ME336 Collaborative Robot Learning

Spring 2019

Friday, March 08

Lab 03 ROS Simulation

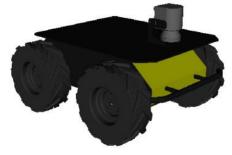
Wan Fang

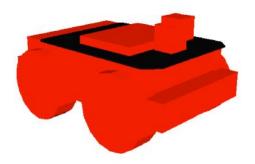
Visiting Scholar

SUSTech Institute of Robotics

sophie.fwan@hotmail.com

Agenda


Week 03, Friday, Mar 8


- ROS Simulation
 - Robot/Scene Description: URDF
 - ROS simulation: Gazebo
 - ROS Control
 - Motion Planning: MoveIt
- Home work: Franka

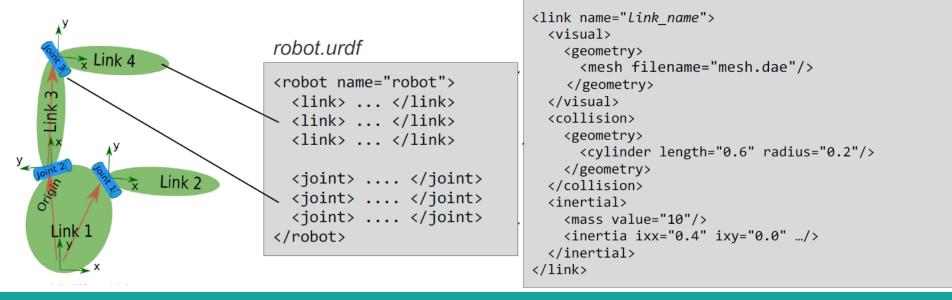
Unified Robot Description Format

- <u>URDF</u> Defines an XML format for representing a robot model
 - Kinematic and dynamic description
 - Visual representation
 - Collision model

Mesh for visuals

Primitives for collision

- Define working scene of the robot
- URDF generation can be scripted with XACRO


AncoraSIR.com

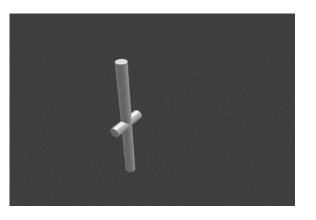
More info http://wiki.ros.org/urdf, http://wiki.ros.org/xacro

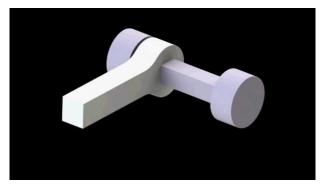
3/7/2019

Link

- *Link* description contains
 - name
 - visual: size, color, shape, geometry primitives, meshes, material
 - inertial matrix, collision properties.
- Every link is a coordinate/frame

Joint


- *Joint* describe the relationship between two links, properties including
 - Name, type, parent, child, origin (transform from the parent link to the child link), axis
 - Limit: lower and upper rotation/translation limits, max velocity, max effort
 - Kinematics: one joint follows another joint
 - Dynamics: friction, damping


```
<joint name="joint_name" type="revolute">
   <axis xyz="0 0 1"/>
   <limit effort="1000.0" upper="0.548" ... />
   <origin rpy="0 0 0" xyz="0.2 0.01 0"/>
   <parent link="parent_link_name"/>
   <child link="child_link_name"/>
  </joint>
```


Joint

Joint Types	Description
continuous	A continuous hinge joint that rotates around the axis and has no upper and lower limits.
revolute	A hinge joint that rotates along the axis and has a limited range specified by the upper and lower limits.
prismatic	A sliding joint that slides along the axis, and has a limited range specified by the upper and lower limits.
planar	This joint allows motion in a plane perpendicular to the axis.
floating	This joint allows motion for all 6 degrees of freedom.
fixed	This is not really a joint because it cannot move. All degrees of freedom are locked.

Joint

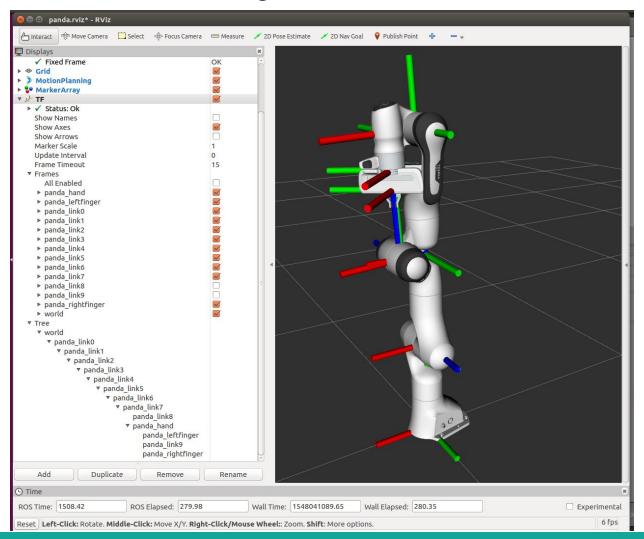
- <u>*Transmission*</u> describe the relationship between an actuator and a joint. This allows one to model concepts such as gear ratios and parallel linkages.
- Used together with <u>ros control</u>.

```
<transmission name="simple_trans">
<type>transmission_interface/SimpleTransmission</type>
<joint name="foo_joint">
<hardwareInterface>EffortJointInterface</hardwareInterface>
</joint>
<actuator name="foo_motor">
<mechanicalReduction>50</mechanicalReduction>
<hardwareInterface>EffortJointInterface</hardwareInterface>
</actuator>
</transmission>
```


AncoraSIR.com More info: http://wiki.ros.org/urdf/XML/Transmission

Building Franka Model

A list of robots described by URDF files can be found here: http://wiki.ros.org/urdf/Examples


panda_arm.xacro — ~/catk	cin_ws/src/BionicDL-CobotLearning	-Project1/franka_description/robots — Ato	m
	panda_arm.xacro		
<xacro:macro <mark="" name="pand</td><th>la_arm">params="arm_id:='panda'<td>description_pkg:='franka_description</td><td>' connected</td></xacro:macro>	description_pkg:='franka_description	' connected	
	'\${not connected_to}">■		
<link name="\${arm_id}
<visual>
<geometry>
<mesh filename=
</geometry></td><th>link0"/> - "package://\${description_pkg}/ <td>meshes/visual/link0.dae"/></td> <td></td>	meshes/visual/link0.dae"/>		
 <collision> <geometry></geometry></collision>			
<pre><mesh filename="</geometry"> </mesh></pre>	"package://\${description_pkg}/	<pre>meshes/collision/link0.stl"/></pre>	
	0.0 0.0" rpy="0 0 0" />	link0_length}" mass="\${link0_mass}">	
<link name="\${arm_id}
<visual>
<geometry>
<mesh filename=
</geometry></td><th>link1"/> "package://\${description_pkg}/ <td>meshes/visual/link1.dae"/></td> <td></td>	meshes/visual/link1.dae"/>		
 <collision> <geometry></geometry></collision>			
	"package://\${description_pkg}/	meshes/collision/link1.stl"/>	
	0.0 0.0" rpy="0 0 0" />	link1_length}" mass="\${link1_mass}">	
<pre><!-- <safety_contro<br--><origin <br="" rpy="0 0 0"><parent \${arm<br="" link="\${arm
<child link="><axis xyz="0 0 1"></axis></parent></origin></pre>	yxyz="0 0 0.333"/> n_id}_link0"/> _id}_link1"/>	city="40.0" soft_lower_limit="-2.8973 velocity="2.1750"/>	

AncoraSIR.com

Bionic Design & Learning Group

Building Franka Model

3/7/2019

AncoraSIR.com

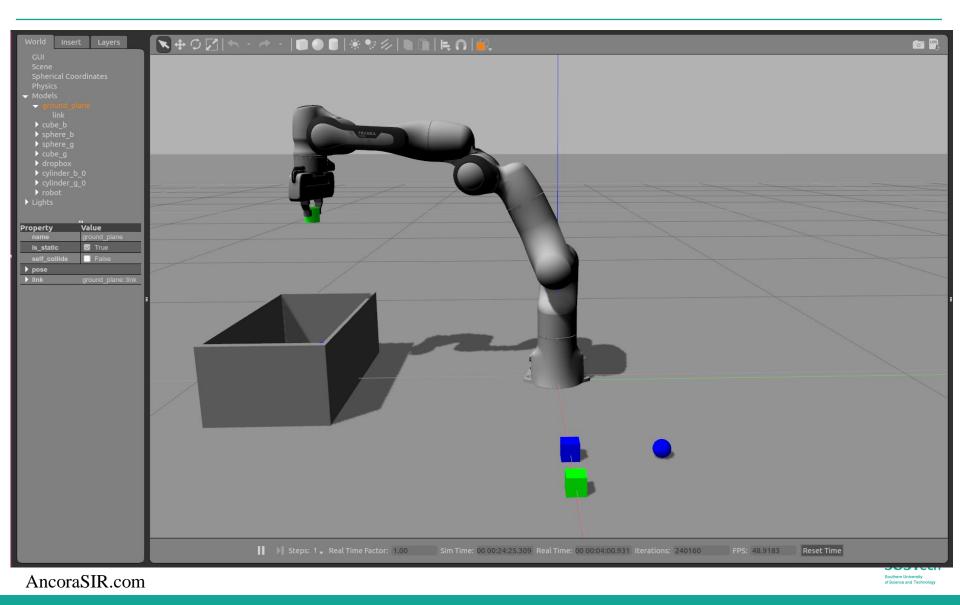
Bionic Design & Learning Group

ROS simulation

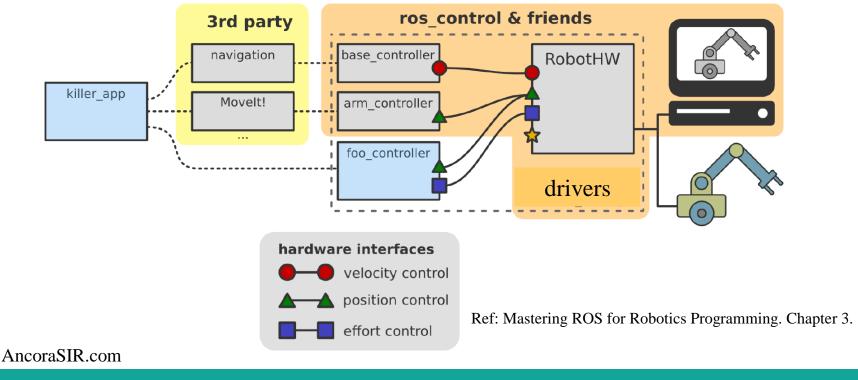
Gazebo

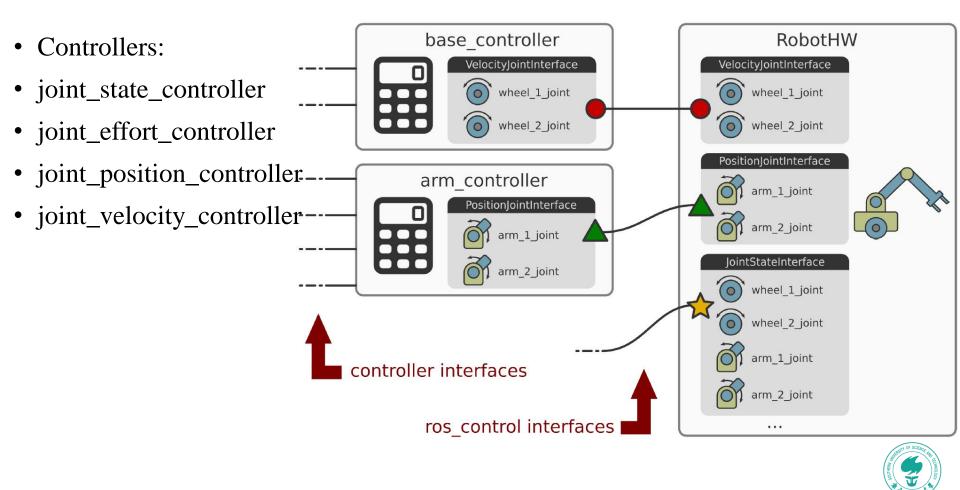
- <u>Gazebo</u> is a robust physics engine, high-quality graphics, and convenient programmatic and graphical interfaces.
 - Useful if you don't have a real robot or camera.
 - Automatically installed with ROS desktop-full.
- What do you need for gazebo simulation?
 - <u>World Files</u>: contains all the elements in a simulation, including robots, lights, sensors, and static objects.
 - Model Files: models of the objects.
 - *Environment Variables*: set environment variables to locate files, and set up communications between the server and clients.

3/7/2019

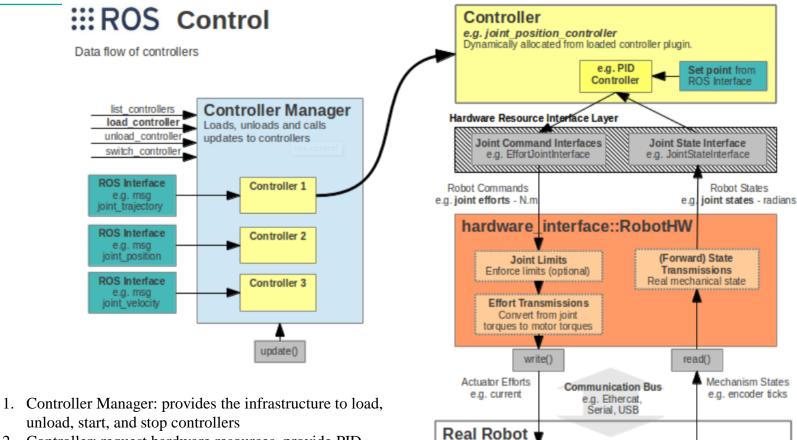

ROS simulation

World Files


- *Simulation Description Format* (SDF) defines an XML format to describe
 - Environments (lighting, gravity etc.)
 - Objects (static and dynamic)
 - Sensors
 - Robots
- SDF is the standard format for Gazebo
- Gazebo converts a URDF to SDF automatically


ROS simulation: Gazebo

- ROS_control is a set of packages that connects application softwares to robotic hardware.
- Include controller interfaces, controller managers, transmissions and hardware_interfaces.
- Lower entry barrier, reuse of control code, Real-time ready implementation



SUSTech

AncoraSIR.com

SUSTech

- 2. Controller: request hardware resources, provide PID control, give joint command
- 3. Hardware Resource Interface: provide hardware sources
- 4. RobotHW: Robot hardware abstraction(actuators, joints, sensors), talk to HW, provide resources (r. joint state, r.w. position/velocity/effort joint), handles resource conflict
- 5. Real Robot:

Encoders

Sensors on the real robot

Embedded Controllers

e.g. PID loop to follow


effort setpoint

Actuators

Servos, etc.

SUSTech

Southern University of Science and Technolo

Technology

gazebo-ros-control

- Simulate a moveable robot arm in Gazebo
- needs addition configuration for each joint

arm controller:

- panda_joint1

- panda joint2 - panda_joint3

- panda_joint4

- panda joint5

- panda_joint6

- panda_joint7

ioints:

gains:

constraints:

goal time: 10.0

state publish rate: 50

action monitor rate: 30

stop_trajectory_duration: 0.0

```
gripper_controller:
type: "position_controllers/JointTrajectoryController"
                                                        type: "effort_controllers/JointTrajectoryController"
                                                         joints:

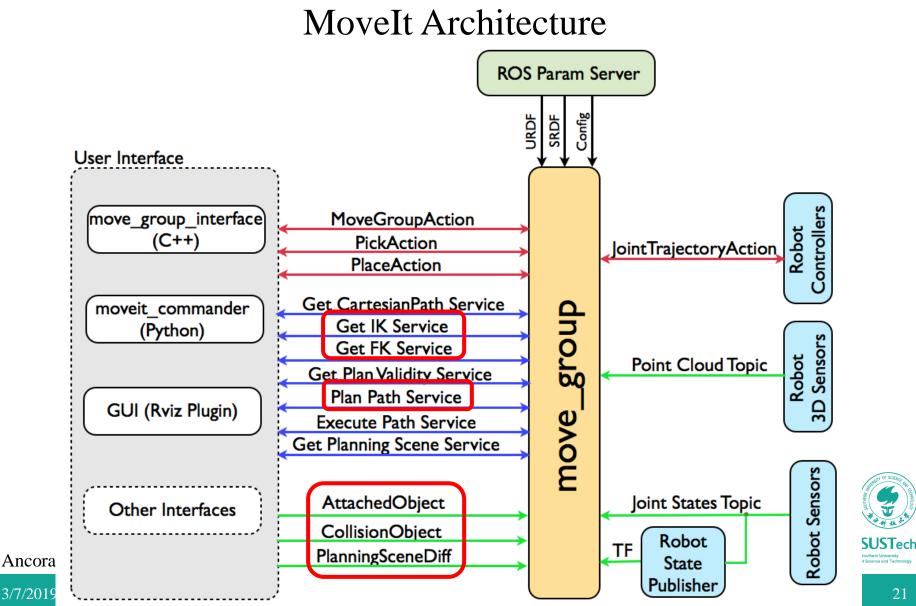
    panda_finger_joint1

                                                            - panda finger joint2
                                                         gains:
                                                           panda_finger_joint1: {p: 100, i: 1, d: 10, i_clamp: 1.0}
                                                           panda_finger_joint2: {p: 100, i: 1, d: 10, i_clamp: 1.0}
                                                         constraints:
   panda_joint1: {p: 100, i: 0.01, d: 1}
                                                           goal time: 4.0
   panda_joint2: {p: 100, i: 0.01, d: 1}
                                                           panda finger joint1:
   panda joint3: {p: 100, i: 0.01, d: 1}
                                                             goal: 0.03
   panda_joint4: {p: 100, i: 0.01, d: 1}
                                                           panda_finger_joint2:
   panda joint5: {p: 100, i: 0.01, d: 1}
   panda_joint6: {p: 100, i: 0.01, d: 1}
                                                             goal: 0.03
   panda_joint7: {p: 100, i: 0.01, d: 1}
                                                                                                                         SUSTech
```

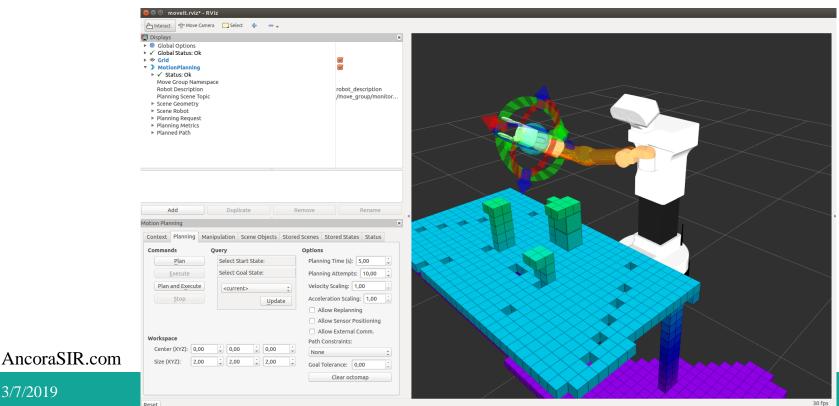
gazebo-ros-control

- Add gazebo-ros-control package in the URDF file.
- Add transmission in the URDF file

```
<gazebo>
  <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
        <robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType>
        </plugin>
  </gazebo>
```

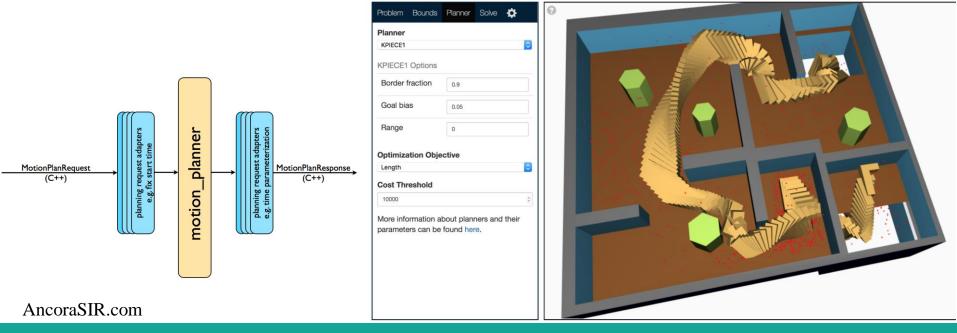

Anc </transmission>

MoveIt


- MoveIt! is a set of packages and tools for doing mobile manipulation in ROS.
- MoveIt! contains state of the art software for motion planning, manipulation, 3D perception, kinematics, collision checking, control, and navigation.
- Installation: sudo apt-get install ros-kinetic-moveit

Planning Scene

- Represent the world around the robot and also store the state of the robot itself using Octomap
- Read the joint_states topic from the robot, and the sensor information and world geometry from the world geometry monitor



3/7/2019

Motion Planners

- MoveIt! works with motion planners through a plugin interface. This allows MoveIt! to communicate with and use different motion planners from multiple libraries.
- Default library is OMPL(Open Motion Planning Library)

Bionic Design & Learning Group

Others

- Kinamatics:
 - The default inverse kinematics plugin for MoveIt! is configured using the KDL numerical jacobian-based solver
 - Others: TRAC-IK, IKFast
- Collision Checking:
 - Collision checking in MoveIt! is mainly carried out using the FCL package

3/7/2019

MoveIt! Setup Assistant

• The MoveIt! Setup Assistant is a graphical user interface for configuring any robot for use with MoveIt!.

(http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html)

Self-Collisions	Choose mode:		
Virtual Joints	All settings for Movelt! are stored in a Movelt configuration package. Here you have the option to create a new configuration package, or load an existing one. Note: any changes to a Movelt! configuration package outside this setup assistant will likely be overwritten by this tool.		>Movelt!
Planning Groups			
Robot Poses			
End Effectors			
Passive Joints	Create New Movelt Configuration Package	Edit Existing Movelt Configuration Package	
3D Perception	Load a URDF or COLLADA Robot Model Specify the location of an existing Universal Robot Description Format or COLLA	ana 61, 6	
Simulation	 Specify the location or an existing Universal Robot Description Format or CULE server for you. 	RUA nile for your robot. The robot model will be loaded to the paramete	
ROS Control	xacro arguments		Movelt! Setup Assistant
Author Information	inorder		
Configuration Files			
Configuration Files			
			Load Files

3/7/2019

Homework

- Modeling the Robot&Hand URDF: fill corresponding codes in <u>BionicDL-CobotLearning-</u> <u>Project1/franka description/robots/panda arm hand simu</u> <u>lation.urdf.xacro</u>
- Create a MoveIt configuration package using MoveIt! Setup Assistant for franka named panda_moveit_config
- Prepare for the Project1:
 - Project1: Simulate A Picking Robot in Gazebo
 - Codes and instructions can be found at
 - <u>https://github.com/ancorasir/BionicDL-CobotLearning-Project</u>
 - Brief instruction will be given at next lab

AncoraSIR.com

3/7/2019

Thank you!

Prof. Song Chaoyang

• Dr. Wan Fang (<u>sophie.fwan@hotmail.com</u>)

