ME336 Collaborative Robot Learning

Spring 2019

Sunday, May 05

Lecture 11 (Artificial) Neural Networks

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

AncoraSIR.com

[Slides adapted from CS213n by Fei-Fei Li & CS230 by Andew Ng @ Stanford.]

Tinker With a Neural Network

TensorBoard: Visualizing Learning

What is a Neural Network?

It is a powerful learning algorithm inspired by how the brain works.

Housing Price Prediction

Supervised Learning with NNs

Examples, NNs & Data Types

Input(x) 🖉	Output (y) 🖉	Application
Home features	Price	Real Estate Z Studd
Ad, user info 🖉	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging $\int C_N N$
Audio	Text transcript	Speech recognition $\left\{ \begin{array}{c} k N N \end{array} \right\}$
English	Chinese	Machine translation
$\underbrace{\text{Image, Radar info}}_{\uparrow}$	Position of other cars \uparrow	Autonomous driving of Custon/ Hybrid

Str	uctured	D	ata 📈
<u> </u>	\vee		
Size	#bedrooms		Price (1000\$s)
2104	3		400
1600	3		330
2400	3		369
:	:		:
3000	4		540
\checkmark	\sim		\checkmark
User Age	Ad Id		Click
41	93242		1
80	93287		0
18	87312		1
:	:		:
27	71244		1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Standard NN

Convolutional NN

conv3 (1, 2, 2)

conv2 (5, 2, 2)

(2, 4, 4)

 $(\hat{y}^{(t)})$ $(a_{t-1}^{[1]})$ $(a_t^{[1]})$ $(a_{t+1}^{[1]})$ $(x^{(t-1)})$

Recurrent NN

AncoraSIR.com

What is a Neural Network?

From biological inspiration to mathematical modeling

Example: Binary Classification

0 or 1 (discrete value output), it is a question ...

000

```
5 import numpy as np
6 class Perceptron: # define the perceotron
      def __init__(self, input_length, weights = None):
          if weights == None:
              self.weights = np.ones(input_length) * 0.5
          else:
               self.weights = weights
       @staticmethod
      def unit_step_function(x):
          if x > 0.5:
               return 1
          return 0
       def call (self, in data):
          weighted input = self.weights * in_data
          weighted_sum = weighted_input.sum()
          return Perceptron.unit_step_function(weighted_sum)
25 p = Perceptron(2, np.array([0.5, 0.5])) # config the perceptron
27 for x in [np.array([0, 0]), np.array([0, 1]),
            np.array([1, 0]), np.array([1, 1])]:
      y = p(np.array(x))
      print(x, y)
```

Challenges of Recognition

Image Classification: A core task in computer vision

Viewpoint

All pixels change when the camera moves!

Illumination

<u>This image</u> is <u>CC0 1.0</u> public domain

Deformation

This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>

Occlusion

<u>This image</u> by <u>jonsson</u> is licensed under <u>CC-BY 2.0</u>

An image def c classifier ret

def classify_image(image):
 # Some magic here?
 return class_label

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Intraclass Variation

This image is CC0 1.0 public domain

SUSTech Southern University of Science and Technology

AncoraSIR.com John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Machine Learning: Data-driven approach

First classifier: Nearest Neighbor

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

return model

train test train

AncoraSIR.com

Distance Metric to compare images

training image			pixe	pixel-wise absolute value differences					
10	20	24	17		46	12	14	1	
8	10	89	100		82	13	39	33	add 150
12	16	178	170	=	12	10	0	30	- 456
4	32	233	112		2	32	22	108	
stai	nce		L2	(Eu	clide	an) d	dista	nce	
$ I_2^p $				$d_2(I_1$	$, I_2) =$	$\sqrt{\sum_{p} (x_{p})}$	$I_1^p - I_2^p$	$)^{2}$	

test image

32 10 18

23 128 133

26 178 200

0 255 220

L1 (Manhattan) di $d_1(I_1, I_2) = \sum |I_1^p|$ –

56

90

24

2

Hyperparameters

- What is the best value of *k* to use?
- What is the best distance to use?

Choices about the algorithm that we *set* rather than *learn*

- Very problem-dependent.
- Must try them all out and see what works best.

Southern University of Science and Technolog

5/5/19

Bionic Design & Learning Group

Parametric Approach: Linear Classifier

Loss Function

how good our current classifier is

W score functio x_i y_i

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

Where x_i is image and y_i is (integer) label

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Loss over the dataset is a sum of loss over examples: $L = \frac{1}{N} \sum L_i(f(x_i, W), y_i)$

We only care about the relative distance (property of the loss), not the absolute difference (property of the data)

Softmax Classifier (Multinomial Logistic Regression)

Bionic Design & Learning Group

Optimization using Gradient Descent

Vanilla Gradient Descent

while True:

weights grad = evaluate gradient(loss fun, data, weights) weights += - step size * weights grad # perform parameter update

In 1-dimension, the derivative of a function:

df(x)	- lim	f(x+h) - f(x)
dx	$- \lim_{h \to 0}$	h

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the negative gradient

AncoraSIR.com

Vanilla Minibatch Gradient Descent

while True:

data batch = sample training data(data, 256) # sample 256 examples weights grad = evaluate gradient(loss fun, data batch, weights) weights += - step size * weights grad # perform parameter update

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

Datapoints are shown as circles colored by their class Parameters W, b are shown Visualization of the data loss computation. Each row is loss due (red/gree/blue). The background regions are colored by below. The value is in bold to one datapoint. The first three columns are the 2D data x_i and whichever class is most likely at any point according to the and its gradient (computed the label y_i. The next three columns are the three class scores current weights. Each classifier is visualized by a line that with backprop) is in red, from each classifier $f(x_i; W, b) = Wx_i + b$ (E.g. s[0] = x[0] *indicates its zero score level set. For example, the blue *italic* below. Click the W[0,0] + x[1] * W[0,1] + b[0]). The last column is the data loss for classifier computes scores as $W_{0,0}x_0 + W_{0,1}x_1 + b_0$ and the triangles to control the a single example, L_i .

**			-		÷				
w[0.1]	b[0]		x[0]	×[1]	У	s[0]	s[1]	s[2]	L
		[0.50	0.40	0	1.30	-0.10	0.60	0.30
2.00	0.00	[0.80	0.30	0	1.40	0.90	1.60	1.70
0.07	0.11	Ī	0.30	0.80	0	1.90	-2.10	-0.40	0.00
W[1,1]	b[1]	Ī	-0.40	0.30	1	0.20	-1.50	-2.00	3.20
•		[-0.30	0.70	1	1.10	-2.90	-2.10	6.80
-4.00	0.50	Ĩ	-0.70	0.20	1	-0.30	-1.70	-2.80	2.40
▼	V	Ī	0.70	-0.40	2	-0.10	3.50	2.00	2.50
W[2,1]	b[2]	Ī	0.50	-0.60	2	-0.70	3.90	1.60	3.30
▲		Ē	0.40	0.50	2	-1 40	1 20	1 20	4 70
			-0.40	-0.30	2	-1.40	1.70	-1.20	
-1.00	-0.50	L	-0.40	-0.50	2	-1.40	1.70	=1.20	mean:
-1.00 0.36	-0.50 0.00	L	Tota	al data	loss:	2.77 ss: 3.50	1.70	-1.20	mean:
-1.00 0.36	-0.50 0.00	_	Tota Regi Tota	al data ulariza al loss	loss: tion lo : 6.27	2.77 ss: 3.50	1.70	-1.20	mean: 2.77
-1.00 0.36	-0.50 0.00		Tota Regi Tota	al data ulariza al loss	loss: tion lo : 6.27	2.77 ss: 3.50	1.70	-1.20	mean:
-1.00 0.36 V	-0.50 0.00		Tota Regn Tota L2 R	al data ulariza al loss egulariza	loss: tion lo : 6.27	2.77 ss: 3.50	000	-1.20	mean:
-1.00 0.36 V 0.10000	-0.50 0.00 V		Tota Regi Tota L2 R	al data ulariza al loss egulariza	loss: tion lo : 6.27	2.77 ss: 3.50	000	-1.20	mean:
-1.00 0.36 V 0.10000 Darameter	-0.50 0.00		Tota Regn Tota L2 R	al data ulariza al loss egulariza	loss: tion lo : 6.27 tion stree	2.77 ss: 3.50	000	-1.20	mean: 2.77
-1.00 0.36 ▼ 0.10000 parameter	-0.50 0.00 V update		Tota Regn Tota L2 R Mult	al data ulariza al loss egulariza ticlass SV /eston W/	loss: tion lo : 6.27 tion stree	2.77 ss: 3.50 ngth: 0.10 rmulation 99		-1.20	mean:
-1.00 0.36 V 0.10000 parameter	-0.50 0.00 V update		Tota Regg Tota L2 R Mult	egulariza egulariza ticlass SV /eston W.	2 loss: tion lo: 6.27 tion stree	2.77 ss: 3.50 ngth: 0.10 rmulation 99	000	-1.20	mean: 2.77
-1.00 0.36 ▼ 0.10000 parameter repeated u	vpdate		Tota Regg Tota L2 R Mult	al data ulariza al loss egulariza ticlass SV /eston W. /eston W. /ine vs. All tructured oftmax	loss: tion lo : 6.27 tion street M loss fo atkins 19	2.77 ss: 3.50 ngth: 0.10 rmulation 99	000	-1.20	mean: 2.77

SUSTech

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Convolutional Neural Network

Backpropagation

Calculates the gradient of a loss function with respect to all the weights in the network.

- backward: apply the chain rule to compute the gradient of the loss
 - function with respect to the inputs

Neural Network

cell body

 x_0

Thank you!

Prof. Song Chaoyang

• Dr. Wan Fang (<u>sophie.fwan@hotmail.com</u>)

AncoraSIR.com