ME336 Collaborative Robot Learning

Spring 2019

Wednesday, March 22

Lecture 05 Images & Cameras

Song Chaoyang

Assistant Professor

Department of Mechanical and Energy Engineering

songcy@sustech.edu.cn

A Dynamical System Approach for Softly Catching a Flying Object: Theory and Experiment

By Seyed Sina Mirrazavi Salehian; Mahdi Khoramshahi; Aude Billard (EPFL)

The Concept of Vision

The Concept of Vision

The Concept of Vision

Early results in computer vision for estimating the shape and pose of objects, from the PhD work of L. G. Roberts at MIT Lincoln Lab in 1963.

The Concept of Vision

Or the Robot as a Machine

Or the Robot as a Machine

- Static features
 - Distance
 - Color
 - Shape

. . .

- Texture
- Environment

Reject oil filter (some holes are blocked)

Or the Robot as a Machine

- Static features
 - Distance
 - Color
 - Shape
 - Texture
 - Environment
 - •
- Dynamic motions

Or the Robot as a Machine Vision System Display Strobe • Static features X • Distance COGNEX • Color • Shape Sensor • Texture Environment • Dynamic motions 37.255 mm Good oil filter Reject oil filter (all holes are open) (some holes are blocked) • Understanding of the behavior

Or the Robot as a Machine Vision System Display Strobe • Static features X • Distance COGNEX • Color • Shape • Texture Sensor Environment • Dynamic motions 37.255 mm Good oil filter Reject oil filter (all holes are open) (some holes are blocked) • Understanding of the behavior

• An important method to interact with the physical world

AncoraSIR.com

3/21/2019

Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.

Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.

the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing.

Image Processing techniques

are primarily used to improve

AncoraSIR.com

- Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.
 - Optics Signal Machine Processing Computer Processing Vision Machine Robot Vision Vision
- <u>Computer Vision</u> is more about extracting information from images to make sense of them.

□ *Image Processing* techniques are primarily used to improve the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing.

- Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.
 - Signal Processing Image Processing Computer Vision Machine Robot Vision

□ <u>*Machine Vision*</u> refers to the industrial use of vision for automatic inspection, process control and robot guidance.

AncoraSIR.com

Image Processing techniques

are primarily used to improve

convert it into another format

the quality of an image,

(like a histogram) or

further processing.

otherwise change it for

Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.

Image Processing techniques are primarily used to improve the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing.

Machine Vision refers to the industrial use of vision for automatic inspection, process control and robot guidance.

 Computer Vision is more about extracting information from images to make sense of them.

Robotic Vision involves using a combination of camera hardware and computer algorithms to allow robots to process visual data from the world and execute physical actions.

AncoraSIR.com

3/21/2019

Bionic Design & Learning Group

- Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.
- <u>Computer Vision</u> is more about extracting information from images to make sense of them.

□ <u>Machine Learning</u> is focused on recognizing patterns in data.

Robotic Vision involves using a combination of camera hardware and computer algorithms to allow robots to process visual data from the world and execute physical actions.

Image Processing techniques are primarily used to improve the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing. Signal Processing Image Processing Computer Vision Machine Robot Vision

Machine Vision refers to the industrial use of vision for automatic inspection, process control and robot guidance.

3/21/2019

Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.

- □ *Image Processing* techniques are primarily used to improve the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing.

Machine Vision refers to the industrial use of vision for automatic inspection, process control and robot guidance.

 <u>Computer Vision</u> is more about extracting information from images to make sense of them.

□ <u>Machine Learning</u> is focused on recognizing patterns in data.

Robotic Vision involves using a combination of camera hardware and computer algorithms to allow robots to process visual data from the world and execute physical actions.

Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.

□ *Image Processing* techniques are primarily used to improve the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing.

Machine Vision refers to the industrial use of vision for automatic inspection, process control and robot guidance.

 <u>Computer Vision</u> is more about extracting information from images to make sense of them.

□ <u>Machine Learning</u> is focused on recognizing patterns in data.

Robotic Vision involves using a combination of camera hardware and computer algorithms to allow robots to process visual data from the world and execute physical actions.

Signal Processing involves processing electronic signals to either clean them up, extract information, prepare them to output to a display or prepare them for further processing. Anything can be a signal, more or less.

□ *Image Processing* techniques are primarily used to improve the quality of an image, convert it into another format (like a histogram) or otherwise change it for further processing.

- Scientific Domain Signal Machine Processing Optics Learning Image Computer Processing Vision Engineering Machine Robot Vision Domain Vision Scientific & Engineering Domain ;
- Machine Vision refers to the industrial use of vision for automatic inspection, process control and robot guidance.

 <u>Computer Vision</u> is more about extracting information from images to make sense of them.

□ <u>Machine Learning</u> is focused on recognizing patterns in data.

Robotic Vision involves using a combination of camera hardware and computer algorithms to allow robots to process visual data from the world and execute physical actions.

Technique	Input	Output		
Signal Processing	Electrical signals	Electrical signals		
Image Processing	Images	Images		
Computer Vision	Images	Information/features		
Pattern Recognition/Machine Learning	Information/features	Information		
Machine Vision	Images	Information		
Robot Vision	Images	Physical Action		

AncoraSIR.com

SUSTech

Southern University of Science and Technolog

Technique	Input	Output		
Signal Processing	Electrical signals	Electrical signals		
Image Processing	Images	Images		
Computer Vision	Images	Information/features		
Pattern Recognition/Machine Learning	Information/features	Information		
Machine Vision	Images	Information		
Robot Vision	Images	Physical Action		

Technique	Input	Output		
Signal Processing	Electrical signals	Electrical signals		
Image Processing	Images	Images		
Computer Vision	Images	Information/features		
Pattern Recognition/Machine Learning	Information/features	Information		
Machine Vision	Images	Information		
Robot Vision	Images	Physical Action		

SUSTech

Southern University of Science and Technolog

Why do nobots need to see?

Example of a grayscale [0, 1] image within a planar area of size [*m*, *n*]

Example of a grayscale [0, 1] image within a planar area of size [*m*, *n*]

In [1]:

import numpy as np
from numpy import random as r

In [2]:

from matplotlib import pyplot as p
I = r.rand(100,100);

Example of a grayscale [0, 1] image within a planar area of size [*m*, *n*]

In [1]:

import numpy as np
from numpy import random as r

In [2]:

from matplotlib import pyplot as p
I = r.rand(100,100);

In [3]:

p.imshow(I, cmap="gray", vmin=0.0, vmax=1.0);
p.colorbar()
I[0,1]

Out[3]:

0.9564898647579192

Example of a grayscale [0, 1] image within a planar area of size [*m*, *n*]

In [1]:

import numpy as np
from numpy import random as r

In [2]:

from matplotlib import pyplot as p
I = r.rand(100,100);

In [3]:

p.imshow(I, cmap="gray", vmin=0.0, vmax=1.0);
p.colorbar()
I[0,1]

Out[3]:

0.9564898647579192

3/21/2019

Example of a grayscale [0, 1] image within a planar area of size [*m*, *n*]

In [1]:

import numpy as np
from numpy import random as r

In [2]:

from matplotlib import pyplot as p
I = r.rand(100,100);

In [3]:

p.imshow(I, cmap="gray", vmin=0.0, vmax=1.0);
p.colorbar()
I[0,1]

Out[3]:

3/21/2019

0.9564898647579192

	255	255	255	105	51	41	43	49	101	255	255	255
	255	255	255	116	62	44	42	57	120	255	255	255
	255	255	255	112	68	41	46	58	117	255	255	255
/	105	110	111	109	60	42	48	61	115	112	114	108
	60	68	62	57	42	41	46	41	43	49	42	41
	44	42	41	46	46	42	48	44	42	42	46	42
	41	46	42	48	44	42	41	41	46	43	49	42
	59	54	60	59	41	46	42	46	46	42	48	46
/	100	120	120	115	51	41	43	49	110	116	118	105
	255	255	255	118	62	44	42	57	115	255	255	255
	255	255	255	121	68	41	46	58	120	255	255	255
	255	255	255	100	60	42	48	61	105	255	255	255

Bionic Design & Learning Group

Example of a grayscale [0, 1] image within a planar area of size [*m*, *n*]

In [1]:

import numpy as np
from numpy import random as r

In [2]:

from matplotlib import pyplot as p
I = r.rand(100,100);

In [3]:

p.imshow(I, cmap="gray", vmin=0.0, vmax=1.0);
p.colorbar()
I[0,1]

Out[3]:

0.9564898647579192

Pixel as picture element NOT A SQUARE !!!

	255	255	255	105	51	41	43	49	101	255	255	255
	255	255	255	116	62	44	42	57	120	255	255	255
	255	255	255	112	68	41	46	58	117	255	255	255
	105	110	111	109	60	42	48	61	115	112	114	108
	60	68	62	57	42	41	46	41	43	49	42	41
	44	42	41	46	46	42	48	44	42	42	46	42
	41	46	42	48	44	42	41	41	46	43	49	42
	59	54	60	59	41	46	42	46	46	42	48	46
/	100	120	120	115	51	41	43	49	110	116	118	105
	255	255	255	118	62	44	42	57	115	255	255	255
	255	255	255	121	68	41	46	58	120	255	255	255
	255	255	255	100	60	42	48	61	105	255	255	255

3/21/2019

Bionic Design & Learning Group

As a 2D sampling of signal

AncoraSIR.com

3/21/2019

As a 2D sampling of signal

AncoraSIR.com

3/21/2019

As a 2D sampling of signal

As a 2D sampling of signal

Can be other physical values too: *temperature*, *pressure*, *depth*

Formulation of An Image

As a 2D sampling of signal

Physical Understanding of Images

Physical Understanding of Images

Sampling in 1D takes a function, and returns a vector whose elements are values of that function at the sample points.

Physical Understanding of Images

Sampling in 1D takes a function, and returns a vector whose elements are values of that function at the sample points.

Physical Understanding of Images

Sampling in 1D takes a function, and returns a vector whose elements are values of that function at the sample points.

An RGB Image

An important method of sensing the environment

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - Physical meaning is not a required way of interpretation or usage

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

3/21/2019

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

Machine Vision

actually measures but no action required.

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

Image Size: *u*, *v*

Machine Vision

actually measures but no action required.

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

Image Size: *u*, *v*

Color Space: Red, Green, Blue Grayscale: Gray Machine Vision

actually measures but no action required.

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

Image Size: *u*, *v*

Color Space: Red, Green, Blue Grayscale: Gray

[0, 1] as normalized form, not an integer [0, 255] as a byte number of range $2^8=256$ from 0 to 255, all in integer forms

AncoraSIR.com

Machine Vision

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision

Image Size: *u*, *v*

- Same as Computer Vision, but with a focus on Physical Interpretation
- Because actions need to be executed by a robot and people might get hurt

Color Space: Red, Green, Blue , Grayscale: Gray **Other variables**

Heatmap: H Temperature: T

[0, 1] as normalized form, not an integer [0, 255] as a byte number of range 2⁸=256 from 0 to 255, all in integer forms

AncoraSIR.com

Machine Vision

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

Image Size: *u*, *v* Other variables Heatmap: H Temperature: T Color Space: Red, Green, Blue Grayscale: Gray [0, 1] as normalized form, not an integer **Point Cloud**: x(u, v), y(u, v), z(u, v)

[0, 255] as a byte number of range $2^8 = 256$ from 0 to 255, all in integer forms

AncoraSIR.com

51

Machine Vision

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

AncoraSIR.com

Machine Vision

An important method of sensing the environment

- Computer Vision
 - Digitization of physical world in multi-dimensional linear algebra
 - *Physical meaning is not a required way of interpretation or usage*
- Robotic Vision
 - Same as Computer Vision, but with a focus on Physical Interpretation
 - Because actions need to be executed by a robot and people might get hurt

AncoraSIR.com

Machine Vision

AncoraSIR.com

3/21/2019

Other variables Heatmap: H Temperature: T

. . .

Other variables Heatmap: H Temperature: T

. . .

Point Cloud: x(u, v), y(u, v), z(u, v)

AncoraSIR.com

SUSTech

Southern University of Science and Techno

Color Space: Red, Green, Blue

Other variables Heatmap: H Temperature: T

Texture: *r*(*x*, *y*, *z*), *g*(*x*, *y*, *z*), *b*(*x*, *y*, *z*)

Point Cloud: x(u, v), y(u, v), z(u, v)

AncoraSIR.com

SUSTech

Southern University of Science and Techn

Color Space: Red, Green, Blue

Other variables Heatmap: H Temperature: T

Texture: r(x, y, z),g(x, y, z),b(x, y, z)

Point Cloud: x(u, v), y(u, v), z(u, v)AncoraSIR.com

0

Camera Models

Lens Law $\frac{1}{z_{o}} + \frac{1}{z_{i}} = \frac{1}{f}$ Pin hole 194 equívalent pín hole object $\cdot z_j$ z_{o} inverted image focal points ? image plane ídeal thín lens

Camera Models

3/21/2019

Bionic Design & Learning Group

Characteristics

Perspective Transform

• A mapping from 3D space to the 2D image plane

 $\mathbb{R}^3 \mapsto \mathbb{R}^2$

Characteristics

Perspective Transform

- A mapping from 3D space to the 2D image plane
- Straight lines in the world are projected to straight lines on the image plane.

Perspective Transform

- A mapping from 3D space to the 2D image plane
- Straight lines in the world are projected to straight lines on the image plane.
- Parallel lines in the world are projected to lines that intersect at a vanishing point.
 - The exception are lines in the plane parallel to the image plane which do not converge.

3/21/2019

Perspective Transform

- A mapping from 3D space to the 2D image plane
- Straight lines in the world are projected to straight lines on the image plane.
- Parallel lines in the world are projected to lines that intersect at a vanishing point.
 - The exception are lines in the plane parallel to the image plane which do not converge.
- Conics in the world are projected to conics on the image plane.

Perspective Transform

- A mapping from 3D space to the 2D image plane
- Straight lines in the world are projected to straight lines on the image plane.
- Parallel lines in the world are projected to lines that intersect at a vanishing point.
 - The exception are lines in the plane parallel to the image plane which do not converge.
- Conics in the world are projected to conics on the image plane.
- The mapping is not one-to-one and a unique inverse does not exist.

$\mathbb{R}^3 \mapsto \mathbb{R}^2$.

Perspective Transform

- A mapping from 3D space to the 2D image plane
- Straight lines in the world are projected to straight lines on the image plane.
- Parallel lines in the world are projected to lines that intersect at a vanishing point.
 - The exception are lines in the plane parallel to the image plane which do not converge.
- Conics in the world are projected to conics on the image plane.
- The mapping is not one-to-one and a unique inverse does not exist.
- The transformation is not conformal
 - It does not preserve shape since internal angles are not preserved, different from translation, rotation and scaling

scaling.

 $\mathbb{R}^3 \mapsto \mathbb{R}^2$

Written in homogeneous form

P = (X, Y, Z)

Written in homogeneous form

P = (X, Y, Z) $x = f \frac{X}{Z}, \quad y = f \frac{Y}{Z}$ p = (x, y)

Written in homogeneous form

P = (X, Y, Z) $x = f \frac{X}{Z}, y = f \frac{Y}{Z}$ p = (x, y)homogeneous form $\tilde{p} = (x', y', z')$ $x = \frac{x'}{z'}, y = \frac{y'}{z'}$

Written in homogeneous form

Physical Meanings of Camera Pixels

- A camera sensor with a $W \times H$ grid of image pixels
 - The pixel coordinates (u, v)

Physical Meanings of Camera Pixels

- A camera sensor with a $W \times H$ grid of image pixels
 - The pixel coordinates (*u*, *v*)

Physical Meanings of Camera Pixels

• A camera sensor with a $W \times H$ grid of image pixels

AncoraSIR.com

3/21/2019

Physical Meanings of Camera Pixels

- A camera sensor with a $W \times H$ grid of image pixels
 - light sensitive • The pixel coordinates (*u*, *v*) P = (X, Y, Z)photosites Principal point in pixel coordinate $u = \frac{x}{\rho_w} + u_0, v = \frac{y}{\rho_h} + v_0$ zoptical axis Hcamera \mathbb{C} origin y_C

AncoraSIR.com

3/21/2019

Physical Meanings of Camera Pixels

- A camera sensor with a $W \times H$ grid of image pixels
 - The pixel coordinates (u, v)

Principal point in pixel coordinate

width and height of each pixel

Physical Meanings of Camera Pixels

• A camera sensor with a $W \times H$ grid of image pixels

• The pixel coordinates (*u*, *v*)

Principal point in pixel coordinate

width and height of each pixel

 $ilde{p} = (u', v', w')$

pixel coordinate

Physical Meanings of Camera Pixels

• A camera sensor with a $W \times H$ grid of image pixels

Physical Meanings of Camera Pixels

• A camera sensor with a $W \times H$ grid of image pixels

Physical Meanings of Camera Pixels

• A camera sensor with a $W \times H$ grid of image pixels

Physical Meanings of Camera Pixels

• A camera sensor with a $W \times H$ grid of image pixels

Still, something is missing

- The 3x4 Camera Calibration Matrix
 - Performs scaling, translation and perspective projection

$$\tilde{\boldsymbol{p}} = \underbrace{\begin{pmatrix} f/\rho_w & 0 & u_0 \\ 0 & f/\rho_h & v_0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{intrinsic}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}}_{\text{intrinsic}} \underbrace{({}^0\mathbf{T}_C)^{-1}}_{\text{extrinsic}} \tilde{\boldsymbol{P}}$$
$$= \boldsymbol{K} \boldsymbol{P}_0 \, {}^0\boldsymbol{T}_C^{-1} \tilde{\boldsymbol{P}}$$
$$= \boldsymbol{C} \tilde{\boldsymbol{P}}$$

Still, something is missing

- The 3x4 Camera Calibration Matrix
 - Performs scaling, translation and perspective projection

3/21/2019

Still, something is missing

3/21/2019

Still, something is missing

Still, something is missing

Still, something is missing

In general, the cameras are not made as modeled

AncoraSIR.com

3/21/2019

SUSTecl

In general, the cameras are not made as modeled

In general, the cameras are not made as modeled

AncoraSIR.com

3/21/2019

In general, the cameras are not made as modeled

3/21/2019
In general, the cameras are not made as modeled

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

 $ilde{p} = C ilde{P}$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

$$\tilde{\boldsymbol{p}} = \boldsymbol{C}\tilde{\boldsymbol{P}}$$

$$\tilde{\boldsymbol{p}} = (\boldsymbol{u}, \boldsymbol{v}, 1)$$

$$\boldsymbol{u} = \frac{\boldsymbol{u}'}{\boldsymbol{w}'}, \, \boldsymbol{v} = \frac{\boldsymbol{v}'}{\boldsymbol{w}'}$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

$$\tilde{\boldsymbol{p}} = \boldsymbol{C}\tilde{\boldsymbol{P}} \qquad \tilde{\boldsymbol{p}} = (u, v, 1) \qquad C_{11}X + C_{12}Y + C_{13}Z + C_{14} - C_{31}uX - C_{32}uY - C_{33}uZ - C_{34}u = 0$$
$$u = \frac{u'}{w'}, v = \frac{v'}{w'} \qquad C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

Disregard overall scaling, set to 1

$$\tilde{\boldsymbol{p}} = \boldsymbol{C}\tilde{\boldsymbol{P}} \qquad \tilde{\boldsymbol{p}} = (u, v, 1) \\ u = \frac{u'}{w'}, v = \frac{v'}{w'} \qquad C_{11}X + C_{12}Y + C_{13}Z + C_{14} - C_{31}uX - C_{32}uY - C_{33}uZ - C_{34}u = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{34}vZ - C_{34}v = 0 \\ C_{21}X + C_{22}Y + C_{23}Y + C_{23}Y - C_{34}vZ -$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system Disregard overall scaling, set to 1

$$\tilde{p} = C\tilde{P}$$

$$\tilde{p} = (u, v, 1)$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$(X_1 \quad Y_1 \quad Z_1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad -u_1X_1 \quad -u_1Y_1 \quad -u_1Z_1 \\ 0 \quad 0 \quad 0 \quad 0 \quad X_1 \quad Y_1 \quad Z_1 \quad 1 \quad -v_1X_1 \quad -v_1Y_1 \quad -v_1Z_1 \\ \vdots \\ X_N \quad Y_N \quad Z_N \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad -u_NX_N \quad -u_NY_N \quad -u_NZ_N \\ 0 \quad 0 \quad 0 \quad 0 \quad X_N \quad Y_N \quad Z_N \quad 1 \quad -v_NX_N \quad -v_NY_N \quad -v_NZ_N$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system Disregard overall scaling, set to 1

$$\tilde{\boldsymbol{p}} = \boldsymbol{C}\tilde{\boldsymbol{P}} \qquad \tilde{\boldsymbol{p}} = (u, v, 1) \qquad C_{11}X + C_{12}Y + C_{13}Z + C_{14} - C_{31}uX - C_{32}uY - C_{33}uZ - C_{34}u = 0$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'} \qquad C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0$$
Increasing sampling for a solution 11 unknows to be solved
$$\begin{pmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 \\ \vdots \\ X_N & Y_N & Z_N & 1 & 0 & 0 & 0 & 0 & -u_NX_N & -u_NY_N & -u_NZ_N \\ 0 & 0 & 0 & 0 & X_N & Y_N & Z_N & 1 & -v_NX_N & -v_NY_N & -v_NZ_N \end{pmatrix} \begin{pmatrix} C_{11} \\ C_{12} \\ \vdots \\ C_{33} \end{pmatrix} = \begin{pmatrix} u_1 \\ v_1 \\ \vdots \\ u_N \\ v_N \end{pmatrix}$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

Disregard overall scaling, set to 1

$$\tilde{\boldsymbol{p}} = \boldsymbol{C}\tilde{\boldsymbol{P}} \qquad \tilde{\boldsymbol{p}} = (u, v, 1) \qquad C_{11}X + C_{12}Y + C_{13}Z + C_{14} - C_{31}uX - C_{32}uY - C_{33}uZ - C_{34}u = 0$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'} \qquad C_{21}X + C_{22}Y + C_{23}Z + C_{24} - C_{31}vX - C_{32}vY - C_{33}vZ - C_{34}v = 0$$
Increasing sampling for a solution 11 unknows to be solved
$$\begin{pmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 \\ \vdots \\ X_N & Y_N & Z_N & 1 & 0 & 0 & 0 & 0 & -u_NX_N & -u_NY_N & -u_NZ_N \\ 0 & 0 & 0 & 0 & X_N & Y_N & Z_N & 1 & -v_NX_N & -v_NY_N & -v_NZ_N \end{pmatrix} \begin{bmatrix} C_{11} \\ v_1 \\ \vdots \\ C_{33} \end{bmatrix} = \begin{pmatrix} u_1 \\ v_1 \\ \vdots \\ u_N \\ v_N \end{pmatrix}$$

$$N \ge 6 \text{ for a solution, but usually more are used to solve using least square$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

Disregard overall scaling, set to 1

$$\tilde{p} = C\tilde{P}$$

$$\tilde{p} = (u, v, 1)$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$\tilde{p} = (u, v, 1)$$

$$\tilde{p} = C\tilde{P}$$

$$U = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$\tilde{p} = (u, v, 1)$$

$$\tilde{p} = C\tilde{P}$$

$$\tilde{p} = (u, v, 1)$$

Some are done before shipping, some are not, and some are provided with a software to do so

• The process of determining the camera's intrinsic parameters and the extrinsic parameters with respect to the world coordinate system

Disregard overall scaling, set to 1

$$\tilde{p} = C\tilde{P}$$

$$\tilde{p} = (u, v, 1)$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$u = \frac{u'}{w'}, v = \frac{v'}{w'}$$

$$V = \frac{v'}{w'$$

What if the points are coplanar?

About Intel Realsense D435

Entry level stereo depth sensor with abundant resources at a low cost

	Intel RealSense Depth Camera D435	
Environment	Indoor and outdoor	
Depth Technology	Active IR stereo	
Image Sensor Technology	Global shutter: 3 um x 3 um pixel size	
Main Intel® RealSense™ Products	Intel® RealSense™ vision processor D4	
	Intel® RealSense™ module D430	
Depth Field of View (FOV)—(Horizontal × Vertical) for HD 16:9	85.2° x 58° (+/- 3°)	
Depth Stream Output Resolution	Up to 1280 x 720	
Depth Stream Output Frame Rate	Up to 90 fps	
Minimum Depth Distance (Min-Z)	0.11 m	
Maximum Range	Approximately 10 meters	
	Accuracy varies depending on calibration, scene, and lighting conditions	
RGB Sensor Resolution & Frame Rate	1920 x 1080 at 30 fps	
RGB Sensor FOV (Horizontal × Vertical)	69.4° x 42.5° (+/- 3°)	
Camera Dimension (Length x Depth x Height)	90 mm x 25 mm x 25 mm	
Connector	USB Type-C*	
Mounting Mechanism	One 1/4-20 UNC thread mounting point	
	Two M3 thread mounting points	

Stereo Vision

Triangulation Principle

AncoraSIR.com

Stereo Vision

Triangulation Principle

Stereo Vision

Triangulation Principle

AncoraSIR.com

Southern University of Science and Technolog

Installation

- 1. Connect the USB Type-C to your host PC.
- Install the Intel® RealSense[™] SDK V2.16(Please use the guidance here: <u>https://realsense.intel.com/sdk-</u> 2/#install)
 - 1. Prep steps as instructed in the website
 - 2. sudo apt-get install librealsense2=2.16.0-0~realsense0.85
 - 3. sudo apt-get install librealsense2-utils=2.16.0-0~realsense0.85
 - 4. sudo apt-get install librealsense2-dev=2.16.0-0~realsense0.85
 - 5. sudo apt-get install librealsense2-dbg=2.16.0-0~realsense0.85
- 3. Run the Intel® RealSense[™] Viewer (firmware upgrade may be needed if you encounter version error)

AncoraSIR.com

Bionic Design & Learning Group

Realsense ROS Package

- Installation
 - 1. cd ~/catkin_ws/src/
 - 2. git clone <u>https://github.com/intel-ros/realsense.git</u>
 - 3. git checkout tag/2.1.0
 - 4. catkin build & source ~/.bashrc
- Launch: roslaunch realsense2_camera rs_rgbd.launch

Point cloud in Rviz

ROS topics published

ROS topics published

srostopic ehco /camera/color/camera_info

header:
seq: 64
stamp:
secs: 1548158943
nsecs: 184392163
frame_id: "camera_color_optical_frame"
height: 480
width: 640
distortion_model: "plumb_bob"
D: [0.0, 0.0, 0.0, 0.0, 0.0]
K: [616.3788452148438, 0.0, 330.0303955078125, 0.0, 616.4257202148438, 234.33065795898438, 0.0, 0.0, 1.0]
R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
P: [616.3788452148438, 0.0, 330.0303955078125, 0.0, 0.0, 616.4257202148438, 234.33065795898438, 0.0, 0.0, 0.0, 1.0, 0.0]
binning_x: 0
binning_y: 0
roi:
x_offset: 0
y_offset: 0
height: 0
width: 0
do_rectify: False
y_offset: 0 height: 0 width: 0 do_rectify: False

subscribe to ROS topic of relevant image

TODO: Create Subscribers

depth_sub =
message_filters.Subscriber("/camera/aligned_depth_t
o_color/image_raw", Image)

rgb_sub =
message_filters.Subscriber("/camera/color/image_ra
w", Image)

```
ts = message_filters.TimeSynchronizer([depth_sub,
rgb_sub], 1)
```

ts.registerCallback(callback)

🔋 🗈 rviz	_
Create visualization	
By display type By topic	
<pre>v /camera v /aligned_depth_to_color / image_raw v /aligned_depth_to_infra1 / image_raw v /aligned_depth_to_infra2 / image_raw v /color / image_raw v /color / image_raw v /depth / image_rect_raw v /infra1 / image_rect_raw v /infra2 / image_rect_raw</pre>	
Show unvisualizable topics	
Description:	
	Cancel OK

Homework

- Write a perception ros node subscribing to ros topic of relevant image.
- Add a mover function to move the robot arm in the perception ros node.
- Prepare for the next lab session:
 - Install opency and pcl

Thank you!

Prof. Song Chaoyang

• Dr. Wan Fang (<u>sophie.fwan@hotmail.com</u>)

