_idle, open)
 - Learning and Grasping Result Summary

Start Stage

- System Setup
 - World => Pedestal => Arm => FT Sensor => Gripper
 - World => Desk => Tray => Objects (to be picked)
 - World => Desk => Bin => Objects (to be placed)
 - World => Camera Kinect (main rgd-d camera for training, focusing on the tray)
 - World => Camera LifeCam (auxiliary rgd camera for training, focusing on the tray)
 - \circ World => Camera Canon (record the whole experiment, focusing on the whole robot operation)

AncoraSIR.com

Hardware

- Robot System (RS)
 - Arm: UR5 from Universal Robot
 - FT Sensor: FT300 from Robotiq
 - Gripper: Adaptive 3 Finger from Robotiq
 - Camera 1: Kinect for X-box One from Microsoft
 - Camera 2: LifeCam from Microsoft
 - Camera 3: Canon EOS M3
- Learning Computer (LC)
 - OS: Ubuntu Trusty 14.04.5
 - CPU: Intel Core i7 6800K Hex-Core 3.4GHz
 - GPU: Single 12GB NVIDIA TITAN X (Pascal)
 - RAM: 32GB Corsair Dominator Platinum 3000MHz (2 X 16GB)
 - SSD: 1TB Samsung 850 Pro Series

5/10/19

Bionic Design & Learning Group

Project 4

https://github.com/ancorasir/BionicDL-CobotLearning-Project4.git

Hardware

- Robot System
 - UR5/...
 - Realsense
 - OnRobot RG6 gripper/...
- Learning Computer
 - Training: 4 x NVIDIA 1080Ti
 - Inference: can be run on cpu with lower speed
 - Tensorflow-gpu 1.12 + cuda 9.0 + cudnn 7.5
- Toys suitable for the gripper

The blind grasp dataset

- Grasp pose (x, y, theta) is randomly generated.
 - Image: for each grasp is cropped such that the grasp point is at the center of the cropped image.
 - Rotation angle of gripper is recorded

GraspNet

Fine tuning modified Alexnet

Predictor

- You may need to crop the original image from realsense if the view area is too big.
- Transform from u, v, theta to robot pose:
 - (u,v) to (x,y) though perspective transformation.
 - Theta to yaw. The theta predicted by the model is

Thank you!

Prof. Song Chaoyang

• Dr. Wan Fang (<u>sophie.fwan@hotmail.com</u>)

