
AncoraSIR.com

Lecture 10 
Adversarial Search

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

ME336 Collaborative Robot Learning Spring 2019 Wednesday, April 23

[Slides adapted from Sergey Levine & Stuart Russell, CS188, UCB] 

mailto:songcy@sustc.edu.cn


AncoraSIR.com

Game Playing State-of-the-Art

• Checkers:

• 1950: First computer player.  

• 1994: First computer champion. 

• 2007: Checkers solved!

• Chess:

• 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep 
Blue examined 200M positions per second, 
used very sophisticated evaluation and 
undisclosed methods for extending some lines 
of search up to 40 ply.  

• Go: 

• 2016: Alpha GO defeats human champion. 
Uses Monte Carlo Tree Search, learned 
evaluation function.

4/24/2019 Bionic Design & Learning Group 2



AncoraSIR.com

Types of Games

• Many different kinds of games!

• Axes:
• Deterministic or stochastic?

• One, two, or more players?

• Zero sum?

• Perfect information (can you see the state)?

• Want algorithms for calculating a strategy (policy) which 
recommends a move from each state

4/24/2019 Bionic Design & Learning Group 3



AncoraSIR.com

Deterministic Games

• Many possible formalizations, one is:

• States: S (start at s0)

• Players: P={1...N} (usually take turns)

• Actions: A (may depend on player / state)

• Transition Function: SxA→ S

• Terminal Test: S → {t,f}

• Terminal Utilities: SxP→ R

• Solution for a player is a policy: S →A

4/24/2019 Bionic Design & Learning Group 4



AncoraSIR.com

Zero-Sum Games

• Zero-Sum Games

• Agents have opposite utilities 
(values on outcomes)

• Lets us think of a single value 
that one maximizes and the other 
minimizes

• Adversarial, pure competition

4/24/2019 Bionic Design & Learning Group 5

• General Games
• Agents have independent 

utilities (values on outcomes)

• Cooperation, indifference, 
competition, and more are all 
possible

• More later on non-zero-sum 
games



AncoraSIR.com

Adversarial Search Problems

• Multiagent environments
• each agent needs to consider the actions of other agents, which is 

unpredictable and how they affect its own welfare.

• Competitive environments
• the agents’ goals are in conflict, giving rise to adversarial search

problems—often known as games.

• In all, deterministic, turn-taking, two-player, zero-sum 
games

of perfect information (such as chess).

4/24/2019 Bionic Design & Learning Group 6

Elements



AncoraSIR.com

Game as search problem

• Two players MAX and MIN. MAX moves first.

• A game as a kind of search problem has the following elements:

• S0: initial state

• PLAYER(s): Defines which player has the move in a state.

• ACTIONS(s): Returns the set of legal moves in a state.

• RESULT(s, a):  transition model.

• TERMINAL-TEST(s): terminal test, true when the game is over and 

false otherwise.

• UTILITY(s, p): utility function defines the final numeric value for a 

game that ends in terminal state s for a player p.

4/24/2019 Bionic Design & Learning Group 7

Definition



AncoraSIR.com

Single-Agent Trees

4/24/2019 Bionic Design & Learning Group 8

Recall

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a



AncoraSIR.com

Games tree – Tic-tac-toe

4/24/2019 Bionic Design & Learning Group 9

• From the initial state, MAX(crosses) has 

nine possible moves. Play alternates between 

MAX’s placing an X and MIN’s placing an 

O until we reach terminal states.

• The game tree is large with 9! = 362880 

terminal nodes.



AncoraSIR.com

Adversarial Search (Minimax)

• A two-ply game tree and players alternate turns. 
• △ nodes are “MAX nodes”, ▽ nodes are “MIN nodes” 

• Compute each node’s minimax value: the best achievable utility 
against a rational (optimal) adversary

• The terminal nodes show the utility values for MAX

4/24/2019 Bionic Design & Learning Group 10

How to find the optimal decision



AncoraSIR.com

Minimax Implementation

4/24/2019 Bionic Design & Learning Group 11

Defined in recursive function



AncoraSIR.com

Optimal Decision in Games

• Minimax value is computed bottom up

1. 3 is the best outcome for MIN in node B, 2 is the best outcome 
for MIN in node C and D.

2. 3 is the best outcome for MAX in node A.

4/24/2019 Bionic Design & Learning Group 12

Compute minimax value

This definition of optimal 

play for MAX assumes that 

MIN also plays optimally —

it maximizes the worst-case 

outcome for MAX.



AncoraSIR.com

Optimal Decision in Games

• Minimax Quiz

4/24/2019 Bionic Design & Learning Group 13

Compute minimax value

max

min



AncoraSIR.com

Minimax Efficiency

• If the maximum depth of the tree is m and there are b 
legal moves at each point, then 
• Just like (exhaustive) DFS

• The time complexity is O(bm)

• The space complexity is O(bm)

• Example: For chess, b  35, m  100
• Exact solution completely infeasible.

• Do we need to expand all nodes? 

4/24/2019 Bionic Design & Learning Group 14



AncoraSIR.com

Game Tree Pruning

4/24/2019 Bionic Design & Learning Group 15



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 16

Quiz



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 17

Quiz

>=11



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 18

• General configuration (MIN version)

• We’re computing the MIN-VALUE at some node n

• We’re looping over n’s children

• n’s estimate of the childrens’ min is dropping

• Who cares about n’s value?  MAX

• Let a be the best value that MAX can get at any 

choice point along the current path from the root

• If n becomes worse than a, MAX will avoid it, so 

we can stop considering n’s other children (it’s 

already bad enough that it won’t be played)

• MAX version is symmetric



AncoraSIR.com

Alpha-Beta Implementation

4/24/2019 Bionic Design & Learning Group 19



AncoraSIR.com

Alpha-Beta Pruning

• This pruning has no effect on minimax value computed for 
the root!
• Returns the same move as minimax would, but prunes away 

branches that cannot possibly influence the final decision

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value

• Time complexity drops to O(bm/2)
• Full search of, e.g. chess, is still hopeless…

4/24/2019 Bionic Design & Learning Group 20



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 21

MIN-VALUE(B, -∞, +∞)

MAX-VALUE(A, -∞, +∞)

3
3

3

[α, β]

B



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 22

MIN-VALUE(B, -∞, +∞)

12
3

3

[α, β]

3



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 23

MIN-VALUE(B, -∞, +∞)

8
3

3

[α, β]

3

3
3

MAX(-∞, 3)3

B



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 24

MIN-VALUE(C, 3, +∞)

2
2

2

[α, β]

C

3 2

The left two actions 

from C are skipped!

MAX(3, 2)



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 25

MIN-VALUE(D, 3, +∞)

14
14

[α, β]

D

14



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 26

MIN-VALUE(D, 3, +∞)

2
2

[α, β]

D

2

2

2

3



AncoraSIR.com

Alpha-Beta Pruning

4/24/2019 Bionic Design & Learning Group 27



AncoraSIR.com

Resource Limits

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function 

for non-terminal positions

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / 

sec
• So can check 1M nodes per move
• - reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone

• Use iterative deepening for an anytime algorithm

4/24/2019 Bionic Design & Learning Group 28



AncoraSIR.com

Evaluation Functions

4/24/2019 Bionic Design & Learning Group 29

• Evaluation functions score non-terminals in depth-limited search

• Ideal function: returns the actual minimax value of the position

• In practice: typically weighted linear sum of features:

• e.g.  f1(s) = (num white queens – num black queens), etc.



AncoraSIR.com

Depth Matters

• Evaluation functions are always 
imperfect

• The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters

• An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

4/24/2019 Bionic Design & Learning Group 30



AncoraSIR.com

Uncertain Outcomes

4/24/2019 Bionic Design & Learning Group 31

Idea: Uncertain outcomes controlled by chance, not an adversary!

Worst-Case vs. Average Case



AncoraSIR.com

Project 3

• Build an Tic Tac Toe game with Minimax algorithm.

4/24/2019 Bionic Design & Learning Group 32



AncoraSIR.com

Building a Game Class

• Class TicTacToe

❑self.board: Representing the game state, track the current 

position each player on the board.

❑self. availableMoves (move, “O”): Finding all legal moves for a 

player

❑self. makeMove: Make a move and update the board

4/24/2019 Bionic Design & Learning Group 33



AncoraSIR.com

Building a Game Class

• Class TicTacToe

❑self.checkWin: return the winner of the game or none if the no 

winners.

❑self.gameOver: return true if X player wins or O player wins or 

draw (no winners and the board is full), otherwise return false

4/24/2019 Bionic Design & Learning Group 34

Win combos = ([0, 1, 2], [3, 4, 5], [6, 7, 8],
[0, 3, 6], [1, 4, 7], [2, 5, 8],
[0, 4, 8], [2, 4, 6])



AncoraSIR.com

Building a Game Class

• Class TicTacToe

❑self.make_best_move: evaluates all the available moves 

using minimax() and then returns the best move the maximizer 

can make

4/24/2019 Bionic Design & Learning Group 35

function make_best_move(board): 
bestMove = NULL
for each move in board :

if current move is better than bestMove
bestMove = current move

return bestMove

Note: There maybe no optimal or multiple optimal moves



AncoraSIR.com

Building a Game Class

❑self.minimax: consider all the possible ways the game can go 

and returns the best value for that move

4/24/2019 Bionic Design & Learning Group 36

function minimax(board, depth, isMaximizingPlayer):

if current board state is a terminal state: 
return value of the board 

if isMaximizingPlayer: 
bestVal = -INFINITY 
for each move in board : 

value = minimax(board, depth+1, false)  
bestVal = max( bestVal, value) 

return bestVal

else: 
bestVal = +INFINITY 
for each move in board: 

value = minimax(board, depth+1, true) 
bestVal = min( bestVal, value) 

return bestVal

The utility of a 
terminal state has 
three possible value:
1. X wins: -1
2. O wins: 1
3. Draw: 0



AncoraSIR.com

Project Demo

4/24/2019 Bionic Design & Learning Group 37



AncoraSIR.com

Thank you!
Prof. Song Chaoyang

• Dr. Wan Fang (sophie.fwan@hotmail.com)

4/24/2019 Bionic Design & Learning Group 38

mailto:sophie.fwan@hotmail.com

