Lecture 12 Network Tuning

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

Neural Network

f = WxLinear score function: $f=W_2\max(0,W_1x)$ 2-layer Neural Network

Biological Inspiration

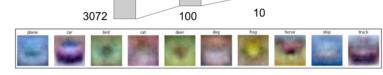
synapse

dendrite

 w_2x_2

 w_1x_1

 w_0x_0



W1

Х

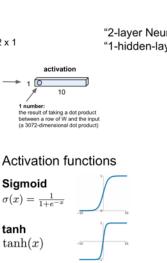
dendrite presynaptic terminal axon cell body Impulses carried away from cell body This image by Felipe Perucho

Fully Connected Layer

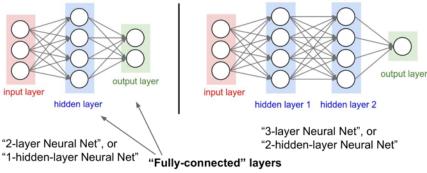
activation

function

32x32x3 image -> stretch to 3072 x 1



Neural networks: Architectures



forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)x = np.random.randn(3, 1) # random input vector of three numbers (3x1)h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)out = np.dot(W3, h2) + b3 # output neuron (1x1)

Leaky ReLU $\max(0.1x,x)$

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don't expect much
- Don't use sigmoid

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

AncoraSIR.com

is licensed under CC-BY 3.0

axon from a neuron

 x_0

tanh

ReLU $\max(0,x)$

tanh(x)

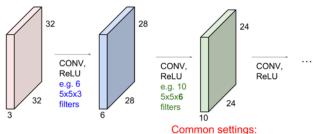
Convolutional Neural Networks

Convolve (slide) over all spatial locations

Filters always extend the full depth of the input volume

32x32x3 image -> preserve spatial structure

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
- Number of filters K,
 - · their spatial extent F.
 - · the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights

K = (powers of 2, e.g. 32, 64, 128, 512)

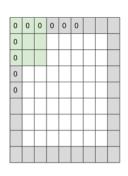
- F = 5, S = 2, P = ? (whatever fits)

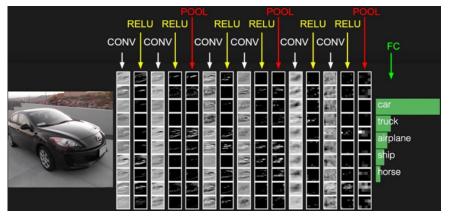
- F = 3, S = 1, P = 1

- F = 5, S = 1, P = 2

- F = 1, S = 1, P = 0

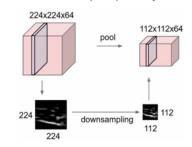
• In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.



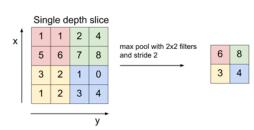


Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:



MAX POOLING



- ConvNets stack CONV.POOL.FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX

where N is usually up to \sim 5, M is large, $0 \le K \le 2$. - but recent advances such as ResNet/GoogLeNet

challenge this paradigm

[ConvNetJS demo: training on CIFAR-10]

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

ConvNetJS CIFAR-10 demo

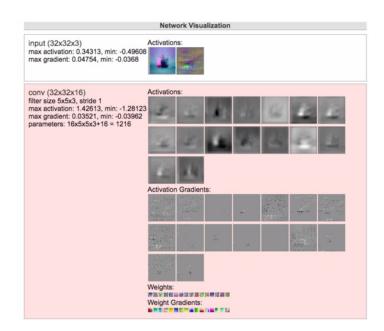
Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

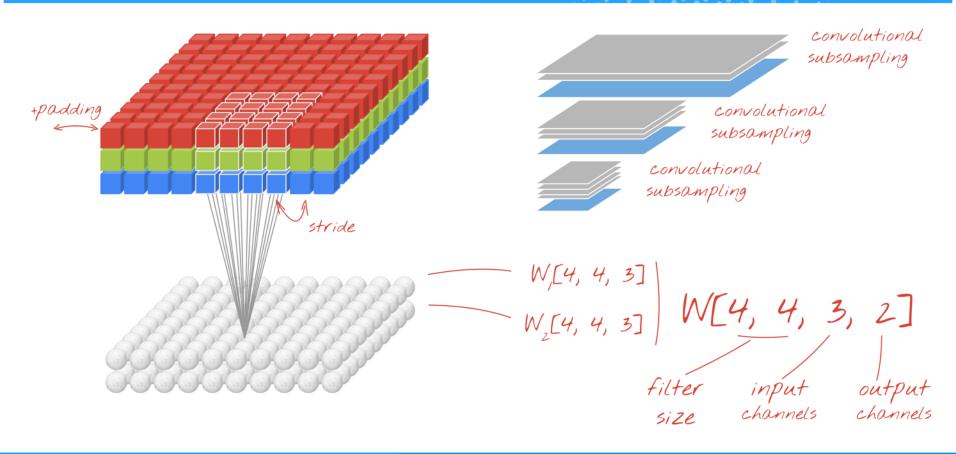
By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.



Construct of a Convolutional Layer

Convolutional layer



DEVOX

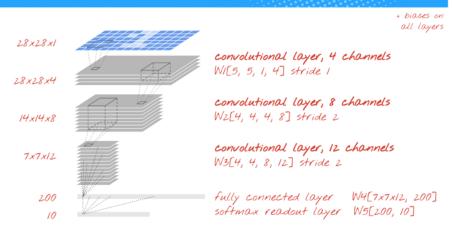
@martin_gorner

Google Cloud Platform

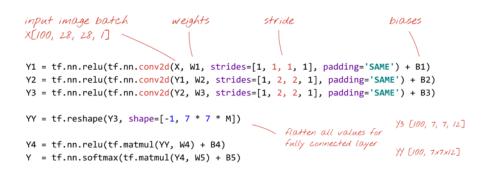
AncoraSIR.com

python mnist_3.0_convolutional.py => 98.91%

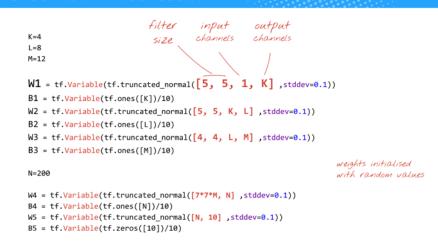
Convolutional neural network

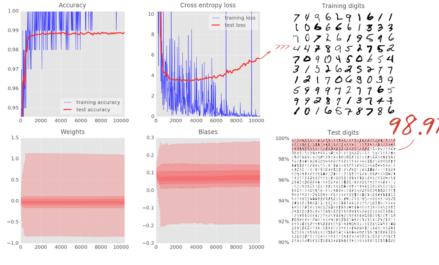


Tensorflow - the model



Tensorflow - initialisation





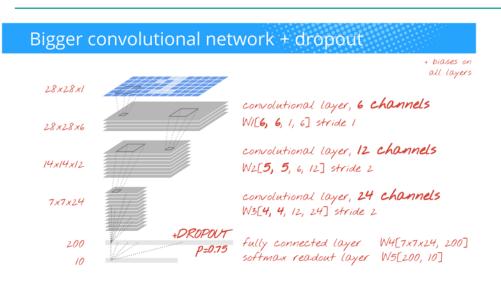
AncoraSIR.com

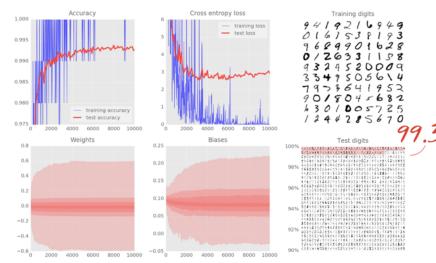
Southern University of Science and Technology

DEVOX

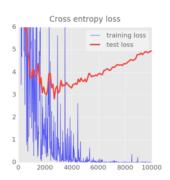
Google Cloud Platfo

python mnist_3.1_convolutional_bigger_dropout.py => 99.3%

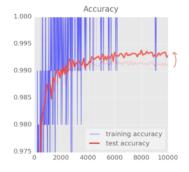


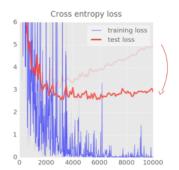


YEAH!



YEAH!





with dropout

DEVOX* @martin_g

Google Cloud Platform □ E V □
X

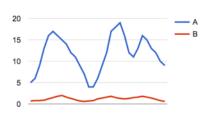
martin gorner

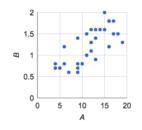
Google Cloud Platfor

Data Preprocessing

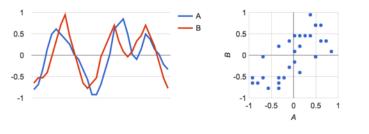
Data "whitening"

Data "whitening"

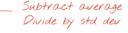




Data: large values, different scales, skewed, correlated



Modified data: centered around zero, rescaled...



Google Cloud Platfo

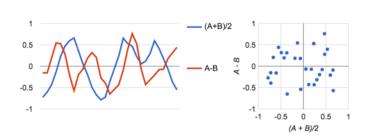
Data "whitening"

DEVOX

Scale \$ rotate A network layer can do this!

@martin_gorner

Data "whitening"



@martin_gorner

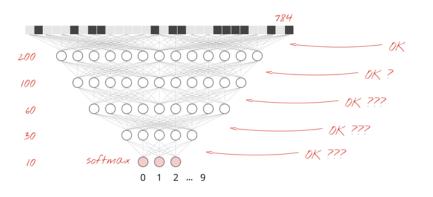
Modified data: ... and decorrelated (that was almost a Principal Component Analysis)

AncoraSIR.com

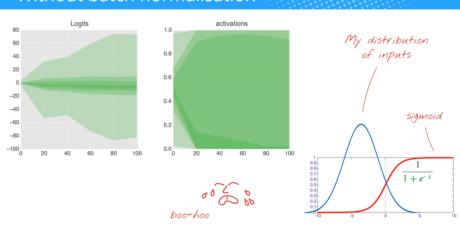
DEVOX

Batch Normalization Theory

Fully connected network



Without batch normalisation



Batch normalisation

@martin_gorner

Google Cloud Plat

Batch normalisation

"logit" = weighted sum + bias Center and re-scale logits | before the activation function (decorrelate? no, too complex)

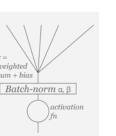
$$\widehat{x} = rac{\widehat{x} - avg_{batch}(x)}{stdev_{batch}(x) + \epsilon}$$

Add learnable scale and offset for each logit so as to restore expressiveness
$$BN$$

$$BN(x) = \stackrel{(}{lpha}\widehat{x} + \stackrel{(}{eta}$$

Try α =stdev(x) and β =avg(x) and you have BN(x) = x

depends from: weights, biases, images



same weights and biases, images

only one set of weights and biases in a mini-batch

$$\widehat{x} = rac{x - dv g_{batch}(x)}{st de v_{batch}(x) + \epsilon}$$

$$BN(x) = \alpha \widehat{x} + \beta$$

=> BN is differentiable relatively to weights, biases, α and β It can be used as a layer in the network, gradient calculations will still work

DEVOX

DEVOX

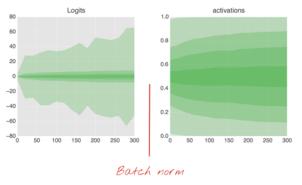
Google Cloud Platform □ E V □ ※

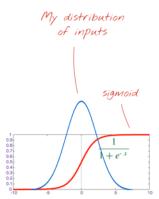
Google Cloud Plat Southern University of Science and Technology

AncoraSIR.com

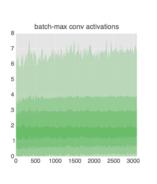
Batch Normalization Done Right

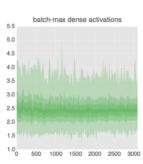
With batch normalisation (sigmoid)

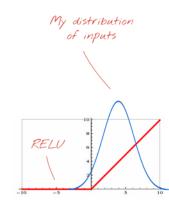




With batch normalisation (RELU)



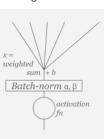


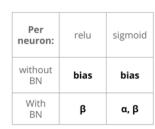


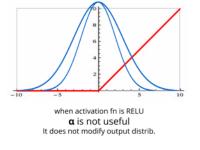
DEVOX

Google Cloud Platforn

Batch normalisation done right



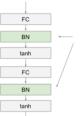




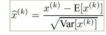
- +You can go faster: use higher learning rate +BN also regularises: lower or remove dropout

Google Cloud Platform

AncoraSIR.com



Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.



- **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β
- Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \qquad // \text{ mini-batch mean}$$

$$\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$
 // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_B}{m}$ // normalize

$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$
 // non $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ // scale an

- // normalize
- // scale and shift

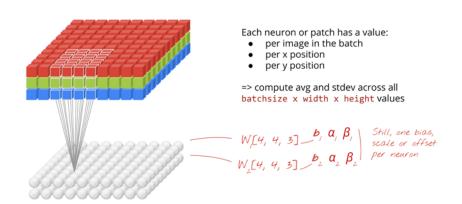
- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout. maybe

SUSTech

Convolutional Batch Normalization

Convolutional batch normalisation

Batch normalisation at test time

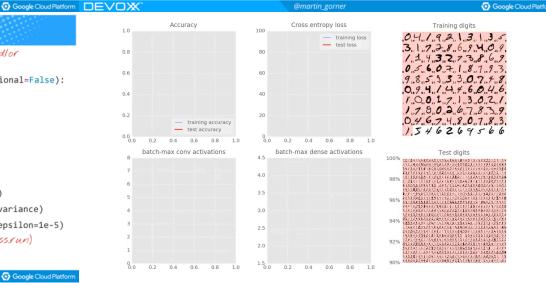


$$\widehat{x} = rac{x - avg_?(x)}{stdev_?(x) + \epsilon}$$

Stats on what?

- Last batch: no
- all images: yes (but not practical)
- => Exponential moving average during training

Batch normalisation with Tensorflow Define one offset andlor scale per neuron def batchnorm_layer(Ylogits, is_test, Offset, Scale, iteration, convolutional=False): exp moving avg = tf.train. Exponential Moving Average (0.9999, iteration) if convolutional: # avg across batch, width, height mean, variance = tf.nn.moments(Ylogits, [0, 1, 2]) else: mean, variance = tf.nn.moments(Ylogits, [0]) update moving averages = exp moving avg.apply([mean, variance]) m = tf.cond(is test, lambda: exp moving avg.average(mean), lambda: mean) v = tf.cond(is test, lambda: exp moving avg.average(variance), lambda: variance) Ybn = tf.nn.batch_normalization(Ylogits, m, v, Offset, Scale, variance epsilon=1e-5) return Ybn, update_moving_averages — don't forget to execute this (sess.run) apply activation for on Ybn The code is on GitHub; goo, gi/DEUe/Z DEVOX Google Cloud Platforn

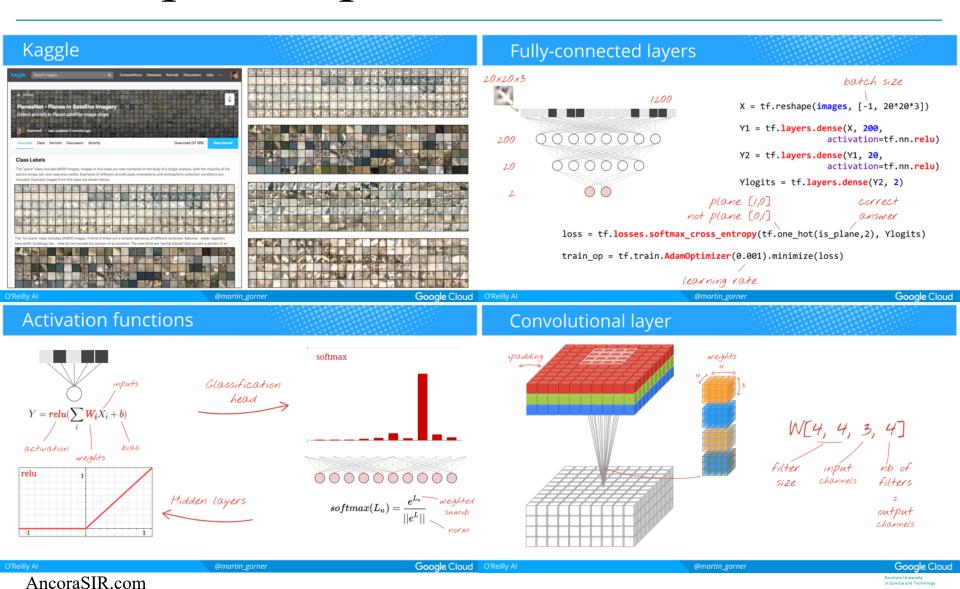


AncoraSIR.com

Southern University

DEVOX

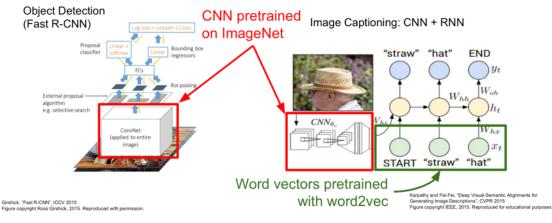
Example: Airplane or not?



Transfer Learning

You need a lot of data if you want to train/use CNNs, really?

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)



Next class:

• Transfer learning for arcade claw machine robot

very different

dataset

You're in

stages

trouble... Try

from different

Finetune a

of layers

larger number

linear classifier

AncoraSIR.com

Thank you!

Prof. Song Chaoyang

• Dr. Wan Fang (sophie.fwan@hotmail.com)

